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COLLAPSE OF THE MEAN CURVATURE FLOW

FOR ISOPARAMETRIC SUBMANIFOLDS IN NON-COMPACT

SYMMETRIC SPACES

Naoyuki Koike

Abstract

It is known that principal orbits of Hermann actions on a symmetric space of

non-compact type are curvature-adapted isoparametric submanifolds having no focal

point of non-Euclidean type on the ideal boundary of the ambient symmetric space.

In this paper, we investigate the mean curvature flows for such a curvature-adapted

isoparametric submanifold and its focal submanifold. Concretely the investigation

is performed by investigating the mean curvature flows for the lift of the submani-

fold to an infinite dimensional pseudo-Hilbert space through a pseudo-Riemannian

submersion.

1. Introduction

Let ft’s (t A ½0;TÞ) be a one-parameter Cy-family of immersions of a mani-
fold M into a Riemannian manifold N, where T is a positive constant or T ¼ y.

Define a map eff : M � ½0;TÞ ! N by eff ðx; tÞ ¼ ftðxÞ (ðx; tÞ A M � ½0;TÞ). If, for
each t A ½0;TÞ, eff�� q

qt

� �
ðx; tÞ
�
is the mean curvature vector of ft : M ,! N, then ft’s

(t A ½0;TÞ) is called a mean curvature flow. In particular, if ft’s are embeddings,
then we call Mt :¼ ftðMÞ’s ð0 A ½0;TÞÞ rather than ft’s ð0 A ½0;TÞÞ a mean
curvature flow. Liu-Terng [LT] investigated the mean curvature flows for an
isoparametric submanifold in a Euclidean space and its focal submanifold and
obtained the following facts.

Fact 1 ([LT]). Let M be a compact isoparametric submanifold in a
Euclidean space. Then the following statements (i) and (ii) hold:

(i) The mean curvature flow Mt for M collapses to a focal submanifold F of
M in finite time. If the natural fibration of M onto F is spherical, then the mean
curvature flow Mt has type I singularity, that is, limt!T�0 maxv AS?Mt

kAt
vk

2
yðT � tÞ
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< y, where At
v is the shape operator of Mt for v, kAt

vky is the sup norm of At
v and

S?Mt is the unit normal bundle of Mt.
(ii) For any focal submanifold F of M, the set of all parallel submanifolds of

M collapsing to F along the mean curvature flow is a one-parameter Cy-family.

Fact 2 ([LT]). Let M be as in Fact 1, C the Weyl domain of M at x0ðA MÞ
and s a simplex of dimension greater than zero of qC. Then the following state-
ments (i) and (ii) hold:

(i) For any focal submanifold F (of M) through s, the maen curvature flow Ft

for F collapses to a focal submanifold F 0 (of M) through qs in finite time. If the
natural fibration of F onto F 0 is spherical, then the mean curvature flow Ft has type
I singularity.

(ii) For any focal submanifold F (of M) through qs, the set of all focal
submanifolds of M through s collapsing to F along the mean curvature flow is a
one-parameter Cy-family.

Since the focal submanifold of M through the only 0-dimensional simplex
of qC is a one-point set, it follows from the statement (i) of Facts 1 and 2 that
M collapses to a one-point set after finitely many times of collapsings along the
mean curvature flows.

As a generalized notion of compact isoparametric hypersurfaces in a sphere
and a hyperbolic space, and a compact isoparametric submanifolds in a
Euclidean space, Terng-Thorbergsson [TT] introduced the notion of an equifocal
submanifold in a symmetric space G=K . This notion is defined as a compact
submanifold (which we denote by M) in G=K with flat section, trivial normal
holonomy group and parallel focal structure. Here the parallel focal structure
means that the tangential focal structures of M move to one another under the
parallel translations with respect to the normal connection of M. For a compact
submanifold M with flat section and trivial normal holonomy group, it is
equifocal if and only if, for any parallel normal vector field evv of M, the set
of all the focal radii of M along the normal geodesic gevx with g 0evxð0Þ ¼ evvx is
independent of the choice of x A M. On the other hand, Heintze-Liu-Olmos
[HLO] introduced the notion of isoparametric submanifold with flat section in
a (general) Riemannian manifold as a (properly embedded) submanifold with
flat section and trivial normal holonomy group whose su‰ciently close parallel
submanifolds are of constant mean curvature with respect to the radial direction.
In the sequel, we assume that all isoparametric submanifolds with flat section are
complete.

Terminology. In this paper, we shall call an isoparametric submanifold
with flat section an isoparametric submanifold simply.

For a compact submanifold in a symmetric space G=K of compact type, the
isoparametricness is equivalent to the equifocality (see [HLO]). The author has
recently investigated the mean curvature flows for an equifocal submanifold in a
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symmetric space of compact type and its focal submanifold, and obtained the
following facts.

Fact 3 ([Koi10]). Let M be an equifocal submanifold in a symmetric space
G=K of compact type. Then the following statements (i) and (ii) hold:

(i) If M is not minimal, then the mean curvature flow Mt for M collapses to a
focal submanifold F of M in finite time. Furthermore, if M is irreducible, if the
codimension of M is geater than one and if the natural fibration of M onto F is
spherical, then Mt has type I singularity.

(ii) For any focal submanifold F of M, the set of all parallel submanifolds
of M collapsing to F along the mean curvature flow is a one-parameter Cy-
family.

Fact 4 ([Koi10]). Let M be as in Fact 3, C the image of the fundamental
domain of the Coxeter group of M at x0ðA MÞ by the normal exponential map and
s a stratum of dimension greater than zero of qC (which is a stratified space).
Then the following statements (i) and (ii) hold:

(i) For any non-minimal focal submanifold F of M through s, the mean
curvature flow Ft for F collapses to a focal submanifold F 0 of M through qs in
finite time. If M is irreducible, if the codimension of M is greater than one and if
the natural fibration of F onto F 0 is spherical, then the mean curvature flow Ft has
type I singularity.

(ii) For any focal submanifold F of M through qs, the set of all focal sub-
manifolds of M through s collapsing to F along the mean curvature flow is a one-
parameter Cy-family.

Since focal submanifolds of M through the lowest dimensional stratum of
qC are minimal, it follows from the statement (i) of Facts 3 and 4 that M
collapses to a minimal focal submanifold of M after finitely many times of
collapsings along the mean curvature flows.

Assumption. In the sequel, we assume that all submanifolds are real analytic.

We [Koi1,2] introduced the notion of a complex equifocal submanifold as
a (properly embedded) complete submanifold with flat section, trivial normal
holonomy group and parallel complex focal structure, where the parallel complex
focal structure means that the tangential focal structures of the complexification
MCðHGC=KCÞ of MðHG=KÞ move to one another under the parallel transla-
tions with respect to the normal connection of MC. For a submanifold M with
flat section and trivial normal holonomy group, it is complex equifocal if and
only if, for any parallel normal vector field evv of M, the set of all the complex
focal radii of M along the normal geodesic gevx with g 0evxð0Þ ¼ evvx is independent of
the choice of x A M.

We ([Koi3]) introduced the notion of a proper complex equifocal submani-
fold as a complex equifocal submanifold having a good complex focal structure,
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where ‘‘good complex focal structure’’ means that the focal structure of the
complexification of the submanifold at any point x0 consists of infinitely many
complex hyperplanes in the normal space at x0 and that the group generated by
the complex reflections of order two with respect to the complex hyperplanes is
discrete.

Next we recall the notion of a focal point of non-Euclidean type on the ideal
boundary NðyÞ of a submanifold M in a Hadamard manifold N which was
introduced in [Koi6]. Let v be a unit normal vector of M and gv : ½0;yÞ ! N
the normal geodesic of M of direction v. If there exists a M-Jacobi field
Y along gv satisfying limt!y

kYðtÞk
t

¼ 0, then we call gvðyÞðA NðyÞÞ a focal
point of M on the ideal boundary NðyÞ along gv, where gvðyÞ is the asymp-
totic class of gv. Also, if there exists a M-Jacobi field Y along gv satisfying
limt!y

kY ðtÞk
t

¼ 0 and Secðv;Yð0ÞÞ0 0, then we call gvðyÞ a focal point of non-
Euclidean type of M on NðyÞ along gv, where Secðv;Y ð0ÞÞ is the sectional
curvature for the 2-plane spanned by v and Y ð0Þ. If, for any unit normal vector
v of M, gvðyÞ is not a focal point of non-Euclidean type of M on NðyÞ, then
we say that M has no focal point of non-Euclidean type on the ideal boundary
NðyÞ. It is known that principal orbits of Hermann actions on symmetric
spaces of non-compact type are curvature-adapted isoparametric submanifolds
and they have no focal point of non-Euclidean type on the ideal boundary (see
Theorem B in [Koi3] and its proof and so on). According to Theorem 15 in
[Koi2] and Theorem A in [Koi6], we have the following fact.

Fact 5. For a curvature-adapted isoparametric submanifold M in a sym-
metric space N of non-compact type, it has no focal point of non-Euclidean type on
the ideal boundary NðyÞ if and only if it is proper complex equifocal.

Let M be a curvature-adapted isoparametric submanifold in a symmetric space
N ¼ G=K of non-compact type having no focal point of non-Euclidean type on
the ideal boundary NðyÞ of N. Assume that a focal submanifold of M exists.
Note that a focal submanifold of M exists if G=K is other than a hyperbolic
space. Let Fl be one of the lowest dimensional focal submanifolds of M.
Without loss of generality, we may assume that eK A Fl . Note that Fl passes
through exp?ðessÞ for one ess of the lowest dimensional simplex of the boundary q eCC
of the fundamental domain eCC of the real Coxeter group associated with M. See
the next paragraph about the definition of the real Coxeter group associated with
M. Set p :¼ TeKðG=KÞ and p 0 :¼ T?

eKFl . Take a maximal abelian subspace b
of p 0 and a maximal abelian subspace a of p containing b. Let s be the root
system of G=K with respect to a and s0 be that of F ?

l with respect to b. Also,
let pa be the root space for a As. Note that, if rank F ?

l ¼ rankðG=KÞ, then we
have a ¼ b and s0 Hs. Since M is curvature-adapted, so is also Fl . Hence
we have p 0 ¼

P
a Asþ

ðpa V p 0Þ, where sþ is the positive root system of s with
respect to a lexicographic ordering of b�. In this paper, we prove the fol-
lowing fact for the mean curvature flows for a curvature-adapted isopara-
metric submanifold in a symmetric space N ¼ G=K of non-compact type having
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no focal point of non-Euclidean type on the ideal boundary NðyÞ and its focal
submanifold.

Theorem A. Let M be a curvature-adapted isoparametric submanifold in a
symmetric space N ¼ G=K of non-compact type having no focal point of non-
Euclidean type on the ideal boundary NðyÞ, Mt ð0a t < TÞ the mean curvature
flow for M, s, pa and p 0 be as above. Assume that codim M ¼ rank N and that
dimðpa V p 0Þb 1

2 dim pa ða AsÞ. Then the following statements (i), (ii) and (iii)
hold.

(i) M is not minimal and Mt collapses to a focal submanifold of M in finite
time.

(ii) If Mt collapses to a focal submanifold F of M in finite time and if the
natural fibration of M onto F is spherical, then Mt has type I singularity.

(iii) For any focal submanifold F of M, the set of all parallel submani-
folds of M collapsing to F along the mean curvature flow is a one-parameter
Cy-family.

Remark 1.1. The principal orbits of the isotropy action (of a symmetric
space of non-compact type) and Hermann actions in Table 1 (see Section 5)
satisfy all the conditions in Theorem A.

The focal set of a curvature-adapted proper complex equifocal submanifold
M at any point xðA MÞ consists of the images of finitely many (real) hyperplanes
in the normal space T?

x M by the normal exponential map exp? of M and the
group generated by the reflections with respect to the hyperplanes is a (finite)
Coxeter group. In [Koi6], we called this group the real Coxeter group associated
with M.

Theorem B. Let M be a curvature-adapted isoparametric submanifold in a
symmetric space N ¼ G=K of non-compact type having no focal point of non-
Euclidean type on the ideal boundary NðyÞ and Mt ð0a t < TÞ the mean
curvature flow for M. Assume that codim M ¼ rank N and that the lowest
dimensional focal submanifold of M is an one-point set. Let ess be a stratum
of dimension greater than zero of the fundamental domain eCC (which is a stratified
space) of the real Coxeter group of M. Then, the following statements (i) and (ii)
hold.

(i) Any focal submanifold F of M through exp?ðessÞ is not minimal and the
mean curvature flow Ft for F collapses to a focal submanifold F 0 of M through
exp?ðqessÞ in finite time. If the natural fibration of F onto F 0 is spherical, then Ft

has type I singularity.
(ii) For any focal submanifold F of M through exp?ðqessÞ, the set of all focal

submanifolds of M through exp?ðessÞ collapsing to F along the mean curvature flow
is a one-parameter Cy-family.
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According to the statement (i) of Theorems A and B, if M is a curvature-
adapted isoparametric submanifold having no focal point of non-Euclidean type
on the ideal boundary, if codim M ¼ rankðG=KÞ and if Fl is one-point set, then
M collapses to one-point set after finitely many times of collapsings along the
mean curvature flows.

Mt ���!
ðt!T1Þ

F 1

F 1
t ���!

ðt!T2Þ
F 2

. .
.

F k�1
t ���!

ðt!TkÞ
one point set

F 1 : a focal submanifold of M
F i : a focal submanifold of F i�1 ði ¼ 2; . . . ; k � 1Þ

� �

2. Basic notions and facts

In this section, we briefly recall the notions of a proper complex equifocal
submanifold in a symmetric space G=K of non-compact type and a proper
complex isoparametric submanifold in an (infinite dimensional) pseudo-Hilbert
space. First we recall the notion of a complex equifocal submanifold in G=K .
Let M be a submanifold with flat section in G=K, where ‘‘M has flat section’’
means that, for each x ¼ gK A M, exp?ðT?

gKMÞ is a flat totally geodesic sub-
manifold in G=K . Denote by A the shape tensor of M and R the curvature
tensor of G=K . Let v A T?

x M and X A TxM (x ¼ gK). Set RðvÞ :¼ Rð�; vÞv.
Denote by gv the geodesic in G=K with g 0vð0Þ ¼ v. The strongly M-Jacobi field
Y along gv with Y ð0Þ ¼ X (hence Y 0ð0Þ ¼ �AvX ) is given by

Y ðsÞ ¼ Pgvj½0;s� � cosðs
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þ � sinðs

ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þffiffiffiffiffiffiffiffiffiffi

RðvÞ
p � Av

 ! !
ðXÞ;

where Y 0ð0Þ ¼ e‘‘vY , Pgvj½0; s� is the parallel translation along gvj½0; s�, and

cosðs
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þ and

sinðs
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þ

s
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p are defined by

cosðs
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þ :¼

Xy
k¼0

ð�1Þks2kRðvÞk

ð2kÞ! and
sinðs

ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þ

s
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p :¼
Xy
k¼0

ð�1Þks2kRðvÞk

ð2k þ 1Þ! ;

respectively. Since M has flat section, all focal radii of M along gv are given
as zero points of strongly M-Jacobi fields along gv. Hence all focal radii of M
along gv coincide with the zero points of the real-valued function Fv over R
defined by

FvðsÞ :¼ det cosðs
ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þ � sinðs

ffiffiffiffiffiffiffiffiffiffi
RðvÞ

p
Þffiffiffiffiffiffiffiffiffiffi

RðvÞ
p � Av

 !
:
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So we defined the notion of a complex focal radius of M along gv as the zero
points of the complex-valued function F C

v over C defined by

F C
v ðzÞ :¼ det cosðz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðvÞC

q
Þ �

sinðz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðvÞC

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

RðvÞC
q � AC

v

0B@
1CA;

where RðvÞC (resp. AC
v ) is the complexification of RðvÞ (resp. Av). Also, for a

complex focal radius z of M along gv, we call

dimC Ker cosðz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðvÞC

q
Þ �

sinðz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðvÞC

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

RðvÞC
q � AC

v

0B@
1CA

the multiplicity of the complex focal radius z. Here we note that complex focal
radii along gv indicate the positions of focal points of the extrinsic complexifica-
tion MCð,! GC=KCÞ of M along the complexified geodesic gCi�v, where GC=KC is
the anti-Kaehlerian symmetric space associated with G=K and i is the natural
embedding of G=K into GC=KC. See [Koi2] about the definitions of GC=KC;
MCð,! GC=KCÞ and gCi�v. Furthermore, assume that the normal holonomy
group of M is trivial. Let evv be a parallel unit normal vector field of M. As-
sume that the number (which may be y) of distinct complex focal radii along gevx
is independent of the choice of x A M. Let fri;x j i ¼ 1; 2; . . .g be the set of all
complex focal radii along gevx , where jri;xj < jriþ1;xj or ‘‘jri;xj ¼ jriþ1;xj & Re ri;x
> Re riþ1;x’’ or ‘‘jri;xj ¼ jriþ1;xj & Re ri;x ¼ Re riþ1;x & Im ri;x ¼ �Im riþ1;x < 0’’.
Let ri (i ¼ 1; 2; . . .) be complex valued functions on M defined by assigning ri;x
to each x A M. We call these functions ri (i ¼ 1; 2; . . .) complex focal radius
functions for evv. If, for each parallel unit normal vector field evv of M, the set of
all complex focal radii along gevx is independent of the choice of x A M, if each
complex focal radius function for evv is constant on M and if it has constant
multiplicity, then we call M a complex equifocal submanifold.

Next we recall the notion of a proper complex isoparametric submanifold in
an (infinite dimensional) pseudo-Hilbert space. Let M be a pseudo-Riemannian
submanifold of finite codimension in a pseudo-Hilbert space ðV ; h ; iÞ. See
[Koi1] about this definition. We call M a Fredholm pseudo-Riemannian sub-
manifold (or simply Fredholm submanifold ) if there exists an orthogonal time-
space decomposition V ¼ V� lVþ such that ðV ; h ; iVG

Þ is a Hilbert space and
that, for each v A T?M, Av is a compact operator with respect to f �h ; iVG

, where
an orthogonal time-space decomposition V ¼ V� lVþ means that h ; ijV��V�

is
negative definite, h ; ijVþ�Vþ

is positive definite and that h ; ijV��Vþ
¼ 0, and

h ; iVG
:¼ �p�

V�
h ; iþ p�

Vþ
h ; i (pV� (resp. pVþ ): the orthogonal projection of V

onto V� (resp. Vþ)). Since Av is a compact operator with respect to f �h ; iVG
,

for each v A T?M, the operator id� Av is a Fredholm operator with respect
to f �h ; iVG

and hence the normal exponential map exp? : T?M ! V of M is
a Fredholm map with respect to the metric of T?M naturally defined from
f �h ; iVG

and h ; iVG
, where id is the identity transformation of TM. In the
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sequel, set h ; i :¼ f �h ; i. The set of all eigenvalues of the complexification
AC

v of Av is described as f0gU fmi j i ¼ 1; 2; . . .g, where ‘‘jmij > jmiþ1j’’ or ‘‘jmij ¼
jmiþ1j & Re mi > Re miþ1’’ or ‘‘jmij ¼ jmiþ1j & Re mi ¼ Re miþ1 & Im mi ¼ �Im miþ1

> 0’’. We call mi the i-th complex principal curvature for v. Assume that the
normal holonomy group M is trivial. Fix a parallel normal vector field evv on M.
Assume that the number (which may be y) of distinct complex principal cur-
vatures of evvx is independent of x A M. Then we define functions emmi (i ¼ 1; 2; . . .)
on M by assigning the i-th complex principal curvature for evvx to each x A M.
We call this function emmi the i-th complex principal curvature function for evv. A
Fredholm submanifold M is called a complex isoparametric submanifold if the
normal holonomy group of M is trivial and if, for each parallel normal vector
field evv, the number of distinct complex principal curvatures of direction evvx is
independent of the choice of x A M and if each complex principal curvature
function of direction evv is constant on M. Assume that M is a complex iso-
parametric submanifold. If, for each v A T?M, the complexified shape operator
AC

v is diagonalizable with respect to a pseudo-orthonormal base of ðTxMÞC
(x : the base point of v), that is, there exists a pseudo-orthonormal base of
ðTxMÞC consisting of the eigenvectors of AC

v , then we call M a proper complex
isoparametric submanifold, where a pseudo-orthonormal base means a linearly
independent system feigyi¼1 of a pseudo-Hilbert space ðTxM; h ; iÞ such that, for

each i A N, there exists îi A N satisfying jhvi; vjij ¼ dîij ( j A N) (d�� : the Kronecker’s

symbol) and that 0y
i¼1

Spanfvig ¼ TxM (� : the closure of � with respect to the
original topology of TxM). Then, for each x A M, AC

v ’s (v A T?
x M) are

simultaneously diagonalizable with respect to a pseudo-orthonormal base of
ðTxMÞC because AC

v ’s commute. There exists a family fEi j i A Ig (I HN) of

parallel subbundles of ðTMÞC such that, for each x A M, ðTxMÞC ¼ 0
i A I ðEiÞx

holds and that this decomposition is a common-eigenspace decomposition of AC
v ’s

(v A T?
x M ). Also, there exist smooth sections li (i A I ) of ððT?MÞCÞ� such that

AC
v ¼ liðvÞ id on ðEiÞx for each v A ðT?MÞC, where x is the base point of v.

The subbundles Ei (i A I ) are called complex curvature distributions of M and li
(i A I ) are called complex principal curvatures of M. Define a complex normal
vector field ni (i A I ) by lið�Þ ¼ hni; �iC, where h ; iC is the complexification of
h ; i. Note that each ni is parallel with respect to the complexification ‘?C of
‘?. The normal vector fields ni (i A I ) are called complex curvature normals
of M.

Let G=K be a symmetric space of non-compact type and p : G ! G=K be
the natural projection. The parallel transport map f for the semi-simple Lie
group G is defined by fðuÞ :¼ guð1Þ (u A H 0ð½0; 1�; gÞÞ, where gu is the element
of H 1ð½0; 1�;GÞ with guð0Þ ¼ e (e; : the identity element of G) and g�1

u� g
0
u ¼ u.

Here we note that H 0ð½0; 1�; gÞ is a pseudo-Hilbert space. See [Koi1] the detail
of the definition of the pseudo-Hilbert space H 0ð½0; 1�; gÞ and f. Let M be a
complex equifocal submanifold in G=K . Since M is complex equifocal, eMM :¼
ðp � fÞ�1ðMÞ is complex isoparametric. In particular, if eMM is proper complex
isoparametric, then M is called a proper complex equifocal submanifold. Let M
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be a proper complex equifocal submanifold in a symmetric space G=K of non-
compact type. Denote by A (resp. eAA ) the shape tensor of M (resp. eMMÞ. SinceeMM is proper complex isoparametric, the complexified shape operators of eMM is
simultaneously diagonalizeble with respect to a pseudo-orthonormal base. Hence
the complex focal set of eMM at any point uðA eMMÞ consists of infinitely many
complex hyperplanes in the complexified normal space ðT?

u
eMMÞC and the group

generated by the complex reflections of order two with respect to the complex
hyperplanes is discrete. From this fact, it follows that, for the complex focal set
of the proper complex equifocal submanifold M, the following fact holds:

(*) The complex focal set of M at any point xðA MÞ consists of infinitely
many complex hyperplanes in the complexified normal space ðT?

x MÞC and the
group generated by the complex reflections of order two with respect to the
complex hyperplanes is discrete.

Let H be a symmetric subgroup of G (i.e., there exists an involution of G
with ðFix tÞ0 HHHFix t), where Fix t is the fixed point group of t and ðFix tÞ0
is the identity component of Fix t. The natural action H on G=K is called a
Hermann type action. It is shown that a principal orbit of a Hermann type
ation is a proper complex equifocal and curvature-adapted ([Koi3]), where the
curvature-adaptedness means that, for each normal vector v of M, Rð�; vÞv
preserves TxM (x : the base point of v) invariantly and that ½Rð�; vÞv;Av�
¼ 0 (R : the curvature tensor of G=K). Let PðG;H � KÞ :¼ fg A H 1ð½0; 1�;GÞ j
ðgð0Þ; gð1ÞÞ A H � Kg, where H 1ð½0; 1�;GÞ is a pseudo-Hilbert Lie group of all
H 1-paths in G having ½0; 1� as the domain. See [Koi1] about the detail of the
definition of H 1ð½0; 1�;GÞ. This group PðG;H � KÞ acts on H 0ð½0; 1�; gÞ as
gauge action. It is shown that orbits of the PðG;H � KÞ-action are the inverse
images of the H-orbits by p � f (see [Koi2]).

3. The regularized mean curvature vector of Fredholm submanifold with
proper shape operators

In this section, we shall define the regularized mean curvature vector of a
certain kind of Fredholm submanifold in a pseudo-Hlbert space. Let M be a
Fredholm submanifold in a pseudo-Hilbert space ðV ; h ; iÞ. Denote by A the
shape tensor of M. Fix v A T?M. If the complexified shape operator AC

v is
diagoalizable with respect to a pseudo-orthonormal base, then AC

v is said to be
proper. If AC

v is proper for any v A T?M, then we say that M has proper shape
operators. Assume that M has proper shape operators. Fix v A T?

x M. Let
fmi j i ¼ 1; 2; . . .g (‘‘jmij > jmiþ1j’’ or ‘‘jmij ¼ jmiþ1j & Re mi > Re miþ1’’ or ‘‘jmij ¼
jmiþ1j & Re mi ¼ Re miþ1 & Im mi ¼ �Im miþ1 > 0’’) be the set of all eigenvalues of
AC

v other than zero and mi the multiplicity of mi. Then we define the regularized
trace Trr A

C
v of AC

v by Trr A
C
v :¼

P
i mimi. Also, we define the trace TrabsðAC

v Þ
2

by TrabsðAC
v Þ

2 :¼
P

i mijmij
2. If there exist Trr A

C
v and TrabsðAC

v Þ
2 for each

v A T?M, then we say that M is regularizable. It is shown that, if m is an
eigenvalue of AC

v with multiplicity m, then so is also the conjugate m of
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m. Hence we have Trr A
C
v A R. Define Hx A T?

x M by hHx; vi ¼ Trr A
C
v

(Ev A T?
x M). We call the normal vector field Hð: x 7! HxÞ of M the regularized

mean curvature vector of M. Let ft : M ,! V (0a t < T) be a Cy-family of
regularizable Fredholm submanifolds with proper shape operators and Ht be
the regularized mean curvature vector of ft. Define by eff : M � ½0;TÞ ! V byeff ðx; tÞ :¼ ftðxÞ (ðx; tÞ A M � ½0;TÞ). If eff� q

qt

� �
¼ Ht, then we call ft (0a t < T)

the regularized mean curvature flow. In the sequel, we call this flow the mean
curvature flow for simplicity.

Let G=K be a symmetric space of non-compact type, p : G ! G=K the
natural projection and f : H 0ð½0; 1�; gÞ ! G the parallel tansport map for G. Let
M be a curvature-adapted isoparametric submanifold in G=K having no focal
point of non-Euclidean type on the ideal boundary of G=K and set eMM :¼
ðp � fÞ�1ðMÞ, which is proper complex isoparametric (hence has proper shape
operators). Denote by H the mean curvature vector of M. Then we have the
following fact.

Lemma 3.1. The submanifold eMM is regularizable and the regularized mean
curvature vector eHH is equal to the horizontal lift HL of H.

Proof. Without loss of generality, we may assume that eK A M. For sim-
plicity, set m :¼ TeKM and b :¼ T?

eKM. Since M is flat section (hence b is
abelian), the normal connection of M is flat and since M is curvature-adapted,
the operators Rð�; vÞv’s (v A b) and Av’s (v A b) commute to one another. Also
they are diagonalizable with respect to an orthonormal base, respectively. There-
fore they are simultaneously diagonalizable with respect to an orthonormal
base. Let m ¼ mR

0 þ
P

i A I R mR
i be the common eigenspace decomposition of

Rð�; vÞv’s (v A b) and m ¼ mA
0 þ

P
i A I A mA

i be the common eigenspace decompo-
sition of Av’s (v A b), where mR

0 :¼ 7
v A b Ker Rð�; vÞv and mA

0 :¼ 7
v A b Ker Av.

Set mR
i :¼ dim mR

i and mA
i :¼ dim mA

i . Also, set I Ai :¼ f j A I A U f0g jmA
j VmR

i

0 f0gg (i A I R U f0g). Since Rð�; vÞv (v A b) and Av’s (v A b) are simultaneously
diagonalizable, we have m ¼

P
i A I R U f0g

P
j A I A

i
ðmA

j VmR
i Þ. Let biðb 0Þ (i A I R)

and li (i A I A) be linear functions over b defined by Rð�; vÞvjmR
i
¼ �biðvÞ

2 id
(v A b) and AvjmA

i
¼ liðvÞ id (v A b). Denote by br the set of all v A b such that

biðvÞ0 0, liðvÞ0 0, biðvÞ’s (i A I R) are mutually distinct and that so are also
liðvÞ’s (i A I A). Note that br is open and dense in b. Fix v A br. Denote byeAA the shape tensor of eMM and Spec eAAC

vL
the spectrum of eAAC

vL
, where vL is

the horizontal lift of v to the constant path 0̂0 at the zero vector 0 of g. Set
I Ai; v;þ :¼ f j A I Ai j jljðvÞj > jbiðvÞjg, I Ai; v;� :¼ f j A I Ai j jljðvÞj < jbiðvÞjg and I Ai; v;0 :¼
f j A I Ai j jljðvÞj ¼ jbiðvÞjg. Since M is a curvature-adapted isoparametric sub-
manifold having no focal point of non-Euclidean type on the ideal boundary of
G=K , we can show that I Ai; v;0 ¼ j (see Theorem A of [Koi1]) and that I Ai; v;þ and
I Ai; v;� are at most one point sets, respectively (see the proof of Theorems B and

C of [Koi6]). When I Ai; v;þ 0j (resp. I Ai; v;� 0j), denote by jþi; v (resp. j�i; v) the only

element. Set I Rv;þ :¼ fi A I R j I Ai; v;þ 0jg and I Rv;� :¼ fi A I R j I Ai; v;� 0jg. For

simplicity, set mG
i; v :¼ mA

jG
i; v

VmR
i and mG

i; v :¼ dim mG
i; v. According to Theorem 5.9
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in [Koi1], Spec eAAC
vL
nf0g is given by

Spec eAAC
vLnf0g ¼ biðvÞ

arctanhðbiðvÞ=ljþi; vðvÞÞ þ kp
ffiffiffiffiffiffiffi
�1

p
���� i A I Rv;þ; k A Z

8<:
9=;ð3:1Þ

U
biðvÞ

arctanhðlj�
i; v
ðvÞ=biðvÞÞ þ

�
k þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p
���� i A I Rv;�; k A Z

( )
Hence we have

Trr eAAC
vL ¼

X
i A I R

v;þ

X
k AZ

biðvÞ
arctanhðbiðvÞ=ljþi; vðvÞÞ þ kp

ffiffiffiffiffiffiffi
�1

p �mþ
i; v

þ
X
i A I R

v;�

X
k AZ

biðvÞ
arctanhðlj�

i; v
ðvÞ=biðvÞÞ þ

�
k þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p �m�
i; v

¼
X
i A I R

v;þ

mþ
i; vljþi; vðvÞ þ

X
i A I R

v;�

m�
i; vlj�i; vðvÞ

¼
X
j A I A

mjljðvÞ ¼ Tr Av ðA RÞ

in terms of coth y ¼
P

j AZ
1

yþ jp
ffiffiffiffiffiffiffi
�1

p and coth yþ p
ffiffiffiffiffiffiffi
�1

p

2

 !
¼ tanh y. Also, we

have

Trabsð eAAC
vLÞ

2
a

X
i A I R

v;þ

X
k AZ

jbiðvÞj
2

k2
þ
X
i A I R

v;�

X
k AZ

jbiðvÞj
2

k2
< y:

Hence eMM is regularizable and Trr eAAC
vL

¼ Tr Av holds. This implies h eHH0̂0; v
Li ¼

hHeK ; við¼ hðHLÞ0̂0; vLiÞ. Since this relation holds for any v A br and br is dense

in b, we obtain eHH0̂0 ¼ ðHLÞ0̂0. Similarly we can show eHHu ¼ ðHLÞu for any u A eMM.

Thus we obtain eHH ¼ HL. q.e.d.

By using Lemma 3.1 and imitating the proof of Lemma 3.1 of [Koi10], we
can show the following fact.

Lemma 3.2. The mean curvature flow eMMt (resp. Mt) for eMM (resp. M) exists
in short time and eMMt ¼ ðp � fÞ�1ðMtÞ holds.

4. Proofs of Theorems A and B

Let M be a curvature-adapted isoparametric submanifold in a symmetric
space G=K of non-compact type as in Theorem A. Without loss of generality,
we may assume that eK A M. We use the notations in the previous section.

365collapse of the mean curvature flow



Denote by F the focal set of M at eK . Since p � f is a pseudo-Riemannian
submersion, the focal set eFF of eMM at 0̂0 is equal to fvL

0̂0
j exp?ðvÞ A Fg, where exp?

is the normal exponential map of M and vL
0̂0
is the horizontal llft of v to 0̂0. Here

we regard the normal space T?
0̂0
eMM of eMM at 0̂0 as a subspace of H 0ð½0; 1�; gÞ. In

the sequel, we identify vL
0̂0

with v through ðp � fÞ�0̂0. The focal set eFF is equal to

fv jKerð eAAv � idÞ0 f0ggðH bÞ. The complex focal structure eFFC of eMM at 0̂0 is

defined by eFFC :¼ fv jKerð eAAC
v � idÞ0 f0ggðH bCÞ. According to the proof of

Theorems B and C of [Koi6], by using ð3:1Þ and discussing delicately, we can
show that biðvÞ=ljþi; vðvÞ and lj�

i; v
ðvÞ=biðvÞ are independent of the choice of v (in the

sequel, we denote these constants by cþi and c�i , respectively), I
R
v;þ and I Rv;� are

independent of the choice of v (in the sequel, we denote these sets by I Rþ and I R� )
and that eFFC is described as follows:

eFFC ¼ 6
i A I R

þ

6
j AZ

bC�1
i ðarctanh cþi þ jp

ffiffiffiffiffiffiffi
�1

p
Þ

0@ 1Að4:1Þ

U 6
i A I R

�

6
j AZ

bC�1
i arctanh c�i þ j þ 1

2

� �
p
ffiffiffiffiffiffiffi
�1

p� � !
:

Since ljþ
i; v
¼ 1

cþi
bi and lj�

i; v
¼ c�i bi, they are independent of the choice of v A b.

Hence we denote ljG
i; v

by lGi . Therefore, eFF is given by

eFF ¼ 6
i A I R

þ

b�1
i ðarctanh cþi Þ:ð4:2Þ

Denote by L the set of all complex principal curvatures of eMM. According to
ð3:1Þ, L is given by

L ¼
f
bC
ib
C
i

arctanh cþi þ jp
ffiffiffiffiffiffiffi
�1

p
���� i A I Rþ ; j A Z

( )

U
f
bC
ib
C
i

arctanh c�i þ
�
j þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p
���� i A I R� ; j A Z

( )
;

where
f
bC
ib
C
i is the parallel section of ððT? eMMÞCÞ� with ðfbC

ib
C
i Þ0̂0 ¼ bC

i . From the
assumption, M admits a focal submanifold. Hence we have I Rþ 0j and
7

i A I R
þ
b�1
i ðarctanh cþi Þ0j (see the proof of Theorems B and C in [Koi6]). Fix

O A 7
i A I R

þ
b�1
i ðarctanh cþi Þ. Set

s0 :¼ fbi j i A I RgU f�bi j i A I Rg;

s0V :¼ fbi j i A I Rþ gU f�bi j i A I Rþ g;

s0H :¼ fbi j i A I R� gU f�bi j i A I R� g:
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Let a be a maximal abelian subspace of p containing bð¼ T?
eKMÞ and s be

the root system of G=K with respect to a. Then we have s0 ¼ fajb j a As s:t:
ajb 0 0g. Let Fl be the focal submanifold of M through x0 :¼ exp?ðOÞ, which is
one of the lowest dimensional focal submanifolds of M. For simplicity, we set

ellþi :¼
f
bC
ib
C
i

arctanh cþi
ði A I Rþ Þ

ell�i :¼
f
bC
ib
C
i

arctanh c�i þ 1
2p

ffiffiffiffiffiffiffi
�1

p ði A I R� Þ

and

bþi :¼ p

arctanh cþi
ði A I Rþ Þ

b�i :¼ p

arctanh c�i þ 1
2 p

ffiffiffiffiffiffiffi
�1

p ði A I R� Þ:

Then we have

L ¼
ellþi

1þ bþi j
ffiffiffiffiffiffiffi
�1

p
���� i A I Rþ ; j A Z

( )

U
ell�i

1þ b�i j
ffiffiffiffiffiffiffi
�1

p
���� i A I R� ; j A Z

( )
:

For simplicity, we set ellGij :¼ ellGi
1þ bGi j

ffiffiffiffiffiffiffi
�1

p (i A I RG ; j A Z). Take v A brneFF, where

we note that eFF ¼ 6
i A I R

þ
ðellþi Þ�1

0̂0
ð1Þ. We have dim Kerð eAAC

v � ðellGij Þ0̂0ðvÞ idÞ ¼ mG
i

(i A I RG ; j A Z). Set EG
ij :¼ Kerð eAAC

v � ðellGij Þ0̂0ðvÞ idÞ (i A I RG ; j A Z), which are in-

dependent of the choice of v A brneFF. Take another w A brneFF. Let eww be the
parallel normal vector field of eMM with eww0̂0 ¼ w. Denote by hew the end-point map
for eww and eMMw :¼ hewð eMMÞ, which is a parallel submanifold of eMM. We have

Tw
eMMw ¼ hew�ðT0̂0

eMMÞ

¼ 0
i A I R

þ

0
j AZ

hew�ðEþ
ij Þ

0@ 1Al 0
i A I R

�

0
j AZ

hew�ðE�
ij Þ

 !
:

Denote by eAAw the shape tensor of eMMw. We have

ð eAAwÞCv jhew�ðEG
ij
Þ ¼

ðellGij Þ0̂0ðvÞ
1� ðellGij Þ0̂0ðwÞ id ¼

ðellGi Þ0̂0ðvÞ
ð1þ bGi j

ffiffiffiffiffiffiffi
�1

p
Þ � ðellGi Þ0̂0ðwÞ id:

Hence the set Lw of all complex principal curvatures of eMMw is given by
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Lw ¼
ellþij

1� ðellþij Þ0̂0ðwÞ
����� i A I Rþ ; j A Z

( )

U
ell�ij

1� ðell�ij Þ0̂0ðwÞ
����� i A I R� ; j A Z

( )

¼
ellþi

1þ bþi j
ffiffiffiffiffiffiffi
�1

p
� ðellþi Þ0̂0ðwÞ

����� i A I Rþ ; j A Z

( )

U
ell�i

1þ b�i j
ffiffiffiffiffiffiffi
�1

p
� ðell�i Þ0̂0ðwÞ

����� i A I R� ; j A Z

( )

¼
f
bC
ib
C
i

arctanh cþi þ jp
ffiffiffiffiffiffiffi
�1

p
� biðwÞ

����� i A I Rþ ; j A Z

( )

U
f
bC
ib
C
i

arctanh c�i þ
�
j þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p
� biðwÞ

����� i A I R� ; j A Z

( )
:

Hence we have

Trð eAAw
v Þ

C ¼
X
i A I R

þ

X
j AZ

biðvÞ
arctanh cþi þ jp

ffiffiffiffiffiffiffi
�1

p
� biðwÞ

�mþ
ið4:3Þ

þ
X
i A I R

�

X
j AZ

biðvÞ
arctanh c�i þ

�
j þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p
� biðwÞ

�m�
i

¼
X
i A I R

þ

mþ
i cothðarctanh cþi � biðwÞÞbiðvÞ

þ
X
i A I R

�

m�
i tanhðarctanh cþi � biðwÞÞbiðvÞ ðv A bÞ;

where we use
P

j AZ
1

yþ jp
ffiffiffiffiffiffiffi
�1

p ¼ coth y and coth yþ p
ffiffiffiffiffiffiffi
�1

p

2

 !
¼ tanh y. Hence

we have

hð eHHwÞw; vi ¼
X
i A I R

þ

mþ
i cothðarctanh cþi � biðwÞÞbai ; v

* +

þ
X
i A I R

�

m�
i tanhðarctanh c�i � biðwÞÞbai ; v

* +
;

where bai is defined by bið�Þ ¼ hbai ; �i (i A I R). Since this relation holds for any

v A brneFF, we have
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ð eHHwÞw ¼
X
i A I R

þ

mþ
i cothðarctanh cþi � biðwÞÞbaið4:4Þ

þ
X
i A I R

�

m�
i tanhðarctanh c�i � biðwÞÞbai :

Set eCC :¼ fw A b j ðellþi Þ0̂0ðwÞ < 1 ði A I Rþ Þg

¼ fw A b j biðwÞ < arctanh cþi ði A I Rþ Þg;

which is a fundamental domain of the real Coxeter group associated with eMM.
Each parallel submanifold of M passes through the only one point of exp?ð eCCÞ
and each focal submanifold of M passes through the only one point of exp?ðq eCCÞ.
Define a vector field X on eCC by Xw :¼ ð eHHwÞw (w A eCC). Let fctg be the local
one-parameter transformation group of X . Now we shall prove the statements
(i) and (iii) of Theorem A.

Proof of (i) and (iii) of Theorem A. First we shall show the statement (i).
Denote by essi (i A I Rþ ) the maximal dimensional simplex of q eCC contained in
b�1
i ðarctanh cþi Þ. Fix i0 A I Rþ . Take w0 A essi0 and w 0

0 A
eCC near w0 such that

w0 � w 0
0 is normal to essi0 . Set w e

0 :¼ ew 0
0 þ ð1� eÞw0 for e A ð0; 1Þ. Then we have

lime!þ0 bi0ðw
e
0Þ ¼ arctanh cþi0 and sup0<e<1 bi0ðw

e
0Þ < arctanh cþi for each i A

I Rþ nfi0g. Hence we have

lim
e!þ0

cothðarctanh cþi0 � bi0ðw
e
0ÞÞ ¼ y

and

sup
0<e<1

cothðarctanh cþi � biðwe
0ÞÞ < y ði A I Rþ nfi0gÞ:

Therefore, we have lime!þ0

Xw e
0

kXw e
0
k is the outward unit normal vector of essi0 . Also

we have lime!þ0kXw e
0
k ¼ y. From these facts, X is as in the first figure of

Figure 1 on a su‰ciently small collar neighborhood of essi0 . Define a function r
over eCC by

rðwÞ :¼ �
X
i A I R

þ

mþ
i log sinhðarctanh cþi � biðwÞÞ

�
X
i A I R

�

m�
i log coshðarctanh c�i � biðwÞÞ ðw A eCCÞ:

From the definition of X and ð4:4Þ, we have grad r ¼ X . For simplicity, set
qi :¼ q

qxi
(i ¼ 1; . . . ; r). Then we have
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ðqjqkrÞðwÞ ¼
X
i A I R

þ

mþ
i

sinh2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞð4:5Þ

�
X
i A I R

�

m�
i

cosh2ðarctanh c�i � biðwÞÞ
biðqjÞbiðqkÞ:

As w ! q eCC, 1
sinh2ðarctanh cþ

i
�biðwÞÞ

! y for at least one i A I Rþ and 1
cosh2ðarctanh c�

i
�biðwÞÞ

a 1 for all i A I R� . Hence we see that r is downward convex on a su‰ciently
small collar neighborhood of q eCC. Furthermore, since codim M ¼ rankðG=KÞ
and dimðpa V p 0Þb 1

2 dim pa (a As) by the assumption, we have I Rþ ¼ I R,
mþ

i bm�
i and cþi ¼ c�i (i A I R� ). From the relation ð4:5Þ, we have

ðqjqkrÞðwÞb
X

i A I RnI R
�

mþ
i

sinh2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞ

þ
X
i A I R

�

4mþ
i

sinh2 2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞ:

Hence we see that r is downward convex on the whole of eCC. Also, it is clear
that rðwÞ ! y as w ! q eCC and that rðtwÞ ! �y as t ! y for each w A eCC.
From these facts, r and X are as in Figure 2. Hence t 7! ctð0̂0Þ converges to a
point w2 of q eCC in a finite time T . Therefore M is not minimal and the mean
curvature flow Mt collapses to the focal submanifold of M through exp?ðw2Þ in
finite time. Thus the statement (i) is shown.

Figure 1
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Next we shall show the statement (iii) of Theorem A. Since X is as in the
second figure of Figure 2, we obtain the following fact:

(�1) For each w A q eCC, there exists w 0 A eCC such that the flow ctðw 0Þ converges
to w.

Now we shall show the following statement:
(�2) For any w A q eCC, the set fw 0 A eCC j the flow ctðw 0Þ converges to wg is

equal to the image of a flow of X .
That is, we shall show that the situation as in Figure 3 cannot happen. Let
W be the real Coxeter group of eMM at 0̂0, that is, the group generated by the
reflections with respect to the (real) hyperplanes li’s (i A I Rþ ) in b containingessi. This group W is a finite Coxeter group. Set V :¼ Spanfbai j i A I Rþ g andeCCV :¼ eCC VV (see Figure 4). This space V is W -invariant and W acts trivially
on the orthogonal complement V? of V . Let ff1; . . . ; fr 0 g be a base of the
space of all W -invariant polynomial functions over V , where we note that
r 0 ¼ dim V . Set F :¼ ðf1; . . . ; fr 0 Þ, which is a polynomial map from V to

Rr 0 . It is shown that F is a homeomorphism of the closure eCCV of eCCV onto

Fð eCCV Þ. Set xwðtÞ :¼ ctðwÞ and xwðtÞ :¼ FðctðwÞÞ, where w A eCCV . Let ðx1; . . . ;
xr 0 Þ be a Euclidean coordinate of V and ðy1; . . . ; yr 0 Þ the natural coordinate
of Rr 0 . Set x i

wðtÞ :¼ xiðxwðtÞÞ and x i
wðtÞ :¼ yiðxwðtÞÞ (i ¼ 1; . . . ; r 0). Then we

have

Figure 2
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ðx i
wÞ

0ðtÞ ¼ hgradðyi �FÞxwðtÞ;XxwðtÞi

¼
X
j A I R

þ

mþ
j cothðarctanh cþj � bjðxwðtÞÞÞbjðgradðyi �FÞxwðtÞÞ

þ
X
j A I R

�

m�
j tanhðarctanh c�j � bjðxwðtÞÞÞbjðgradðyi �FÞxwðtÞÞ:

Let fi be the W -invariant Cy-function over V such that

fiðvÞ :¼
X
j A I R

þ

mþ
j cothðarctanh cþj � bjðvÞÞbjðgradðyi �FÞvÞ

þ
X
j A I R

�

m�
j tanhðarctanh c�j � bjðvÞÞbjðgradðyi �FÞvÞ

for all v A eCCV . It is easy to show that such a W -invariant Cy-function exists
uniquely. According to the Schwarz’s theorem in [S], we can describe fi as

Figure 3

Figure 4
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fi ¼ Yi �F in terms of some Cy-function Yi over Rr 0 . Set Y :¼ ðY1; . . . ;Yr 0 Þ,
which is regarded as a Cy-vector field on Rr 0 . Then we have YFðwÞ ¼ F�ðXwÞ
(w A eCCV ), that is, Y j

FðeCV Þ ¼ F�ðX Þ. Also we can show that Y j
qFðeCV Þ has no zero

point. From these facts, we see that, for any w A q eCCV , the set fw 0 A eCCV j the
flow ctðw 0Þ converges to wg is equal to the image of a flow of X (see Figure 5).
In more general, we obtain the statement ð�2Þ from this fact.

Take an arbitrary focal submanifold F of M. Let exp?ðw1Þ be the only
intersection point of F and exp?ðq eCCÞ. According to the above fact ð�2Þ, the
set of all parallel submanifolds of M collapsing to F along the mean curvature
flow is a one-parameter Cy-family. Thus the statement (iii) of Theorem A is
shown. q.e.d.

Next we prove the statement (ii) of Theorem A.

Proof of (ii) of Theorem A. Let M and F be as in (ii) of Theorem A.
Since the natural fibration of M onto F is spherical, so is also the natural
fibration of eMM onto eFF . Hence eFF meets one of ðq eCC V b�1

i ðarctanh cþi ÞÞ
�’s

(i A I Rþ ) (at one point). Assume that eFF meets ðq eCC V b�1
i0
ðarctanh cþi0 ÞÞ

�. Let
u0 be the intersection point. Let T be the explosion time of the flow Mt.

Denote by At (rep. eAAt) the shape tensor of Mt (resp. eMMt), Ht the mean
curvature vector of Mt and eHHt the regularized mean curvature vector of eMMt. We
have

Figure 5
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Specð eAAt
vÞ

Cnf0g ¼ biðvÞ
arctanh cþi þ jp

ffiffiffiffiffiffiffi
�1

p
� biðctð0̂0ÞÞ

����� i A I Rþ ; j A Z

( )
ð4:6Þ

U
biðvÞ

arctanh c�i þ
�
j þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p
� biðctð0̂0ÞÞ

����� i A I R� ; j A Z

( )

for each v A T?
ctð0̂0Þ

eMMtð¼ T0̂0
eMMÞ. Since

lim
t!T�0

ctð0̂0Þ ¼ u0 A ðq eCC V b�1
i0
ðarctanh cþi0 ÞÞ

�;

we have limt!T�0 bi0ðctð0̂0ÞÞ ¼ arctanh cþi0 and limt!T�0 biðctð0̂0ÞÞ < arctanh cþi
(i A I Rþ nfi0g). Hence we have

lim
t!T�0

kð eAAt
vÞ

Ck2yðT � tÞð4:7Þ

¼ lim
t!T�0

bi0ðvÞ
2

ðarctanh cþi0 � bi0ðctð0̂0ÞÞÞ
2
ðT � tÞ

¼ 1

2
bi0ðvÞ

2 lim
t!T�0

1

ðarctanh cþi0 � bi0ðctð0̂0ÞÞÞbi0
d

dt
ctð0̂0Þ

� � :

Since d
dt
ctð0̂0Þ ¼ ð eHHtÞctð0̂0Þ, it follows from ð4:4Þ that

lim
t!T�0

ðarctanh cþi0 � bi0ðctð0̂0ÞÞÞÞbi0
d

dt
ctð0̂0Þ

� �

¼ lim
t!T�0

0@X
i A I R

þ

mþ
i cothðarctanh cþi � biðctð0̂0ÞÞÞhbai ; b

a
i0
iðarctanh cþi0 � bi0ðctð0̂0ÞÞÞ

þ
X
i A I R

�

m�
i tanhðarctanh c�i � biðctð0̂0ÞÞÞhbai ; b

a
i0
iðarctanh cþi0 � bi0ðctð0̂0ÞÞÞ

1A
¼ mþ

i0
hbai0 ; b

a
i0
i lim

t!T�0
cothðarctanh cþi0 � bi0ðctð0̂0ÞÞÞðarctanh cþi0 � bi0ðctð0̂0ÞÞÞ

¼ mþ
i0
hbai0 ; b

a
i0
i lim

t!T�0
cosh2ðarctanh cþi0 � bi0ðctð0̂0ÞÞÞ

¼ mþ
i0
hbai0 ; b

a
i0
i;

which together with ð4:7Þ deduces

lim
t!T�0

kð eAAt
vÞ

Ck2yðT � tÞ ¼
bi0ðvÞ

2

2mþ
i0
hbai0 ; b

a
i0
i
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and hence

lim
t!T�0

max
v AS?

ctð0̂0Þ
eMMt

kð eAAt
vÞ

Ck2yðT � tÞ ¼ 1

2mþ
i0

:ð4:8Þ

Thus eMMt has type I singularity. Denote by expG the exponential map of G
and Exp the exponential map of G=K at eK . Also, denote by Sð1Þ the unit
hypersphere in b centered at 0. Set gt :¼ expGðctð0̂0ÞÞ and vt :¼ gt�ðvÞ for each
v A Sð1Þ. The relation vt ¼ ðp � fÞ�ctð0̂0ÞðvÞ holds. Since M is proper complex

equifocal and curvature-adapted by the assumption and since Mt is a parallel
submanifold of M, Mt is also proper complex equifocal and curvature-adapted
(see Lemma 3.4 of [Koi9]). It is easy to show that TExpðctð0̂0ÞÞMt ¼ gt�ðmÞ and

that TExpðctð0̂0ÞÞMt ¼ gt�ðmR
0 Þ þ

P
i A I R gt�ðmR

i Þ is the common-eigenspace decom-

position of Rð�; vtÞvt’s (v A b). In similar to bi (i A I R), lþi (i A I Rþ ) and l�i
(i A I R� ), we define linear functions b t

i (i A I R), ðl t
i Þ

þ (i A I Rþ ) and ðl t
i Þ

� (i A I R� ) on
T?
ctð0̂0Þ

Mt ¼ gt�b by

Rð�; vtÞvtjgt�ðmR
i
Þ ¼ b t

i ðvtÞ
2 id ðv A bÞ;

fl A SpecðAt
vt
jgt�ðmR

i
ÞÞ j jlj > jb t

i ðvtÞjg ¼ fðl t
i Þ

þðvtÞg ðv A bÞ

fl A SpecðAt
vt
jgt�ðmR

i
ÞÞ j jlj < jb t

i ðvtÞjg ¼ fðl t
i Þ

�ðvtÞg ðv A bÞ:

It is clear that b t
i ¼ bi � g�1

t� (i A I R). The values b t
i ðvtÞ=ðl

t
i Þ

þðvtÞ (i A I Rþ ) and
ðl t

i Þ
�ðvtÞ=b t

i ðvtÞ (i A I R� ) are independent of the choice of v A b. Denote by ðcti Þ
þ

and ðcti Þ
� these constants, respectively. If i A I Rþ V I R� , then we have ðcti Þ

þ ¼
ðcti Þ

�. Hence we shall denote ðcti Þ
þ (i A I Rþ ) and ðcti Þ

� (i A I R� ) by cti for simpli-

city. In the sequel, we use this notation. The spectrum of ð eAAt
vÞ

C other than
zero is given by

Specð eAAt
vÞ

Cnf0g ¼ biðvÞ
arctanh cti þ jp

ffiffiffiffiffiffiffi
�1

p
���� i A I Rþ ; j A Z

( )

U
biðvÞ

arctanh cti þ
�
j þ 1

2

�
p
ffiffiffiffiffiffiffi
�1

p
���� i A I R� ; j A Z

( )
:

On the other hand, we have limt!T�0 maxv ASð1Þjðl t
i0
ÞþðvtÞj ¼ y and hence

limt!T�0 c
t
i0
¼ 0. Also we have limt!T�0 maxv ASð1Þjðl t

i Þ
þðvtÞj < y and hence

limt!T�0jcti j > 0 (i A I Rþ nfi0g). Therefore we obtain

lim
t!T�0

ðT � tÞ max
v ASð1Þ

kð eAAt
vÞ

Ck2yð4:9Þ

¼ lim
t!T�0

ðT � tÞ max
v ASð1Þ

bi0ðvÞ
arctanh cti0

 !2
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¼ max
v ASð1Þ

bi0ðvÞ
2 lim

t!T�0

T � t

arctanh2 cti0

¼ max
v ASð1Þ

lim
t!T�0

T � t

arctanh2ðbi0ðvÞ=ðl
t
i0
ÞþðvtÞÞ

bi0ðvÞ
ðl t

i0
ÞþðvtÞ

 !2
ðl t

i0
ÞþðvtÞ2

0@ 1A
¼ lim

t!T�0
ðT � tÞ max

v ASð1Þ
ðl t

i0
ÞþðvtÞ2

¼ lim
t!T�0

ðT � tÞ max
v ASð1Þ

kAt
vt
k2y ¼ lim

t!T�0
ðT � tÞ max

v ASð1Þ
kAt

vt
k2y:

From this relation and ð4:8Þ, we obtain

lim
t!T�0

ðT � tÞ max
v ASð1Þ

kAt
vt
k2y ¼ 1

2mþ
i0

< y:

Thus the mean curvature flow Mt (0a t < T) has type I singularity. q.e.d.

For each SH I Rþ , we set

essS :¼ fw A q eCC j ðellþi Þ0̂0ðwÞ < 1 ði A I Rþ nSÞ & ðellþi Þ0̂0ðwÞ ¼ 1 ði A SÞg

¼ fw A eCC j biðwÞ < arctanh cþi ði A I Rþ nSÞ & biðwÞ ¼ arctanh cþi ði A SÞg;

which is a simplex of eCC. Take w A essS. Let eww be the parallel normal vector field
of eMM with eww0̂0 ¼ w. Denote by hew the end-point map for eww and eFFw :¼ hewð eMMÞ,
which is a focal submanifold of eMM. We have

Tw
eFFw ¼ 0

i A I R
þ nS

0
j AZ

hew�ðEþ
ij Þ

0@ 1Al 0
i A I R

�

0
j AZ

hew�ðE�
ij Þ

 !
:

Denote by eAAw the shape tensor of eFFw. In similar to ð4:3Þ, we have

Trð eAAw
v Þ

C ¼
X

i A I RnS
mþ

i cothðarctanh cþi � biðwÞÞbiðvÞð4:10Þ

þ
X
i A I R

�

m�
i tanhðarctanh cþi � biðwÞÞbiðvÞ ðA RÞ

for any v A b, where b is regarded as a subspace of T?
w
eFFw. Set L :¼ eMM VT?

w
eFFw,

which is a focal leaf of eMM. For any u A L, let bu be the section of eMM through u.
We can show ð eHHwÞw A 7

u AL bu. Hence, from ð4:10Þ, the regularized mean cur-

vature vector eHHw of eFFw exists and ð eHHwÞw is given by

ð eHHwÞw ¼
X

i A I RnS
mþ

i cothðarctanh cþi � biðwÞÞbaið4:11Þ

þ
X
i A I R

�

m�
i tanhðarctanh cþi � biðwÞÞbai :
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Define a vector field X esS on essS by X esS
w :¼ ð eHHwÞw (w A essS). This vector field X esS

is tangent to essS. Let fcesSt g be the local one-parameter transformation group

of X esS .
Proof of Theorem B. First we shall show the statement (i) of Theorem B.

Let F be as in the satement (i) of Theorem B. Set eFF :¼ ðp � fÞ�1ðFÞ. Since
the lowest dimensional focal submanifold Fl of M is a one-point set by the
assumption, we have I R� ¼ j. Let w0 be the intersection point of eFF and ess. Set
S0 :¼ fi A I Rþ ð¼ I RÞ j biðw0Þ ¼ arctanh cþi g. Since dim essb 1, we have I RnS0 0j.
According to ð4:11Þ, we have

ðX esÞw ¼ ð eHHwÞw ¼
X

i A I RnS0

mþ
i cothðarctanh cþi � biðwÞÞbai ðw A essÞ:ð4:12Þ

We can show that X es is as in Figure 6 on a su‰ciently small collar neighbor-
hood of each maximal dimensional stratum of qess. Define a function res over ess
by

resðwÞ :¼ �
X

i A I RnS0

mþ
i log sinhðarctanh cþi � biðwÞÞ ðw A essÞ:

Easily we can show grad res ¼ X es. Let ðx1; . . . ; xr 00 Þ be the Euclidean coordinate
of 7

i AS0
b�1
i ðarctanh cþi Þ. For simplicity, set qi :¼ q

qxi
(i ¼ 1; . . . ; r 00). Then we

have

ðqjqkresÞðwÞ ¼ X
i A I RnS0

mþ
i

sinh2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞ:

Hence we see that res is downward convex on ess. Also, it is clear that
resðwÞ ! y as w ! qess and that resðtwÞ ! �y as t ! y for each w A ess.
From these facts, it follows that cest ðw0Þ converges to a point w1 of qess in a
finite time. The mean curvature flow Ft collapses to the focal submanifold of
M through exp?ðw1ÞðA exp?ðqessÞÞ. This completes the proof of the first-half
part of the statement (i). The second-half part of the statement (i) is proved by
imitating the proof of the statement (ii) of Theorem A.

Next we shall show the statement (ii) of Theorem B. Set V :¼
Spanfbai j i A I Rþ g and essV :¼ essVV . Denote by Ves be the a‰ne subspace of
V containing essV as an open subset. Let Wes be a finite Coxeter group generated
by the reflections with respect to the (real) hyperplanes lesi ’s (i A I RnS0) in Ves
containing essi VVes. Let ffes1 ; . . . ; fesr 0 g be a base of the space of all Wes-invariant
polynomial functions over Ves, where we note that r 0 ¼ dim Ves. Set Fes :¼
ðfes1 ; . . . ; fesr 0 Þ, which is a polynomial map from Ves to Rr 0 . It is shown that Fes is
a homeomorphism of the closure essV of essV onto FesðessV Þ. Set xwðtÞ :¼ ctðwÞ and
xwðtÞ :¼ Fesðcest ðwÞÞ, where w A essV . Let ðx1; . . . ; xr 0 Þ be a Euclidean coordinate
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of Ves and ðy1; . . . ; yr 0 Þ the natural coordinate of Rr 0 . Set x i
wðtÞ :¼ xiðxwðtÞÞ and

x i
wðtÞ :¼ yiðxwðtÞÞ (i ¼ 1; . . . ; r 0). Then we have

ðx i
wÞ

0ðtÞ ¼ hgradðyi �FesÞxwðtÞ;X es
xwðtÞi

¼
X

j A I RnS0

mþ
j cothðarctanh cþj � bjðxwðtÞÞÞbjðgradðyi �FesÞxwðtÞÞ:

Let f esi be the Wes-invariant Cy-function over Ves such that

f esi ðvÞ :¼ X
j A I RnS0

mþ
j cothðarctanh cþj � bjðvÞÞbjðgradðyi �FesÞvÞ

for all v A essV . It is easy to show that such a Wes-invariant Cy-function exists
uniquely. According to the Schwarz’s theorem in [S], we can describe f esi as

f esi ¼ Y es
i �Fes in terms of some Cy-function Y es

i over Rr 0 . Set Y es :¼ ðY es
1 ; . . . ;

Y es
r Þ, which is regarded as a Cy-vector field on Rr 0 . Then we have Y es

FesðwÞ ¼
ðFesÞ�ðX es

w Þ (w A essV ), that is, Y esjFesðesV Þ ¼ ðFesÞ�ðX esÞ. Also we can show that
Y esjqFesðesV Þ has no zero point. From these facts and the fact that X es is as in
Figure 6 on a su‰ciently small collar neighborhood of each maximal dimensional
stratum of qessV , we see that, for any w A qessV , the set fw 0 A essV j the flow cest ðw 0Þ
converges to wg is equal to the image of a flow of X es. In more general, the
same fact holds for any w A qess. From this fact, the statement (ii) of Theorem B
follows. q.e.d.

We shall explain that, in the statement of Theorem B, we cannot weaken the
condition that Fl is a one-point set to the condition (s0 ¼s and dimðpa V p 0Þb

Figure 6
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1
2 dim pa (a As)) in the statement of Theorem A. Assume that M satisfies the
condition in the statement of Theorem A. Let S0 be as above and ess :¼ essS0

.
Define a function res over ess by

resðwÞ :¼ �
X

i A I RnS0

mþ
i log sinhðarctanh cþi � biðwÞÞ

�
X
i A I R

�

m�
i log coshðarctanh cþi � biðwÞÞ ðw A essÞ:

We have grad res ¼ X es. Also, it follows from mþ
i bm�

i and cþi ¼ c�i (i A I R� )
that

ðqjqkresÞðwÞb X
i A I RnðS0UI R

� Þ

mþ
i

sinh2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞ

þ
X

i A ðI RnS0ÞVI R
�

4mþ
i

sinh2 2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞ

�
X

i AS0VI R
�

mþ
i

cosh2ðarctanh cþi � biðwÞÞ
biðqjÞbiðqkÞ:

Thus we cannot conclude whether r is downward convex or not bacause of
the existence of the third term in the right-hand side of this relation. Hence, in
Theorem B, we cannot weaken the condition that Fl is a one-point set to the
condition in the statement of Theorem A.

5. Examples

Principal orbits of Hermann actions on a symmetric space G=K of non-
compact type are curvature-adapted isoparametric submanifolds and they have
no focal point of non-Euclidean type on the ideal boundary of G=K . In par-
ticular, principal orbits of the isotropy action K 1 G=K and those of Hermann
actions H 1 G=K as in Table 1 satisfy the additional conditions ‘‘codim M ¼
rank G=K and dimðpa V p 0Þb 1

2 dim pa ða AsÞ’’ in the statement of Theorem
A. In Table 1, L is the fixed point group of y � t, where y is a Cartan
involution of G with ðFix yÞ0 HKHFix y and t is an involution of G with
ðFix tÞ0 HHHFix t. Then, for a Hermann action H 1 G=K , Fl :¼ HðeKÞ
is one of the lowest dimensional focal submanifolds of principal orbits of
H 1 G=K . The submanifolds Fl and F ?

l :¼ exp?ðT?
eKHðeKÞÞ are reflective

and hence they are symmetric spaces. Explicitly they are described as Fl ¼
H=H VK and F ?

l ¼ L=H VK , respectively (see Figure 7). In particular, in
case of the isotropy action K 1 G=K , Fl is a one-point set. Hence the prin-
cipal orbits of the isotropy action satisfy the conditions in the statement of
Theorem B.
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H G=K Fl ¼ H=H VK F ?
l ¼ L=H VK

SO�ð2nÞ SU �ð2nÞ=SpðnÞ SO�ð2nÞ=UðnÞ SLðn;CÞ=SUðnÞ

SO�ð2pÞ SUðp; pÞ=SðUðpÞ �UðpÞÞ SO�ð2pÞ=UðpÞ Spðp;RÞ=UðpÞ

SOðn;CÞ SLðn;CÞ=SUðnÞ SOðn;CÞ=SOðnÞ SLðn;RÞ=SOðnÞ

SU �ð2pÞ �Uð1Þ Spðp; pÞ=SpðpÞ � SpðpÞ SU �ð2pÞ=SpðpÞ Spðp;CÞ=SpðpÞ

SLðn;CÞ � SOð2;CÞ Spðn;CÞ=SpðnÞ SLðn;CÞ=SUðnÞ
�SOð2;CÞ=SOð2Þ

Spðn;RÞ=UðnÞ

Spð1; 3Þ E 2
6 =SUð6Þ � SUð2Þ Spð1; 3Þ=Spð1Þ � Spð3Þ F 4

4 =Spð3Þ � Spð1Þ

SUð1; 5Þ � SLð2;RÞ E�14
6 =Spinð10Þ �Uð1Þ SUð1; 5Þ=SðUð1Þ �Uð5ÞÞ

�SLð2;RÞ=SOð2Þ
SO�ð10Þ=Uð5Þ

Spð4;CÞ EC
6 =E6 Spð4;CÞ=Spð4Þ E 6

6 =Spð4Þ

SUð2; 6Þ E�5
7 =SO 0ð12Þ � SUð2Þ SUð2; 6Þ=SðUð2Þ �Uð6ÞÞ E 2

6 =SUð6Þ � SUð2Þ

SLð8;CÞ EC
7 =E7 SLð8;CÞ=SUð8Þ E 7

7 =SUð8Þ

SOð16;CÞ EC
8 =E8 SOð16;CÞ=SOð16Þ E 8

8 =SOð16Þ

Spð3;CÞ � SLð2;CÞ F C
4 =F4 Spð3;CÞ=Spð3Þ

�SLð2;CÞ=SUð2Þ
F 4
4 =Spð3Þ � Spð1Þ

SLð2;CÞ � SLð2;CÞ GC
2 =G2 SLð2;CÞ=SUð2Þ

�SLð2;CÞ=SUð2Þ
G2

2 =SOð4Þ

Table 1

Figure 7
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