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DETECTING THOM FAULTS IN STRATIFIED MAPPINGS

Saurabh Trivedi and David Trotman

Abstract

We state and prove several characterizations of Thom’s regularity condition for

stratified maps. In particular we extend to stratified maps some characterizations of

Whitney (a) regularity, due to the second author.

1. Introduction

One of the most important properties of Whitney ðaÞ-regularity is that it
is necessary and su‰cient for the stability of transversality to stratifications.
Necessity was proved in [15] by the second author, while Feldman proved
su‰ciency [1]. It was conjectured in the doctoral dissertation of the second
author [14] that this characterization can be generalized to the statement that
Thom regularity is necessary and su‰cient for the stability of transversality to
foliated stratifications.

If the usual Thom transversality theorem were true for transversality to
foliations, which is not the case, the conjecture would follow immediately because
the method used by the second author would go through. We present a proof
of this conjecture using a new method that applies also to the case of Whitney
ðaÞ-regularity, moreover we generalize the result of Feldman and Trotman to
what we call prestratifications.

Thom regularity for stratified maps occurs frequently in singularity theory
and its applications to dynamical systems, notably in Hilbert’s 16th problem
about limit cycles, as in the work of Ilyashenko-Kaloshin [4] and Kaloshin [5], so
that equivalent geometric properties are potentially of great interest to specialists.
Few previous results exist of this kind, for example see the work of Koike [7]
and Schürmann [11]. An important result in equisingularity theory for families
of complex hypersurfaces defined by a function F , due to Lê Dung Tràng and
K. Saito, says that the family has constant Milnor number if and only if F is
Thom regular [8]. Here we present some more geometric properties of Thom
regularity.
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Section 2 defines the notions of prestratifications, stratifications, Thom
regularity for stratified maps, faults and detectors.

Section 3 shows that Thom regularity is su‰cient for the stability of trans-
versality of foliated prestratifications. This generalizes greatly Proposition 3.6 on
page 196 in Feldman [1].

Section 4 opens with some examples showing that transversality to foliations
is not a generic condition and that we cannot detect Thom faults using em-
beddings. This shows that the method of the second author from [15] in proving
the necessity of Whitney ðaÞ-regularity for the stability of transversality does not
work as a way of proving necessity of Thom regularity for stability of trans-
versality to foliated stratifications. A new method is presented here allowing
us to give a short proof of this result. This exploits the fact that a map is
transverse to any submanifold if its rank is equal to the dimension of the target
manifold.

In Section 5 after recalling the definition of ðtf Þ-regularity we show that it
implies Thom regularity in the case of subanalytic stratifications, where the curve
selection lemma holds. That ðaf Þ implies ðtf Þ is trivial since spanning is an open
condition and it is used in several places in Kaloshin [5].

In Section 6 we prove the equivalence of Thom regularity and a geometric
version of Thom regularity analogous to the geometric version of Whitney ðaÞ-
regularity that was conjectured to be equivalent to ðaÞ-regularity by Wall [18] and
proved to be equivalent by Trotman [16], then by Hajto [2] and Perkal [10]. We
use a foliated version of the perturbation lemma of Perkal [10]. A similar result
is proved by Koike [7] but our method is much simpler.

2. Definitions

2.1. Prestratifications and stratifications. Let V be a closed subset of a
C1-manifold N. A prestratification S of V is a collection of pairwise disjoint
subsets fSaga AL of V such that:

1. 6
a AL Sa ¼ V .

2. For every a A L, Sa is an embedded connected submanifold of N. We
call Sa’s strata of S.

3. Every point in V has a neighbourhood in N which intersects only finitely
many strata. This is called local finiteness.

By the frontier of a subset SHN we mean SnS. A prestratification is said
to be a stratification if it satisfies the frontier condition, i.e. the frontier of every
stratum is a union of some other strata.

In a prestratification it is possible that none of the strata be a closed set, see
Figure 1.

2.2. Thom regularity. Let N and P be C 1-manifolds and f : N ! P be a
C1-map of constant rank on a submanifold S of N. Then, f induces a foliation
on S, denoted F

f
X . If x A S, we denote by TxðF f

S Þ the tangent space of the leaf
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of the foliation F
f
S passing through x. These notations will be used everywhere

in the article.
Let X and Y be submanifolds of N such that f has constant rank on both

X and Y . The submanifold X is said to be Thom ðaf Þ-regular over Y at a point
y A Y VX , if

ðaf Þ-regularity—for every sequence fxig of points in X converging to y such

that TxiðF
f
X Þ converges to t, we have TyðF f

Y ÞH t.
This definition is equivalent to the original definition of Thom regularity as

given in Mather [9].
Let S be a prestratification of a closed subset V in N such that f has

constant rank on every stratum of S. We will call such a map a stratified map
though the usual definition of a stratified map is stronger, see Koike [7]. Let X
and Y be two strata of S. Then the pair ðX ;Y Þ is said to be ðaf Þ-regular if X is
ðaf Þ-regular over Y at every point in Y VX and Y is ðaf Þ-regular over X at every
point in X VY . Also S is said to be ðaf Þ-regular if every pair of strata in S is
ðaf Þ-regular.

We show by examples that Thom ðaf Þ-regularity does not imply Whitney
ðaÞ-regularity and vice-versa; see Mather [9] for the definition of Whitney ðaÞ
regularity. However, if f is constant on the strata of a prestratification S then
ðaf Þ in this case is equivalent to ðaÞ.

1. Let N ¼ R3, S1 ¼ fz ¼ 0; y > 0g and S2 ¼ fy ¼ 0g. Then, S1 is not ðaÞ-
regular over S2 at any point on x-axis.

Define f : R3 ! R by f ðx; y; zÞ ¼ yþ z. Then the resulting foliated pre-
stratification is ðaf Þ-regular. See Figure 2.

2. Let N ¼ R3, S1 ¼ fy > 0; z < 0; y ¼ z2g and S2 ¼ fy ¼ 0g. Then, S1 is
ðaÞ-regular over S2 at every point on the x-axis.

Define f : R3 ! R by f ðx; y; zÞ ¼ y. Notice that the fibers of f give a
foliation of S1 whose leaves are lines parallel to the x-axis that lie on S1. The
foliation on S2 induced by f is S2 itself. The resulting foliated prestratification
is not ðaf Þ-regular. See Figure 2.

2.3. Faults and detectors. When some regularity condition E is not
satisfied at a point of a prestratification, we call the point an E-fault. Many
proofs showing that one regularity condition implies another are by contradic-
tion; we suppose that the second condition fails, and then we show that the first

Figure 1. Prestratification
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condition necessarily fails as well. When we can do this we say we have detected
the fault (the point where the second condition fails).

3. Transversality to Thom regular stratifications is a stable condition

Let M, N and P be C1-manifolds. Recall that a C1-map g : M ! N is said
to be transverse to a submanifold S of N at a point w A M, denoted gtw S, if
either gðwÞ B S or gðwÞ A S and DgwðTwMÞ þ TgðwÞS ¼ TgðwÞN. If g is transverse
to S at each point w A M we write g t S.

If S is a stratum of a prestratification S of a closed subset in N and
f : N ! P is a stratified map, then

g t ker dxð f jSÞ Ex A S , g t F
f
S

, g t fibres of f jS
, f jS � g : M ! f ðSÞ is a submersion:

We write g tK F
f
S to say that f is transverse to every leaf of every stratum

of S at points of KHM. If K ¼ M we simply write f t F
f
S . Denote by

C1ðM;NÞ the set of all C1-maps between M and N. We prove:

Theorem 3.1. Let S be a prestratification of a closed subset V of a C1-
manifold N, and let f : N ! P be a stratified map. If S is an ðaf Þ-regular
prestratification, then

i. for every C1-manifold M and any compact set KHM, TK ¼
fg A C 1ðM;NÞ : g tK F

f
S g is open in C1ðM;NÞ with the weak topology.

ii. for every C1-manifold M and any closed set KHM, the set TK ¼
fg A C 1ðM;NÞ : g tK F

f
S g is open in C1ðM;NÞ with the strong topology.

To prove Theorem 3.1 we need the following lemma.

Figure 2. Thom regularity
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Lemma 3.2. Let M, N and P be C 1-manifolds and let V HN be a closed
set. Let S be a prestratification of V and f : N ! P be a stratified map such that
S is ðaf Þ-regular. Let g : M ! N be a C 1 map. If w A M is such that g tw F

f
S

then there exists a coordinate chart ðf;UÞ of M at w and ðc;WÞ at gðwÞ such that
for each compact KHU there is a weak neighbourhood1 Nðg; ðf;UÞ; ðc;WÞ;K ; eÞ
of g each of whose members h satisfies h tK F

f
S .

Proof. Due to local finiteness of S without loss of generality we can assume
that S has only two strata X and Y . We have three cases,

(1) gðwÞ B V ,
(2) gðwÞ A V but gðwÞ B Y VX and gðwÞ B X VY .
(3) gðwÞ A V and gðwÞ A X VY or gðwÞ A Y VX .
In the first two cases the result follows easily since V is a closed set and the

set of surjective linear maps forms an open set. This leaves the only interesting
case (3).

So, suppose gðwÞ A V and gðwÞ A Y UX . Since gðwÞ A Y , by the case (2)
we can find coordinate charts ðf 00;U 00Þ around w and ðc 00;W 00Þ around gðwÞ
such that for each compact KHU 00 there is a weak subbasic neighbourhood
Nðg; ðf 00;U 00Þ; ðc 00;W 00Þ;K; e 00Þ such that every member of this neighbourhood is
transverse to every leaf of the foliation F

f
Y .

Now, suppose that, contrary to the conclusion of the lemma, for each
neighbourhood U of x, there is a compact set KHU such that every weak
subbasic neighbourhood of g contains a map which is not transverse to one of the
leaves of the foliation F

f
X induced on X by f .

Choose fUigyi¼1 to be a basis for the neighbourhoods of w. Then, for each i
there is a compact set Ki HUi, a point wi A Ki and a map gi A Nðg; ðfjUi

;UiÞ;
ðc;WÞ;Ki; 1=iÞ such that gi 6twi

F
f
Xwi

, where ðf;UÞ and ðc;WÞ are fixed charts
for M and N at w and gðwÞ respectively and F

f
Xwi

is the leaf of F
f
X passing

through giðwiÞ.
Note first that for each i, we have jcgiðwiÞ � cgðwiÞj < 1=i and also that

there exist fei > 0g such that ei ! 0 as i ! y and jcgðwiÞ � cgðwÞj < ei. Then
by the triangle inequality, giðwiÞ ! gðwÞ as i ! y.

Since gi 6twi
F

f
Xwi

, it follows that

dim TgiðwiÞN > dimðTgiðwiÞF
f
Xwi

þDwi
giðTwi

MÞÞ:
Taking limits on both sides and using the properties of sequences of points in

Grassmannians we have:

dim TgðwÞN > lim
i!y

dimðTgiðwiÞF
f
Xwi

þDwi
gwi

ðTwi
MÞÞ

¼ dim lim
i!y

ðTgiðwiÞF
f
Xwi

þDwi
gwi

ðTwi
MÞÞ

1Set of all C 1-maps h : M ! N such that hðKÞHW, kgf;cðxÞ � hf;cðxÞk < e and

kDgf;cðxÞ �Dhf;cðxÞk < e for all x A fðKÞ.
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b dim lim
i!y

TgiðwiÞF
f
Xwi

þ lim
n!y

Dwi
gwi

ðTwi
MÞ

� �

b dim lim
i!y

TgiðwiÞF
f
Xwi

þDwgðTwMÞ
� �

:

But since X is ðaf Þ-regular over Y at gðwÞ we have

lim
i!y

TgiðwiÞF
f
Xwi

ITgðwÞF
f
Yw
;

where F
f
Yw

is the leaf of the foliation F
f
Y , induced by f on Y , passing through

gðwÞ.
Thus it follows that

dim TgðwÞN > dimðTgðwÞF
f
Yw

þDwgðTwMÞÞ

which is a contradiction to the fact that g tw F
f
S . Thus, there exists a chart

ðf 0;U 0Þ around w and a chart ðc 0;W 0Þ around gðwÞ such that for each compact
KHU 0 the subbasic neighbourhood of g, Nðg; ðf 0;U 0Þ; ðc 0;W 0Þ;K ; e 0Þ has the
property that all its members are transverse to F

f
X on all of K .

Set U ¼ U 0 VU 00 and W ¼ W 0 VW 00. It is easy to see that for a suitable e
and any compact KHU, the subbasic neighbourhood Nðg; ðf;UÞ; ðc;WÞ;K ; eÞ
satisfies,

Nðg; ðf;UÞ; ðc;WÞ;K ; eÞHNðg; ðf;U 0Þ; ðc;W 0Þ;K ; e 0Þ
VNðg; ðf 00;U 00Þ; ðc 00;W 00Þ;K ; e 00Þ

and all its members are transverse to F
f
X and F

f
Y on K . r

Proof of Theorem 3.1. The two parts will be treated separately.
i. To prove that TK is open, we show that there exists a weak open

neighbourhood of every map in TK contained in TK . Take a map g A TK , since
g is transverse to F

f
S at each w A K and S is af -regular, by Lemma 3.2, for each

w A K there exists a chart Uw with the property that for each compact set
Kw HUw there is a neighbourhood Nðg; ðfw;UwÞ; ðcw;VwÞ;Kw; ewÞ such that each
member of this neighbourhood is transverse to S on all of Kw. Since K is
compact, we can choose a finite subcollection fUw1

; . . . ;Uwr
g of the coordinate

neighbourhoods fUwgw AK , such that KH6 r

i¼1
Kwi

. But then the intersection

7
r

i¼1

Nðg; ðfwi
;Uwi

Þ; ðcwi
;Vwi

Þ;Kwi
; eÞ

(e ¼ minfewi
g) is a weak open neighbourhood of g and is contained in TK , as

required.
ii. First notice that every open covering of a closed set of a smooth manifold

has a locally finite open refinement. Now as in (i), by Lemma 3.2, for each
w A K there is a chart Uw for M which contains w and has the property: for each
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compact set Kw HUw there is a neighbourhood Nðg; ðfw;UwÞ; ðcw;VwÞ;Kw; ewÞ
all of whose members are transverse to F

f
S . Now choose a locally finite sub-

collection of the charts fUwgw AK which covers K . By the definition of the strong
topology, the intersection of the weak subbasic neighbourhoods for this finite
subcollection of charts gives a strong open neighbourhood all of whose members
are transverse to F

f
S on K . r

4. Stability of transversality implies Thom regularity

First we show that transversality of maps to foliations is not a generic
condition. Consider the following examples.

1. Let M ¼ S1 and N ¼ R2 foliated by lines parallel to x-axis. Then the
embedding of M into N is non transverse to this foliation and it cannot be made
transverse by small perturbations. See Figure 3.

2. Let M ¼ R and N ¼ R2 foliated by lines parallel to x-axis. Let
f : M ! N be given by f ðxÞ ¼ ðx; x3 � xÞ. Then f is non transverse to
this foliation and it cannot be made transverse by small perturbations. See
Figure 3.

2. Let M ¼ S2, N ¼ R2 and S be the unit circle in N considered as foliated
by its points. Project M onto N in a way that the image of M under this
projection f is a disc D which does not entirely cover S. The rank of this
projection f at the points whose image intersect S and lie in the interior of D is 2
and thus f is transverse to the foliated circle at these points. But, we cannot
find maps close to f which are transverse on every point of M because any
su‰ciently small perturbation of f will not cover S entirely and whenever the
boundary of the image intersects the circle it will not be transverse to the foliated
circle.

Secondly, we show that we cannot detect ðaf Þ-faults by embeddings.
3. Consider the blow-up of R2 at 0, given by b : E ! R2 where E is the

canonical line bundle over the real projective line RP1. Recall that E is topo-
logically a Möbius band embedded into R3. We take the stratification of E with

Figure 3. Non-genericity
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two strata, X ¼ b�1ð0Þ and Y ¼ EnX . The blow-up map b induces a foliation
on X and Y . The only leaf of this foliation of X is X itself and the leaves of
the foliation of Y are points. It is easy to see that this stratification of E is not
ab-regular.

Notice that we cannot detect the ab-faults in this stratification by perturb-
ing embeddings of rank 2 or even rank 3. For, no embedding of rank 2 can
intersect this foliated stratification transversely since by the definition of trans-
versality we need to have a rank 3 map to intersect the foliation of Y . Thus the
set of maps transverse to this stratification from a manifold of dimension 2 is
empty and so open and yet our stratification is not ab regular.

Similarly any embedding of rank 3 is always transverse to this foliated
stratification by the definition of transversality and thus we cannot find a
sequence of embeddings of rank 3 not transverse to one foliated stratum but
whose limit is transverse to the other foliated stratum.

This shows that the method used to prove that Whitney ðaÞ-regularity is
necessary and su‰cient for the stability of transversality by the second author
in [15] does not work to obtain a generalization for the Thom regularity. We
will show however using a new method that Thom regularity is necessary and
su‰cient for the stability of transversality to foliated stratifications.

We will prove the following result:

Theorem 4.1. Let N and P be C 1-manifolds. Let f : N ! P be a stratified
map for a prestratification S of a closed subset V of N. Then the following are
equivalent:

(1) S is ðaf Þ-regular,
(2) for any C1-manifold M, the set fg A C1ðM;NÞ : g t F

f
S g is open in the

strong topology,
(3) the set fg A C1ðN;NÞ : g t F

f
S g is open in the strong topology.

To prove Theorem 4.1 we need the following lemma:

Figure 4. Stratification of a Blow-up
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Lemma 4.2. Let N be a smooth manifold of dimension nb 2 and let x A N.
Let r be a positive integer strictly less than n. Then, there exists a bijective
smooth map g : N ! N such that

i. the rank of g at x is r,
ii. the rank of g at all points except x is n.

Proof. Take a chart ðU ; fÞ (coordinate disk) around x. We will construct
a map gU : U ! U that has the above properties on U , gUðxÞ ¼ x and gU is the
identity outside a relatively compact subset of U . The lemma will follow by
extending this map outside U by the identity map.

Let g : R ! R be a smooth map with the following properties.
i. gðaÞ ¼ 0 if aa 0,
ii. gðaÞ ¼ 1 if ab 1,
iii. g 0ðaÞ > 0 for 0 < a < 1.
Define a map h : Rn ! Rn by

hða1; . . . ; anÞ ¼ ða1; . . . ; ar; arþ1gðkak2Þ; . . . ; angðkak2ÞÞ:

where a ¼ ða1; . . . ; anÞ A Rn and kak2 ¼ a21 þ � � � þ a2n .
Notice that the map h is smooth and has the following properties:
i. it has rank r at 0,
ii. it has rank n at any point a0 0,
iii. it is the identity outside the ball of radius 1,
iv. it is bijective.
Now define gU : U ! U by gU ¼ f�1 � h � f. Then, hU has the required

properties. r

Proof of Theorem 4.1. The implications ((1) ) (2)) and ((2) ) (3)) follow
from Theorem 3.1. The only implication to be proved is ((3) ) (1)).

Suppose S is not an ðaf Þ-regular prestratification. Then, there exists a
sequence fxig in a stratum X converging to a point y in a stratum Y such that
TðFX

xi
XÞ converges to t in the Grassmannian but t does not contain TyðF f

Y Þ
as a subspace. Let v A TyðF f

Y Þ such that v B t. Then, there exists a subspace
H of TyN of dimension n� dim TyðF f

Y Þ, (dim N ¼ n), not containing v such
that

HlTyðF f
Y Þ ¼ TyNð1Þ

H þ t0TyNð2Þ

Moreover, there exists a sequence fHig of subspaces of TxiN of dimension

n� dim TyðF f
Y Þ such that for large enough i,

Hi þ TxiðF
f
X Þ0TxiN:ð3Þ

By Lemma 4.2 there exists a map g : N ! N (after a suitable change of
coordinates) with the following properties:
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1. gðyÞ ¼ y,
2. the rank of g at y is n� dim TyðF f

Y Þ,
3. the rank of g at any point other than y is n, and
4. DygðTyNÞ ¼ H.
We have g t F

f
S since the rank of g is n at all points except y and by (1) g is

transverse to F
f
Y at y.

Now it is easy to find a sequence of maps fgi : N ! Ng converging to g in
the strong topology such that for large i, giðyÞ ¼ xi, and

DygiðTyNÞ ¼ Hi:ð4Þ
By (3) and (4), for large i, gi 6t F

f
X , which is a contradiction to the

hypothesis that fg A C1ðN;NÞ : g t F
f
S g is open in the strong topology. r

5. Thom regularity and ðtf Þ-regularity

Let N and P be C1-manifolds and X and Y be submanifolds of N. Let
f : N ! P be a C1-map that has constant rank of X and Y . Then, X is said to
be ðtf Þ-regular over Y at y A Y VX if

ðtf Þ-regularity—Given a C1 submanifold S of N transverse to the leaf of
F

f
Y passing through y, there is a neighbourhood U of y in N such that S is

transverse to F
f
X in U .

Since spanning is an open condition, it follows at once that ðaf Þ-regularity
implies ðtf Þ-regularity. Kaloshin [5] uses and gives a proof of this trivial fact in
his article on Hilbert’s sixteenth problem, see page 463, page 492 and Proposition
2 in page 495 in [5].

We show that ðaf Þ-faults can be detected by ðtf Þ-regularity in the subanalytic
case. Since the arguments are local we work with Rn.

Theorem 5.1. Let X , Y be C1-submanifolds of Rn with 0 A Y VX , and let Y
be a subanalytic set. Let f : Rn ! Rp be a subanalytic map (i.e. the graph of f is
subanalytic in Rn � Rp), such that f jX and f jY are of constant rank. Then X is
ðaf Þ-regular over Y at 0 if and only if for every semianalytic C1 submanifold S
transverse to F

f
Y at 0, there is some neighbourhood of 0 in which S is transverse

to F
f
X .

Proof. Condition ðaf Þ implies ðtf Þ trivially. We show that ðtf Þ implies ðaf Þ
with the hypothesis of the theorem.

Let 0 A Y be an ðaf Þ-fault. Then, there exists a sequence fxig in X
converging to 0 such that the limit of the tangent spaces TxiðF

f
X Þ converges

to t, but t does not contain T0ðF f
Y Þ.

We will construct a semianalytic C1 submanifold S transverse to the leaf of
FY passing through 0 but not transverse to the leaves of F

f
X on any neighbour-

hood around 0.
Since T0ðF f

Y ÞQ t there exists a unit vector v A T0ðF f
Y Þ such that v B t.

This implies that there exist e > 0 and a positive number n such that for all

350 saurabh trivedi and david trotman



i > n,

dðv;TxiðF
f
X ÞÞ > e:

where dðv;TxiðF
f
X ÞÞ denotes the distance between v and TxiðF

f
X Þ.

Let m be the dimension of leaves of F
f
X and let

V1 ¼ Rn � fP A Gn
mðRÞ : dðv;PÞ > eg

and

V2 ¼ fðx;TxðF f
X ÞÞ : x A XgHRn � Gn

mðRÞ;
where Gn

mðRÞ denotes the Grassmann bundle of m-dimensional subspaces of Rn.
The set V1 is semialgebraic and we show that V2 is subanalytic. In fact

we just need to show that fðx;TxXÞ : x A Xg is subanalytic, which is precisely
Lemma 1.6 in Verdier [17]. For, TxðF f

X Þ ¼ ker dx f VTxX , and ker dy f is a
fixed subspace of Rn if we suppose that f is a linear projection (as we can since f
is the composition of an embedding onto its graph followed by a linear projection
(cf. page 30 of Teissier [12])). Thus, V2 is a subanalytic set. Semialgebraic sets
are subanalytic, and the finite intersection of subanalytic sets is subanalytic (by
Hironaka [3]). Hence, V1 VV2 is subanalytic.

Notice that ð0; tÞ A V1 VV2, thus by the curve selection lemma (see Proposi-
tion 3.9 in Hironaka [3]), there is an analytic arc

a : ½0; 1� ! Rn � Gn
m

given by aðtÞ ¼ ða1ðtÞ;Ta1ðtÞðF
f
X ÞÞ, such that að0Þ ¼ ð0; tÞ and aðtÞ A V1 VV2 if

t > 0.
Denote by Nt A Gn

n�1ðRÞ the orthogonal complement of the tangent space to
the manifold-with-boundary a1½0; 1� and let vt be the orthogonal projection of v
into Nt. Denote by hvi the subspace spanned by v.

Let s : ½0; 1� ! Gn
n�2ðRÞ be the analytic curve defined by

sðtÞ ¼ Pt l ðPt lhvtiÞ?

where Pt ¼ Nt VTa1ðtÞðF
f
X Þ and ð Þ? is the orthogonal complement in Nt.

Notice that, vt B Pt and moreover sðtÞlhvi ¼ Nt.
Then the union of fsðtÞg for t A ½0; 1�, considered as embedded ðn� 2Þ-planes

in Rn passing through points a1ðtÞ defines a semianalytic manifold-with-boundary
S 0 of dimension ðn� 1Þ. Reflection in N0 extends S 0 to a C1-manifold S which
is a semianalytic subset of Rn and which is transverse to F

f
Y at 0.

Finally we show that S is not transverse to F
f
X on any neighbourhood of 0.

Let U be a neighbourhood around 0. There exists some t0 A ð0; 1� such that
U V a1ð0; 1�I a1ð0; t0�. But S 0 (and hence S) is not transverse to F

f
X at any

point of a1ð0; 1�. For, if At denotes the tangent space to the curve a1ð0; 1� at
a1ðtÞ,

Ta1ðtÞF
f
X ¼ Pt lAt H sðtÞlAt ¼ Ta1ðtÞS:

Theorem 5.1 follows. r
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6. Geometric versions of Thom regularity

Let N and P be C1-manifolds and X and Y be submanifolds of N. Let
f : N ! P be a C1-map that has constant rank of X and Y . Then, X is said to
be ðas

f Þ-regular over Y at y A Y VX if

ðas
f Þ-regularity—Given a C1 local retraction p defined near y onto the leaf of

F
f
Y passing through y, there is a neighbourhood U of y in Rn such that pjX VU is

a submersion on every leaf of F
f
X VU .

This is equivalent to saying that X is ðF1
f Þ-regular over Y at y A Y VX ,

where we define
ðFk

f Þ-regularity—Given a Ck foliation G of N transverse to F
f
Y at 0, there is

a neighbourhood of 0 in which G is transverse to F
f
X .

We show that (also proved in Koike [7] but our proof is much simpler):

Theorem 6.1. Let f : N ! P be a C1 map, between C 1 manifolds N and P,
X and Y be C 1 submanifolds of N such that f jX and f jY have constant rank, and
let 0 A Y VX. Then the following conditions are equivalent.

i. X is ðaf Þ-regular over Y at 0,
ii. X is ðas

f Þ-regular over Y at 0.

We state the following lemmas that can be obtained by slight modifications
to Perkal’s perturbation Theorems 1.2 and 1.4 in [10].

Lemma 6.2. Let X be a submanifold of Rn, let x0 A X and let fxig be a
sequence in X converging to x0. For each sequence fLigyi¼0 of linear bijections
from Rn to Rn converging to the identity, there is a C1 chart ðV ;cÞ around x0 such
that cðxiÞ ¼ xi and DcðxiÞ ¼ Li for large i.

Lemma 6.3. Let X be a manifold of Rn, let x0 A X and let fxig be a sequence
in X converging to x0. Let F be a foliation of X. If fTxiðFÞg and a sequence
ftig of linear subspaces of Rn converge to a common limit t in the Grassmann
bundle then there is a C1 chart c around x0 such that for large i, cðxiÞ ¼ xi and
TxiðcðFÞÞ ¼ ti.

Proof of Theorem 6.1. That ðaf Þ implies ðas
f Þ follows very easily following

the proofs that ðaÞ implies ðasÞ in Wall [18] or page 9 in Thom [13].

Let s be the dimension of leaves of F
f
Y . Since the argument is local, we can

assume without loss of generality that T0ðF f
Y Þ ¼ Rs � f0g.

Suppose X is not ðaf Þ-regular over Y at 0. There exists an f -good sequence

fxng in X such that its Grassmann limit does not contain T0ðF f
Y Þ. Let ðV1;V2Þ

be the basis for t where V1 is a basis of tVT0ðF f
Y Þ and V2 is a basis for the

orthogonal complement of tVT0ðF f
Y Þ in t.

Extend the set of vectors consisting of vectors in V2, and a basis for Y to a
basis for Rn and let A be the linear map from Rn to Rn that maps this basis to
itself.
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Notice that psðAðV1ÞÞ ¼ V1 while psðAðV2ÞÞ ¼ 0 and psðAðtÞÞ ¼ tVY , where
ps : R

n ! Rs � f0g is the natural projection. This gives a linear bijection A such
that psjAðtÞ is not submersive.

Thus we can assume, after making this linear change of chart, that pjt is
not submersive. By Lemma 6.3 there is a C1 chart c such that, for large i,
TxiðcðF

f
X ÞÞ ¼ t. But

DxiðpsjcðF f

X
ÞÞ ¼ ðDxipsÞðTxiðF

f
X ÞÞ ¼ psjt

so that pc ¼ c�1 � ps � c fails to be a submersion on V VX for some neighbour-
hood V of 0. Hence ðaf Þ-regularity fails. r

Another proof of the above theorem can be given using the condition
ðF1

f Þ, which is equivalent to ðaf Þ, and Trotman’s idea of ripples [16]. We
cannot replace C1 by C2 in the statement of Theorem 6.1, see Perkal [10] or
Kambouchner and Trotman [6].

References

[ 1 ] E. A. Feldman, The geometry of immersions. I, Trans. Amer. Math. Soc. 120 (1965), 185–

224.

[ 2 ] Z. Hajto, On the equivalence of Whitney ðaÞ-regularity and ðasÞ-regularity, Zesz. Nauk.
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