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PLANAR p-ELASTIC CURVES AND RELATED GENERALIZED
COMPLETE ELLIPTIC INTEGRALS

KOHTARO WATANABE

Abstract

Planar elastica problem is a classical but has broad connections with various fields,
such as elliptic functions, differential geometry, soliton theory, material mechanics,
etc. This paper regards classical elastica as a theory corresponding to Lebesgue L2
case, and extends it to L? cases. For the sake of the effect of p-Laplacian, novel
curious solutions appear especially for cases p > 2. These solutions never appear in
1 < p <2 cases and we call them flat-core solutions according to Takeuchi [6, 7].

1. Introduction

Let C be a plane curve with length L, s an arc-length parameter and x(s) its
curvature. Further, we fix an orthogonal coordinate system (x, y) in the plane,
and 6(s) be an angle between a tangent (dx(s)/ds,dy(s)/ds) at the point
(x(s), ¥(s)) € C and the positive x-axis. It is well-known that classical variational
problem called “elastica”, see for example Antman [1], Truesdell [8], minimizes
the total squared curvature (elastic energy) of C:

1(* ) (s,
1) 10) =5 | O as =3[ o as
2)o 2)o
subject to
L L
0e {«9 e C?0,L] ’ cos O(s) ds = a, J sin O(s) ds = 0,
0 0

0(0) = 0, O(L) = 2nw (ne NU {0})}7
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where a runs over the range (—L <a <L). To show the existence of the
minimizer, it is convenient to extend the definition domain of 6 to some subset of
Sobolev space W!:2(0,L):

L L

cos 0(s) ds = a, J sin 0(s) ds = 0,

W(2,a,n) = {ee W'*2(07L)‘ J .

0

0(0) =0, 0(L) = 2n7z}.

The stationary curve, i.e. the solution of the Euler-Lagrange equation for the
functional J is called elastic curves and their structures are well known: see Fig. 1
(Fig. 1 is the same one as Fig. 1.7 of Koiso [3]). As we see form this figure,
elastic curves are intrinsically periodic. For this reason, we have imposed the
condition 6(0) =0, (L) =2nn (ne NU{0}). As a natural extension, one may
think of area constraint (if curves are restricted to be closed) as an additional
constraint condition, for this aspect see; [10, 4]. This paper regards classical
elastica problem as L? case and extends it to L? problem, that is:
Minimize
1

L L
) 90 =] 0. ds = [ as

Subject to 8 e W(p,a,n):

L L

cos 0(s) ds = a, J sin 8(s) ds = 0,

W(p,a,n) = {ee WI’P(O,L)‘ J .

0

0(0) = 0, O(L) = 2n7t},

where @ and n are as before. Although the existence of the minimizer can be
readily shown with this setting; see Appendix, we are much more concerned with
the detailed relation between the solutions of the Euler-Lagrange equation and
the shapes of stationary curves. So, let us introduce the Euler-Lagrange equa-
tion for this case concretely. Since

L L
(3) x(L) = J cosO(s)ds=a, y(L)= J sin 0(s) ds = 0,
0 0

if 0 is stationary, there exist Lagrange multipliers Ao, 4;, 4> € R, such that for
arbitrary ¢ € W1?(0, L) satisfying ¢(0) = ¢(L) = 0 (since the values of 0(0) and
O(L) are fixed), it holds that

L L

sin 0(s)p(s) ds — A2 J cos 0(s)p(s) ds = 0.

L
AOJ 10,7 20,0, (s) ds — 1 J
0 0

0
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1 2 3 4

a=4.0, n=0, m=1 a=2.0, n=0, m=1 a=0.5, n=0, m=1

Case (ii) Case (ii) Case (ii)
a=0, n=0, m=1 =-0.5, n=0, m=1 =-2.0, n=0, m=1 =-4.0, n=0, m=1
Case (vi) Case (ii) Case (ii) Case (ii)

i 1 2 3 4 5 0 s 20 y = 0
a=4.0, n=1 a=2.0, n=1 a=0.5, n=1
Case (iv) Case (iv) Case (iv)
a=0, n=1 a=-0.5, n=1 a=-2.0, n=1 a=-4.0, n=1
Case (v) Case (iii) Case (iii) Case (iii)

FiGUure 1. Elastic curves of various a, n and m for L = 2n, where the parameter m means the
number of shape repetition (see Theorem 1).
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If o =0, 0 =0 holds, and hence the stationary curve is (x, y) = (s,0) (0 <s<L).
Thus, in the following we assume Jy = 1, and consider the equation:

(4) (10,]7205), = —41 sin 0 — 25 cos 0,
(5) 0(0) =0, 6(L)=2nr, (neNU{0}),
(6) JL cos 0(s) ds —a, (~L<a<L),
0
L
(7) J sin 0(s) ds = 0.
0

We call a solution which satisfies (4)—(7), p-elastic curve. Clearly, p-elastic
curves are stationary because admissible functions ¢ satisfy

L L
(8) J sin 0(s)p(s) ds = 0, J cos 0(s)p(s) ds = 0.
0 0

Since the equation (4) includes p-Laplacian term, as is seen in Takeuchi [6, 7],
the value p = 2 divides qualitative behavior of the solution. Now, putting 1; =

Rcosa, /o = Rsina where R= /2] + 27, we have from (4),
9) (16,/7726,), = —R sin(6 + a).

Further, multiplying 6; both sides of (9), we obtain L? extension of energy
conservation law:

(10) pT?1|65|" = E + Rcos(0 + o),

where E is a constant (corresponding to a total energy). Here, E, R and « must
be taken to satisfy (5), (6) and (7). We can assume without loss of generality,
o =0. Since if solutions of (10) satisfying (5), (6) and (7) exists for E = Ey,
R =Ry, « =0y, it can be obtained by suitable parallel translation and rotating
—op (rad) the curve generated for £ = E;, R= Ry, « =0. Thus, we analyze

~1
(11) pT|HS|”:E+Rc0s 0,

for the following five cases:

(

(
(12) (11

(

(
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where, for cases (II) to (V), we assume R > 0. In the next section, main results
are stated, and in Section 3, we prove the results of Section 2, in accordance with
above cases.

2. Main results

To state the results, we introduce some notations which are generalization of
complete elliptic integrals:

DEFINITION 1.

/2 1-2/p
(13) Kipg) = [ =D 7 4y

0 /1 —¢%sin® ¢
n/2
(14) Eiplg)= | 1/1—¢>sin g(cos ¢)' " dg

0

n/2 1

(15) Koplg) = | e
J0 1 —¢%sin? ¢

n/2 ;
(16) Exp(9) = | V1 —¢q2sin® ¢ dg

When p =2, we see that these integrals coincide with complete elliptic
integrals of first and second kinds.

Remark 1. 1In [7, p. 89], a generalization of complete elliptic integral is
given by

1 n/2
ds cos ¢
(17) Kp,m,r(q) :J P ; :J » - —
0 /T —smy/1— gmsm o /1 —sin" ¢i/1 — g7 sin” ¢

where m > 1 is a parameter. So, if we take m =2, r=2o0r p=2 m=2r=p
in (17), we obtain K ,(q), K> ,(q) respectively. Nevertheless, we would like to
use the notation in Definition 1 for the simplicity.

)

For 1 < p <2, we have the following result:

THEOREM 1. Let 1 < p <2 Then, the solutions of (4)—(7) ie. p-elastic
curves (x,y) exist such that followings hold:
(i) The case a=+L, and n=0.

(i) The case —L<a <L (a#0) and n=0.
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L -1 ¢ ) 2 1-2/p
(18) 2(9) = 4 Kiple) " (2] /1= a7 sin? plcos o' 7 dg
m 0
r’ [cos p|' 7 d(p)
04/1—¢>sin® ¢

L 1 J‘ﬁ sin{2 sin ! (¢ sin ) }|cos |7

=+—K

where me N, 0 < ¢ <2mn and q is a unique solution of the equation

de

(19) LKi1,p(9) ™ (2E1,p(q) — Ki,5()) = a.

We note that the p-elastic curves generated by q correspond to case (III)

of (12).

The case —L <a <0 and neN.

_L a[f_cos2p
(20) ) = 5 (Key(a) | - ==y
¢ .
y(4) Z%(Kz,p(q))flj LE A

0 /1 —¢>sin® ¢

where 0 < ¢ < nm, and q is a unique solution of the equation

Q) LK) ("qu2p<q>+2E2p/<p e >) a

The case 0 <a < L and neN.

4
22) o) =y @) || ey
¢ .
)= 35 Koyl || .

where 0 < ¢ < nn, and q is a unique solution of the equation

) —L(Kay() (q q‘2K2p<q>+;Ez,p/<p_l)<q>)=a‘

For cases (iil) and (iv), we note that the p-elastic curves generated by q
correspond to case (V) of (12).
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(v) The case a=0 and neN.
For this case, locus of (x,y) is a circle of radius L/2nm.
(vi) The case a=0 and n=0.

L d+o

(24)  x(¢) = mKLp(Q)_] <2J 1 — ¢2 sin” g|cos |27 dg

P+o 1-2/p

N J |cos g d¢>
z /1 —¢g?sin’ ¢

L (@) J‘““ sin{2 sin~' (¢ sin ¢)}|cos g

y(¢) = i—I(l‘p
4m o \/l—qzsinzgo

where me N, 0 < ¢ < 2mmn, o is an arbitrary angle satisfying 0 < o < 2n
and q is a unique solution of the equation

(25) LKLP(Q)_IQELP(Q) - Ki,(q)) =0.

1-2/p

do

Figure 2 shows examples of p-elastic curves for p =1.2 and L =2z. For the
case p > 2, we have the following theorem. In this case, thanks to the existence
of p-Laplacian term, novel curious solutions called flat-core solutions appear.
We note our flat-core solutions are essentially the same as the one introduced by
Takeuchi [6, 7].

THEOREM 2. Let p > 2. Then, the solutions of (4)—(7) i.e. p-elastic curves
(x,y) exist such that followings hold:
(i) The case a=+L, and n=0.

x(s)==s, »p(s)=0, (0<s<L).

(i) The case —L/(p—1)<a<L (a#0) and n=0.
For this case, (x,y) satisfies (18), where q is the unique solution of
(19).  As Theorem 1, the p-elastic curves generated by q correspond to
case (1II) of (12).

(iti) The case —L/(p—1)<a <0 and neN.
For this case, (x,y) satisfies (20), where q is the unique solution of
(21).  As Theorem 1, the p-elastic curves generated by q correspond to
case (V) of (12).

(iv) The case 0 <a< L/(p—1) and neN.
For this case, (x,y) satisfies (22), where q is the unique solution of
(23).  As Theorem 1, the p-elastic curves generated by q correspond to
case (V) of (12).

(v) The case a=0 and neN.
For this case, locus of (x,y) is a circle of radius L/2nm.
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a=4.0, n=0, m=2 a=2.0, n=0, m=2 a=0.5, n=0, m=2
Case (ii) Case (ii) Case (ii)
a=0, n=0, m=2 a=-0.5, n=0, m=2 a=-2.0, n=0, m=2 a=-4.0, n=0, m=2
Case (vi) Case (ii) Case (ii) Case (ii)

0l
04
02
T B 3 I

a=4.0, n=2

Case (iv) Case (iv) Case (iv)
a=0, n=2 a=-0.5, n=2 a=-2.0, n=2 a=-4.0, n=2
Case (V) Case (iii) Case (iii) Case (iii)

FIGURE 2. p-elastic curves for p=1.2, L =2xn.

(vi) The case a=0 and n=0.
For this case, (x,y) satisfies (24), where q is the unique solution of (25).

To describe the existence result of flat core solutions, we introduce following

definition.
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FIGURE 3. FR*(l), FL*(I), FR™(I), FL~(I), F*(I), and F~(I), when [ = 1.

DerNiTION 2. We denote by L(/) a line segment of length / parallel to x
axis. Moreover, FR*(l), FL*(I), FR™(I), FL=(I), F*(l), F~(I) are curves
defined by the following expressions. Here, (x(¢), y(¢)) (0 < ¢ < 7/2) denote
the locus of the curves; see Figure 3.

p1
.
-P
Y=+ (75 o

ST AT (Pz_j) Jo (cos p)*/7

X
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(7))
s (,;’2_;2) [
(27) FL*(I) : N (p - 1)
oy
R - ( '%,f) | (S“;)‘Z/
(2=t
0= ﬁr<<;;}) [
(28) FX(1) . (p B 1)
S\
O (;2—,,2> | (Sf;“;)"i/,,

In addition, we introduce following numbers: n. €N, n_,n e NU{0},
Ly>0, L; >0 (1 <i<n). With these notions, we obtain the structure theo-
rem of flat core solutions.

THEOREM 3. Let p > 2. Then, the solutions of (4)—(7) i.e. p-elastic curves
(x, y) are as cases (1)—(vi) of Theorem 2. In addition, we have the following case.

(vii) (Flat Core Solution Case 1) The case L/(p—1)<a<L and ne
NU {0}.
Let ny, n_, ng, be non-negative integers, Lo >0, L; >0 (1 <i<ny)
satisfying n=n, —n_ and L= Lo(ny +n_)+>.2 L; (if no=0, we
assume L = Lo(ny +n_)). Then, p-elastic curves consists of n. piece
of F™(Ly), n_ piece of F~(Ly) and ny piece of line segments L(L;)
(1 <i<ng) (if ng=0, it means there is no line segments) joined each
other in arbitrary order, but satisfying both end points are on (0,0) and
(a,0); see Figure 4. We express these solutions with F™(Lo), F~(Lo)
and {L(L;)} (1 <i<ny), in accordance with joined order from left to
right.

(viii) (Flat Core Solution Case 1I-1) The case —L<a<—L/(p—1) and
neNU{0}.
Let ny, n_, ny, Lo>0, L; >0 (1 <i<mny) are as case (vii) and
satisfying n=n, —n_+1, L=Lo(ny +n_+ 1)+ > " L; (if np=0,
we assume L= Lo(n. +n_+1)). Then, p-elastic curves consists of
FL*(Ly), FR"(Ly), ny piece of F~(Ly), n_ piece of F*(Ly) and ny
piece of line segments L(L;) (1 <i < ng) joined each other in arbitrary
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! ; AP A | : :
0 E(Ln Fi(Ly) Ly 6 LLy) Fi(Ly) Ly @

L(LDF(Lo)L(L)F(Lo)L(L3)F " (Lo)L(Ly)

O%E 1 2 3 6 3 0.1 t@ 1.0 15 20 25 3.0
0. :
-0.3 -0.3)

(1) F7(1.5)L(0.5)F*(1.5)L(1)F-(1.5)L(0.28) (ii) L(0.2) F~(1.8)L(0.2)F*(1.8)L(0.2)F(1.8)L(0.28)
a=4.033, p=3, n=1 a=3.583, p=3, n=1

0.4

0.2

0.0

.ovit 03 @ 1S 20 23 30 33 0.5 1.0 1.5 2.0 2.5 3.0 35
-0.

(iii) L(0.3)F(2.5)L(0.5)F*(2.5)L(0.48) (iv) L(0.3)F"(2.7)L(0.4)F*(2.7)L(0.18)
a=3.783, p=3, n=0 a=3.583, p=3, n=2

ST

35

Sooo
ool
SELO000

coocooo
SERCRE

FIGURE 4. Flat core solutions of the case (vii) of Theorem 3.

order, but satisfying both ends are FL™(Ly) and FR*(Ly) and end points
of them are on (0,0) and (a,0) respectively; see Figure 5-(1). We express
these solutions as in the case (vii).

(ix) (Flat Core Solution Case 11-2) In the case —L <a < —L/(p—1) and
neNU{0}.
Let ny, n_, ny, Ly, L; (1 <i<ny) are as case (vii) and satisfying
n=n,—n_—1, L=Lyny +n_+1)+>" L (if ngo=0, we fix
L=Ly(ny+n_+1)). Then, p-elastic curves consists of FL™(Ly),
FR~(Ly), ny piece of F~(Ly), n_ piece of F™(Ly) and ny piece of
line segments L(L;) (1 <i<ngy) joined each other in arbitrary order,
but satisfying both ends are FL™(Ly) and FR™(Ly) and end points of
them are on (0,0) and (a,0) respectively; see Figure 5-(ii). We express
these solutions as in the case (vii).

3. Proof of theorems

We investigate cases (I) to (V) of (12) in detail. We note that for the proof
of theorems, the argument of Yanamoto [9] was helpful.
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F(Lo)

L(Ly) FA(Ly) FR™(Lo)

(i)  FLY(Lo)F(Lo)L(L)F"(Lo)FR*(Lo)

@ Q F(Ly) T
} 1 0. 1 1

F(Lo) ' Cowy F(Lo)

(i) FLA(Lo)F"(Lo)F(Lo)L(LF (Lo)FR (Lo)
FIGURE 5. Flat core solutions of the case (viii) and the case (ix) of Theorem 3.
The case (I) of (12).

In this case, the solution of (11) is d; = Constant. This applies to cases (i) and
(v) of Theorem 1 and 2.

The case (II) of (12).
In this case, the solution of (11) is # = 0. This applies to cases (i) of Theorem 1
and 2.

The case (III) of (12).
From (11), we have

—1 R
(29) pT|HAY|p—E+Rcos0—2R<——sin =)
Putting ¢*> = (E + R)/2R, and noting it must be 0(0) = (L) = 0 in this case, we have

2R\ 0 L
(30) HX(S)<F) qc — sm 5, <OSSS m),

where m is a positive integer. Thus, we obtain
. N .
s:(p > Ji (0<0<2sin'g).

2pR 0’
P 0 wp/ g? — sin® 3
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It is convenient to introduce the new variable ¢ satisfying
.0 .
(31) sin 5 = ¢ sin b.

We note that as 6 varies from 0 to 2 sin~' ¢, ¢ does from 0 to n/2. Using ¢, we
can see that s can be expressed as

5= 2q172/p <P - 1>‘/pJ¢ (cos ¢)172/p " (O e n).
ZpR 04/1—¢2sin? ¢ 2

Moreover, from the symmetry of § we can extend the definition domain of
s =s(¢) from [0,7/2] to [0,27] as

_ \/pr e 1-2/p
(32) 5= 2g12 (”2 RI) J [cos 4| dp, (0<¢<2n).
P 04/1—¢2sin’ ¢

From (32) and the relation ¢(L/4m) = /2, it holds that

(33) L g (p - 1>‘/" J”/Z (csp) 2"
4m 2R 0 1 —¢2sin? ¢

Thus R can be expressed as a function of ¢:

0 R =R ([ (s
pL? 0 1 —¢2sin? ¢

Applying (33), we can express (x(L), y(L)) as followings:

d¢

LEmMmA 1.
L

X(L) = jo cos 0(s) ds = LK, ()~ (2E1 ,(q) - K1.,(q)).

y(L) = JOL sin 0(s) ds = 0.

Proof. Changing the variable from s to ¢ with (32), we have

L L/m
x(L) = J cos O(s) ds = mJ cos O(s) ds
0 0

= 1)‘“’ et sin”" (g sin ¢)} cos ¢! 2"
2R 0 \/1—¢q?sin? ¢

-1 1/p p27 1-2 2 a2
= 2mq' 2P (p ) J 1-2¢7sin" ¢ cos 4|7 dg,
2R 0 \/1—¢%sin® ¢

d¢
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where in the last equality, the relation
cos{2 sin"! (g sin ¢)} = 1 — 2 sin’*(sin~' (g sin ¢)) = 1 — 2¢ sin? ¢.

was applied. Hence, using (33), we see that the right-hand-side of above equation
becomes

-1
I J”/z (cos ¢)' 727 i J”/2 1 — 242 sin’ ¢
0 1 — g% sin® ¢ 0 1 —¢?sin® ¢
-1

d¢

[cos ¢|' /7 dgp

L r” (cos ¢)' 2

0 1 — g2 sin® ¢

T T 172/
2J " \/1 = ¢2 sin? g(cos ¢)' 2" dg — J P (eos¢) " d¢
0

0 1 —¢2sin’ ¢
= LK1,(q) " (2E1,(9) — K1,5(q)).
Next, we compute y(L). By definition,

L L/m
nL) = J sin 0(s) ds = mJ sin 0(s) ds
0 0
_ 2mq1*2/17 (p—_1>l/PJ~Z” sin{2 sin~! (g sin ¢)}|cos 4| 1-2/p i
2pR 0 I — g2 sin’ 4

Noting the relation

JZ” sin{2 sin ' (g sin ¢)}|cos ¢|' " = J” sin{2 sin~! (g sin ¢)}|cos ¢|' 7 df

m 1 —¢2sin’ ¢ 0 1 —¢2sin’ ¢

we obtain the second assertion. O
Here, we define the function X, as:

(35) Xi(q) = LK1 ,(9) "' 2E1,,(q) — K1 ,(9))-

Lemma 2. For Xi, following properties hold.
(i) Xi(q) is monotone decreasing on (0,1).
(i) X(0) =L

(iif)

(36) xi(1) =
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Proof. Differentiating K; , and E; ,, with ¢ we have

dKi, , . /2 (sin ¢)2(cos ¢)172/”
dgq @) = Jo (1 — g2 sin’ ¢)*/? 46> 0

T J% (sin ¢)*(cos ¢)' "
dq 0 \/1—¢2sin® ¢

So, Ki,(q) and E;,(q) are monotone increasing and decreasing on (0,1)
respectively. Thus Xi(q) = L(2E: ,(q)/Ki,,(¢) — 1) is monotone decreasing on
(0,1). For (ii), we note that

dg < 0.

where I'(+) is a Gamma function. From this, we obtain (ii). To see (iii), we note
the relation

3 1

b4 ﬁr P
(37) El,p(l) :J /Z(COS ¢)2—2/P d¢ _ (2 lp)
0 or(2-5)

Thus, for the case 1 < p <2 we have X (1) = —L. For the case p > 2, we have
from (37) and the formula zI'(z) =T'(z+ 1) ([5, Formula 5.51]),

X)) =L 21"(1—%)1"(%—%)_1 =L @ __ L 7

TS (Y
2 p P P
From Lemma 2, it holds that X;(¢) = @ has a unique root for (=L < a < L)

if (1<p<2)andfor (—L/(p—1)<a<L)if (2<p). Using this ¢ and (32),
(33), we can express locus (x,y) of p-elastic curve as



468 KOHTARO WATANABE

1-2/p

¢

:L(Klip(q))ilj cos 2(sin‘l(q sin gp))% do

dm > 0 W

—q-sm- @

L [ . cos p|' 7P
:4_([(1717(4)) : J (1 — 247 sin’ (p)L dp = x(¢),

m 0 —

g?sin” ¢

. . . cos o| 7P
(Kip(a) ™ | sin 20sin (g sin ) ==L dp = (9.
1 —¢2sin’ ¢

Therefore, we have shown the case (ii) of Theorem 1 and 2. Especially, when
a =0, locus (x,y) makes a closed curve. This becomes like figure eight; see
Figure 2-(vi). Thus we have proved the case (vi) of Theorem 1 and 2.

The case (V) of (12).
As in the case (III) of (12), from (29), putting ¢> = (E + R)/2R and noting
0(0) =0, 6(L) = 2nn, we have

2R\ [ 50
(38) 0s(s) = <1%1) g2 — sin® X (0<s< L),

and hence
-1 I/p 0
(39) 5= (1’ ) J DY 0<0<mm
2pR 0 rf 5 )
¢* — sin
~(em) [~
- \p(E+R )
p( ) 0 1 — 2 sin? =
1 \l/ppe
:2( P > J a9 , (0< ¢ <nn),
p(E+R) 0 ¥/1—r2sin? ¢

where r =1/q and ¢ = 6/2. Thus it holds

L _ p_l 1/p /2 d¢
o w=tm) | e
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so, R can be expressed as a function of r:

P
22=1p2pr(p — 1 /2
(41) R(r):R:% J _dy
P O /1 —r2sin® ¢
Applying (40), we can express (x(L), (L)) as followings:
LeEMMA 3.
-1
L n/2 d 72 5
x(L) = J cos O(s) ds = L J —¢ J M ”

L (r?=2 2
= Lk ()7 (S5 K0+ B 0)).

y(L) = L sin 6(s) ds = 0.

Proof.

L L/n
x(L) = L cosO(s)ds=n L cos 0(s) ds

4’1( p—1 )l/"r/z cos 2¢ df
p(E+R) 0 /1 —r2sin’ ¢

-1
_ J”/z d¢ J”/z cos 2¢

P .
0 1 —r2sin® ¢ r2 sin® ¢

r2=2

:LKz’p()1< sz()+ 3 B2 1y (r )

For y(L), we have

L L/n

sin 0(s) ds = nJ sin 0(s) ds
0

p—1 )Vpr sin 2¢
=2nl—— —d¢=0. O

— 12 sin? ¢

o = |

0

Here, we define the function X, as:
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-1

n/2 n/2
(42) X>(r) =L J # J p"% d¢
0 {/1—r2sin’ ¢ 0 {/1—r2sin’ ¢
r2=2 2
= Ly () (S5 K0+ 3 B0,

For X, following properties hold.

LemMmaA 4.
(i) Xa(r) is monotone decreasing on (0,1).
(i) X2(0) = 0.
(iii)
—-L (1<p<2)
(43) X(1) =

L

Proof. Differentiating K, , with respect to r we have

dKz’p(}’) ; _&

n/2
~ (r) = 5 J (1=r2sin® ¢) 7" sin® ¢ dgp > 0,

0

-1 . .
so K, ,(r)”" is monotone decreasing. Moreover

5 cos 2¢(sin ¢#)>(1 — 12 sin® ¢) 771 dg
0

n/2 /2
d J cos 2¢ i 2VJ

dr » . -
0 1 —r25sin? ¢

n/2 1/p— 1
:éj smgosmz(ngZ) <1r sin ( ))
—n/2
n/2 1/p—1
:%J —sin go{smz (Z—FZ) (1 — % sin ( ))
0
—1/p—1
—sin2<—%+4><l—rzsin2<—§+z>> }d¢<0.

Thus, (i) is proved. (ii) is obvious. To see (iii), we note E ,/,—1)(1) = E1 »(1)
and lim,_; K, ,(r) = limy_; K ,(q). From these relations, as in the case of
X1 (1), using (37) and formula zI'(z) =T'(z+ 1), we obtain the result. O

From Lemma 4, it holds that X>(r) = a has a unique root for (—L < a < 0)
if (1<p<2)andfor (—L/(p—1)<a<0)if (2<p). Using this r and (39),
(40), we can express locus (x, y) of p-elastic curve as in the case (iii). Concrete
expressions of (x,y) are case (iii) of Theorem 1 and 2.
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Next, from Figure 2-(iv), we can guess that the locus (x, y) corresponding to
o = 7 in (10), also becomes to a p-elastic curve. Indeed, if we take o = 7 in (10),
instead of (38), we obtain

2pR\'"7 0
(44) 0s(s) = (%) q* — cos? X (0<s<L).

Therefore locus (x, y) generated by (44) becomes to case (iv) of Theorem 1 and
2. Similarly x(L) and y(L) can be expressed as

-1

n/2 n/2
X(L) =L J L J % 4
0 Y1 —r2sin? ¢ 0 /1—r?cos?¢

7/2 cos 2¢
=LK, ,(r)"" J = 4
|y s

-1 r2 -2 2
= _LKZ,p(r) r—zKZ,p(r) +r_2E2,p/(p71)(r) .

So, by Lemma 4, x(s) is monotone increasing and end values are x(0) =0,
x(Ly=Lif (1<p<?2), x(L)=L/(p—1) if (p>2)). For y(L), we have

1/[7 T :
p—1 > J sin 2¢
L)=2nl— — T dp=0
HE) <P(E +R) 0+/1—r2cos? ¢ g
Finally, we consider the case (IV) of (12).
The case (IV) of (12).

This case corresponds to the case ¢ = 1 in the case (iii) and (iv) of Theorem 1 and
2. Assume p <2, then we have from (39)

1/p pm/2
. r—1 J =2/p
Iim s(¢) =2 cos d¢g = 0.
d—m)2 (¢) < 2pR ) 0 ( 9) ¢

Hence we do not have any p-elastic curve of finite arc-length. But, in the case
p > 2 from (37), above limit is finite. So, we can expect the existence of p-elastic
curve in this case. We see that from (22), F*(/) and from (20), FL*(/), FR*(])
are obtained. Indeed, appropriate combinations of F*(I), FL*(l), FR*(l) and
line segments are as Theorem 3 stationary curves (p-elastic curves). We will
show this by an example.

Example 1. F*(Lo)L(L1)F*(Lo)L(L,) is a stationary curve of J(0) under
the condition 0 € W(p,a,2), where a =2Ly/(p— 1)+ L; + L;.
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| | |
IL(LI) ' F+(L0) ' L(L

FT(L

0 ?)

FH(Lo)L(LDFH(Lg)L(L,)
FIGURE 6. F+(L0)L(L1)F+(L0)L(L2).
We note that 6 is discontinuous at s = Lo, Lo + Li,2Ly + Ly, so we divide

the integration of first variation of J with these points. Noting 6,(s) =0 at
s= Lo, Lo+ Li,2Lyp+ L, and R is given by (41), we have

o=

2, 4L Lo+L 2Lo+L L
= [10,|” Osply® + [']Lf '+ [']Lo-[;ill + [']2L0+L1

— JLO(|93(S)|1’203(s))s¢(s) ds — JLO+L1 ~ds — J2L0+Ll ~ds — JL - ds

0 Ly Lo+L, 2Lo+Ly

Lo+Ly 2Lo+1L, L
104(5)|720(5)p, () ds + J -ds + J ~ds + J -ds
Ly Lo+Ly 2Lo+Ly

Lo+L,

- JL" Risin 0(s)p(s) ds + J Rsin(2m)p(s) ds
0 b

L

2Ly+Ly
+ J R sin 0(s)p(s) ds + J R sin(4n)p(s) ds
Lo+L; 2L0+L,;

L
= J R sin 0(s)p(s) ds =0,
0

where the last equality holds from (8). We can see that the curve in the cases
(vii), (viii) and (ix) of Theorem 3 are stationary by the same reason. Finally, we
show that in this case p-elastic curve exists for a satisfying L/(p—1) <a< L
(case (vii)), and —L <a < —L/(p—1) (cases (viii) and (ix)). For the case (vii),
we have

L
(45) a=—"n+ E L;.
r—1 5

On the other hand, we know the relation nLy + Z,”:", L; = L. Eliminating L,
from (45), we obtain

(46) aL+(pp_E)lzl—lLl
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The cases (viii) and (ix) are shown similarly. Now, we have finished the proofs
of Theorem 1-3.

4. Appendix
Let us define

Woy(p,a,n) := {lﬁ € W()1=1’((), L) ‘ JOL cos(xp(s) +2nTnS> ds = a,

JOL sin(lﬁ(s) + 2nTns> ds = 0}.

We note, for y e W,7(0,L) it holds that (by integration by parts)

(j W) ds>1/,, < L(j ()" ds>1/,,

Thus we can assume WO1 ’(0,L) has a norm of the form

Wllr0.0) = <J0L I (s)I” ds>1/p

LeMMA 5. infgpcwy(p.an) J(0) is attained.

Proof. Applying A =y, +2nn/L, B= —2nn/L to

41" +1B"\ _ (1Al +1BI\" _ (14+BlY
2 = 2 =\ 2

and putting y = 0 — 2nns/L, where 0 € W(p,a,n) we have

J(0) = J(w + 2’2’”) ! J

zﬂj P ds __(2”?”> .

Thus we can assume ||1//||W1,)(0 1) is bounded. Let us show that Wo(p,a,n)
is weakly closed. Let {lpm} < Wy(p,a,n) and ,, — . Since WOI’P(O,L) is
compactly embedded in C[0,L] (2, p. 212]), if ¥, — ¥, then ¥, € Wo(p,a,n).
Thus Wy(p,a,n) is weakly closed, and hence Wy(p,a,n)N{i e W, P (0,L) |
\|¢||W1,, o) < C} is weakly compact, where C > 0 is sufficientlt large. Noting

2nr|?

lpv_’__

T ds

that J (np +2nms/L) is (weakly) lower-semi-continuous on W, 7(0,L), we obtain
the result. O
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