T. SHIRANE KODAI MATH. J. **37** (2014), 330–340

A NOTE ON NORMAL TRIPLE COVERS OVER P² WITH BRANCH DIVISORS OF DEGREE 6

TAKETO SHIRANE

Abstract

Let S and T be reduced divisors on \mathbf{P}^2 which have no common components, and $\Delta = S + 2T$. We assume deg $\Delta = 6$. Let $\pi : X \to \mathbf{P}^2$ be a normal triple cover with branch divisor Δ , i.e. π is ramified along S (resp. T) with the index 2 (resp. 3). In this note, we show that X is either a \mathbf{P}^1 -bundle over an elliptic curve or a normal cubic surface in \mathbf{P}^3 . Consequently, we give a necessary and sufficient condition for Δ to be the branch divisor of a normal triple cover over \mathbf{P}^2 .

Introduction

The first systematic study on triple covers was done by Miranda [8]. Afterwards, triple covers are studied by many mathematicians (e.g. [2, 3, 14, 15]). Yet it is difficult to deal with general triple covers. For example, the following fundamental problem still remains as an open problem.

PROBLEM 0.1. Let $\Delta = S + 2T$ be a divisor on $\mathbf{P}^2 = \mathbf{P}_{\mathbf{C}}^2$, where S and T are reduced divisors which have no common components. Give a necessary and sufficient condition for Δ to be the branch divisor of a normal triple cover over \mathbf{P}^2 (see below for the notation).

The above problem is an analogy to [5, Question 1.1]. The difference between Problem 0.1 and [5, Question 1.1] is whether a condition of ramification is given, or not. In some cases, Problem 0.1 was solved by some mathematicians, mainly Tokunaga, as follows:

If S = 0, then a normal triple cover $\pi : X \to \mathbf{P}^2$ with branch divisor Δ must be a Galois cover, hence one can see an answer of Problem 0.1 from [8]. In the cases where (deg S, deg T) = (2, 1), (2, 2), (4, 0) and (4, 1) (i.e. deg(S + T) \le 5), Tokunaga solved Problem 0.1 by using his theory of dihedral covers in [16] and [19]. Moreover, Yasumura showed that, if $\pi : X \to \mathbf{P}^2$ is a normal triple cover with branch divisor Δ and (deg S, deg T) = (4, 1), then X is a cubic surface in \mathbf{P}^3

²⁰¹⁰ Mathematics Subject Classification. 14E20, 14E22.

Key words and phrases. triple cover, cubic surface, torus curve. Received April 10, 2013; revised October 15, 2013.

and π is a projection centered at a point of $\mathbf{P}^3 \setminus X$ ([21]). In the case where T = 0 and S is a sextic curve with at most simple singularities, Ishida and Tokunaga showed that X is either a quotient of an abelian surface by an involution or a normal cubic surface in \mathbf{P}^3 , and gave an answer of Problem 0.1 ([5]).

The author is inspired by these results to do this study. The aim is to characterize normal triple covers over \mathbf{P}^2 with branch divisors of degree 6, and to give an answer of Problem 0.1 in the case deg $\Delta = 6$ without any assumptions. However, it seems difficult to do that by the same way of these results because of the following facts:

If $\deg(S+T) \leq 5$, then the double cover over \mathbf{P}^2 branched along S is rational. In [16] and [19], this fact plays important role. In [5], Ishida–Tokunaga showed the result by explicit computation of the minimal resolution of each singularity of X.

The new idea of this paper is to use Miranda's theory on triple covers [8] in order to answer Problem 0.1. This idea gives a simple proof and generalization of the known results. We introduce notation based on [8].

NOTATION. The base field is the field of complex numbers **C** throughout this note. We call a finite flat morphism $\pi: X \to Y$ from a scheme X to a variety Y a cover. If, in addition, X and Y are normal varieties, we call π a normal cover. If the degree of a cover (resp. a normal cover) is three, we call it a *triple* cover (resp. a normal triple cover). Let $\pi: X \to Y$ be a normal triple cover. We denote the branch locus in Y of π by Δ_{π} . Suppose Y is non-singular. Then Δ_{π} has purely codimension 1 in Y. Hence we can regard Δ_{π} as a reduced divisor. Moreover we can decompose Δ_{π} into $S_{\pi} + T_{\pi}$, where π is ramified along S_{π} (resp. T_{π}) with the index 2 (resp. 3). We denote $S_{\pi} + 2T_{\pi}$ by $\overline{\Delta}_{\pi}$ and call it the branch divisor of π . We say that $P \in Y$ is a total branched point of π if $\pi^{-1}(P)$ consists of one point.

Remark 0.2. Since normal singularities of surfaces are Cohen-Macaulay, a finite surjective morphism from a normal surface to a smooth surface is a normal cover (cf. [7]). In [1, 5, 15, 16, 18, 19, 21], a normal triple cover over a smooth surface are simply called a "triple cover".

MAIN THEOREM. To state the main theorem, we introduce some notation. We denote the dual space of \mathbf{P}^2 by $\check{\mathbf{P}}^2$. Let F be the flag variety of pairs of points and lines in \mathbf{P}^2 , and $p: F \to \mathbf{P}^2$ and $q: F \to \check{\mathbf{P}}^2$ the canonical projections. For an irreducible curve $\Gamma \subset \mathbf{P}^2$, we denote the dual curve of Γ in $\check{\mathbf{P}}^2$ by Γ^{\vee} . We will show the following theorem based on Miranda's theory.

THEOREM 0.3. Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover with deg $\overline{\Delta}_{\pi} = 6$. Then $\pi: X \to \mathbf{P}^2$ satisfies one of the following two conditions;

(i) S_{π} is a sextic curve with 9 cusps (hence $\Delta_{\pi} = S_{\pi}$ and S_{π}^{\vee} is smooth), $X \cong q^{-1}(S_{\pi}^{\vee}) \subset F$, and π is the restriction of p to X; or

(ii) X is a cubic surface in \mathbf{P}^3 , and π is a projection centered at a point of $\mathbf{P}^{3}\backslash X.$

Furthermore, $\pi: X \to \mathbf{P}^2$ satisfies (i) if and only if S_{π} is a sextic curve with 9 cusps and the 9 cusps are total branched points of π .

Remark 0.4. Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover satisfying the condition (i) in the above theorem. Let $\tilde{\pi}: \tilde{X} \to \mathbf{P}^2$ be the L-normalization of \mathbf{P}^2 , where L is the Galois closure of the extension of the rational function fields $\mathbf{C}(X)/\mathbf{C}(\mathbf{P}^2)$. Then it is easy to see that \tilde{X} is isomorphic to $\Delta_{\pi}^{\vee} \times \Delta_{\pi}^{\vee}$ (cf. [13]), and $\tilde{\pi}$ is the \mathscr{S}_3 -cover in [18, Example 6.3], where \mathscr{S}_3 is the symmetric group of degree 3. Moreover similar covers to π are used to construct families of Galois closure curves in [12].

Remark 0.5. Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover with deg $\overline{\Delta}_{\pi} = 6$. Ishida and Tokunaga showed that, if Δ_{π} is a sextic curve with at most simple singularities, then either X is a quotient of an abelian surface by an involution or π satisfies the condition (ii) in Theorem 0.3 ([5]). Yasumura showed that, if (deg S_{π} , deg T_{π}) = (4, 1), then π satisfies the condition (ii) in Theorem 0.3 ([21]). (In the case where (deg S_{π} , deg T_{π}) = (2, 2), no characterization of π was known.) Theorem 0.3 is a generalization of these results without any assumptions.

Consequently, we will show the following corollary, which is a generalization of [5, Theorem 1.1].

COROLLARY 0.6. Let Δ be a divisor of degree 6 on \mathbf{P}^2 . Then there is a normal triple cover π with $\overline{\Delta}_{\pi} = \Delta$ if and only if there are homogeneous polynomials $G_i(x_0, x_1, x_2)$ of degree *i* for i = 1, 2 with the following three conditions:

- (1) $G_2^3 + G_3^2 = 0$ defines Δ ;
- (2) $\tilde{G_2} \notin \mathfrak{m}_E$ or $G_3 \notin \mathfrak{m}_E^2$ for any prime divisor E, where \mathfrak{m}_E is the maximal ideal of the local ring \mathcal{O}_E at E; and (3) $G_2 \in \mathfrak{m}_E$ or $G_2^3 + G_3^2 \notin \mathfrak{m}_E^2$ for any prime divisor E.

- *Remark* 0.7. Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover with deg $\overline{\Delta}_{\pi} = 6$. (i) If deg $T_{\pi} = 3$, then π is a cyclic triple cover since \mathbf{P}^2 is simply connected. Conversely, for a reduced cubic curve $\Gamma \subset \mathbf{P}^2$, there is a cyclic triple cover whose branch divisor is 2Γ .
- (ii) In the cases where deg T_{π} is 2 and 1, Tokunaga determined the types of Δ_{π} in [16] and [18], respectively.
- (iii) If a reduce sextic curve Δ is defined as (1) in Corollary 0.6, then the pair (G_2, G_3) satisfies (2) and (3) in Corollary 0.6. In this case, Δ is called a (2,3)-torus sextic (see [6]). Such curves are studied by Oka ([9, 10, 11]).
- (iv) If Δ_{π} is a reduced sextic curve with at most simple singularities, Ishida and Tokunaga showed that Δ_{π} is a (2,3)-torus sextic ([5]). Corollary 0.6 is a generalization of this result without such assumption.

1. Preliminary

In this section, we recall the theory of triple covers based on Miranda's work [8] and some facts for locally free sheaves of rank 2 on \mathbf{P}^2 .

1.1. Triple covers. See [3], [8] and [14] for details and proofs. Let Y be a non-singular variety for simplicity.

1.1.1. Let $\pi: X \to Y$ be a triple cover. We denote the kernel of the trace map $\pi_* \mathcal{O}_X \to \mathcal{O}_Y$ by \mathcal{T}_{π} , which is the locally free \mathcal{O}_Y -module of rank two called the *Tschirnhausen module* for $\pi: X \to Y$. Then we have $\pi_* \mathcal{O}_X \cong \mathcal{O}_Y \oplus \mathcal{T}_{\pi}$ ([8, Theorem 3.6]).

1.1.2. Given a locally free sheaf \mathscr{E} of rank two on Y, the \mathscr{O}_Y -algebra structures of $\mathscr{A} = \mathscr{O}_Y \oplus \mathscr{E}$ giving triple covers with $\mathscr{T}_{\pi} = \mathscr{E}$ are in one-to-one correspondence with \mathscr{O}_Y -linear maps $\Phi : S^3 \mathscr{E} \to \det \mathscr{E}$ ([8, Theorem 3.6]).

1.1.3. We precisely describe the above correspondence. We do this locally on Y. Hence we assume that Y is affine and \mathscr{E} is free. Let $\{z, w\}$ be a basis of \mathscr{E} over \mathscr{O}_Y .

1) Let $\phi: S^2 \mathscr{E} \to \mathscr{A}$ be the map induced by the multiplication of \mathscr{A} . Then ϕ is of the following form:

$$\phi(z^2) = 2A + az + bw,$$

$$\phi(zw) = -B - dz - aw,$$

$$\phi(w^2) = 2C + cz + dw,$$

where a, b, c and d are in \mathcal{O}_Y , and $A = a^2 - bd$, B = ad - bc and $C = d^2 - ac$. In particular, $b \neq 0$ and $c \neq 0$ if \mathscr{A} is an integral domain.

2) Define $\Phi: S^3 \mathscr{E} \to \det \mathscr{E}$ by $\Phi(z^3) = -b(z \wedge w)$, $\Phi(z^2 w) = a(z \wedge w)$, $\Phi(zw^2) = -d(z \wedge w)$ and $\Phi(w^3) = c(z \wedge w)$. This definition does not depend on the choice of the basis $\{z, w\}$ of \mathscr{E} and gives the correspondence in (1.1.2).

1.1.4. Let $S(\mathscr{E})$ be the symmetric algebra of \mathscr{E} and $\mathbf{V}(\mathscr{E}) = Spec_Y S(\mathscr{E})$. This is identified with the total space of the dual vector bundle of \mathscr{E} . Then $X = Spec_Y(\mathscr{A})$ is embedded in $\mathbf{V}(\mathscr{E})$ as a closed subvariety by the natural surjection $S(\mathscr{E}) \to \mathscr{A}$. The local description of X over Y is as follows:

Let z, w, a, b, c, d, A, B and C be as in (1.1.3). Then z, w are fiber coordinate of $\mathbf{V}(\mathscr{E}) \cong \mathbf{A}_{Y}^{2}$, and X is defined by

$$z^{2} - \phi(z^{2}) = zw - \phi(zw) = w^{2} - \phi(w^{2}) = 0,$$

where ϕ 's are the polynomials as in (1.1.3). Moreover, X is Cohen-Macaulay.

1.1.5. Assume that $\Phi: S^3 \mathscr{E} \to \det \mathscr{E}$ gives a normal triple cover $\pi: X \to Y$ with $\mathscr{T}_{\pi} = \mathscr{E}$ as above. Then the branch divisor $\overline{\Delta}_{\pi}$ is locally given by

$$D:=B^2-4AC=0,$$

where A, B and C are as in (1.1.3) ([8, Lemma 4.5] and [14, Theorem 1.3]). Moreover, the line bundle associated to $\overline{\Delta}_{\pi}$ is (det \mathcal{T}_{π})⁻² ([8, Proposition 4.7]).

1.1.6. Let $\pi: X \to Y$ be a normal triple cover. If $\mathscr{T}_{\pi} \cong \mathscr{L}^{-1} \oplus \mathscr{M}^{-1}$, where \mathscr{L} and \mathscr{M} are line bundles on Y, then $a \in H^0(\mathscr{L})$, $b \in H^0(\mathscr{L}^2 \otimes \mathscr{M}^{-1})$, $c \in H^0(\mathscr{L}^{-1} \otimes \mathscr{M}^2)$ and $d \in H^0(\mathscr{M})$. Hence $\mathscr{L}^2 \ge \mathscr{M}$ and $\mathscr{M}^2 \ge \mathscr{L}$ ([8, Section 6]).

1.1.7. Let $\pi: X \to Y$ be a triple cover. Suppose that π is not étale. Then X is a triple section in the total space of a line bundle \mathscr{L} over Y if and only if $\mathscr{T}_{\pi} \cong \mathscr{L}^{-1} \oplus \mathscr{L}^{-2}$ ([3]).

1.2. Locally free sheaves of rank 2 on \mathbf{P}^2 . By a result of Grothendieck, each locally free sheaf of rank 2 on the projective line \mathbf{P}^1 is isomorphic to a direct sum $\mathcal{O}_{\mathbf{P}^1}(k_1) \oplus \mathcal{O}_{\mathbf{P}^1}(k_2)$, where integers k_1 , k_2 are determined up to a permutation.

Let \mathscr{E} be a locally free sheaf of rank 2 on \mathbf{P}^2 , and we denote the restriction of \mathscr{E} to a line L on \mathbf{P}^2 by \mathscr{E}_L . Then \mathscr{E}_L splits $\mathscr{E}_L \cong \mathscr{O}_L(k_{1,L}) \oplus \mathscr{O}_L(k_{2,L})$ as above. We put $d(\mathscr{E}_L) = |k_{1,L} - k_{2,L}|$ for a line L and $d(\mathscr{E}) = \min\{d(\mathscr{E}_L) | L$ is a line on $\mathbf{P}^2\}$. It is a consequence of the semi-continuity theorems for proper flat morphisms that the set of lines L with $d(\mathscr{E}_L) = d(\mathscr{E})$ forms a Zariski-open set in the dual space $\check{\mathbf{P}}^2$ of \mathbf{P}^2 . If $d(\mathscr{E}_L) > d(\mathscr{E})$ for a line L, it is called a *jumping line* of \mathscr{E} . If \mathscr{E} has no jumping lines, \mathscr{E} is said to be *uniform*.

2. Proofs

In this section, let $(x_0 : x_1 : x_2)$ be a system of homogeneous coordinates of \mathbf{P}^2 , $U \subset \mathbf{P}^2$ the open set given by $x_0 \neq 0$, and put $u_1 = x_1/x_0$ and $u_2 = x_2/x_0$. We first show the following lemma.

LEMMA 2.1. Let $\pi: X \to \mathbf{P}^2$ be a normal cover. Then π^*L is connected for any line $L \subset \mathbf{P}^2$.

Proof. Let X_F be the fiber product of X and F over \mathbf{P}^2 , and $p_X : X_F \to X$ and $\pi_F : X_F \to F$ the projections. Note that p_X induces the isomorphism $(q \circ \pi_F)^* L \xrightarrow{\sim} \pi^* L$ for any line $L \subset \mathbf{P}^2$ since p induces the isomorphism $q^* L \xrightarrow{\sim} L$. Here we regard lines on \mathbf{P}^2 as points of $\check{\mathbf{P}}^2$. By the Stein factorization of $q \circ \pi_F$, we have a finite morphism $\pi' : X' \to \check{\mathbf{P}}^2$ and a projective morphism $q' : X_F \to X'$ with connected fiber such that $q \circ \pi_F = \pi' \circ q'$.

If there is a line L_0 such that π^*L is disconnected, then deg $\pi' > 1$, thus π^*L is disconnected for a general $L \in \check{\mathbf{P}}^2$, which is a contradiction to X irreducible.

Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover with deg $\overline{\Delta}_{\pi} = 6$. Then det $\mathscr{T}_{\pi} \cong \mathscr{O}_{\mathbf{P}^2}(-3)$ by (1.1.5). For a general line L on \mathbf{P}^2 , the restriction $\mathscr{T}_{\pi,L}$ of \mathscr{T}_{π} to L is isomorphic to $\mathscr{O}_L(-1) \oplus \mathscr{O}_L(-2)$ by (1.1.6) since $\pi|_{\pi^*L} : \pi^*L \to L$ is a normal triple cover whose branch divisor is degree 6. We show that \mathscr{T}_{π} is uniform.

PROPOSITION 2.2. Let $\pi : X \to \mathbf{P}^2$ be a normal triple cover with deg $\overline{\Delta}_{\pi} = 6$. Then \mathcal{T}_{π} is uniform.

Proof. Suppose that \mathscr{T}_{π} has a jumping line L. Then $\mathscr{T}_{\pi,L} \cong \mathscr{O}_L(-m-2) \oplus \mathscr{O}_L(m-1)$ for some integer m > 0. We may assume that L is defined by $x_1 = 0$. Let $\Phi : S^3 \mathscr{T}_{\pi} \to \det \mathscr{T}_{\pi}$ be the map corresponding to $\pi : X \to \mathbf{P}^2$. The restriction of Φ to L gives sections a_L , b_L , c_L and d_L of $\mathscr{O}_L(m+2)$, $\mathscr{O}_L(3m+3)$, $\mathscr{O}_L(-3m)$ and $\mathscr{O}_L(1-m)$, respectively. In particular, $c_L = 0$ and d_L is constant. We may assume that a_L (resp. b_L) vanishes at m+2 (resp. 3m+3) points of $L \cap U$ if $a_L \neq 0$ (resp. $b_L \neq 0$). By choosing a basis $\{z, w\}$ of \mathscr{E} on U, Φ is described as in (1.1.3) such that the restrictions of a, b, c and d to $L \cap U$ are a_L, b_L, c_L and d_L , respectively.

Suppose $d_L \neq 0$. Since $c_L = 0$, $\pi^* L$ is locally defined by

$$\begin{split} z_L^2 - a_L z_L - b_L w_L - 2(a_L^2 - b_L d_L) &= 0, \\ z_L w_L + d_L z_L + a_L w_L + a_L d_L &= 0, \\ (w_L - 2d_L)(w_L + d_L) &= 0, \end{split}$$

where z_L and w_L are the restrictions of z and w to L, respectively. Hence π^*L is disconnected, which is contradiction to Lemma 2.1. Thus $d_L = 0$.

Since $c_L = d_L = 0$, c and d have u_1 as their factor, say $c = u_1c_1$ and $d = u_1d_1$. Then we have $D = u_1D_1$, where

$$D_1 = u_1(ad_1 - bc_1)^2 - 4(a^2 - u_1bd_1)(u_1d_1^2 - ac_1).$$

Since D = 0 defines a divisor of degree 6 on \mathbf{P}^2 , $D_1 = 0$ defines one of degree 5. Therefore a^3c_1 vanishes along L since $a_L \in H^0(\mathcal{O}_L(m+2))$.

Suppose $a_L \neq 0$ on L, then c_1 has u_1 as its factor, say $c_1 = u_1c_2$. We have $D = u_1^2 D_2$, where

$$D_2 = (ad_1 - u_1bc_2)^2 - 4(a^2 - u_1bd_1)(d_1^2 - ac_2)$$

Hence $a^2d_1^2 - 4a^2(d_1^2 - ac_2)$ vanishes along *L* since $D_2 = 0$ defines a quartic curve on \mathbf{P}^2 and $a_L \in H^0(\mathcal{O}_L(m+2))$. Then *D* has u_1^3 as its factor, which is a contradiction to (1.1.5). Thus $a_L = 0$ on *L*, and *a* has u_1 as its factor, say $a = u_1a_1$. We have $D = u_1^2D_3$, where

$$D_3 = (u_1a_1d_1 - bc_1)^2 - 4u_1(u_1a_1^2 - bd_1)(d_1^2 - a_1c_1).$$

As above argument, we can see that $b^2c_1^2$ vanishes along *L*. Therefore *D* has u_1^3 as its factor, which is a contradiction, and \mathcal{T}_{π} has no jumping lines.

From the theorem of [20] and (1.1.5), we have the following corollary.

COROLLARY 2.3. For a normal triple cover $\pi: X \to \mathbf{P}^2$ with deg $\overline{\Delta}_{\pi} = 6$, \mathcal{T}_{π} is either $\mathcal{O}_{\mathbf{P}^2}(-2) \oplus \mathcal{O}_{\mathbf{P}^2}(-1)$ or $\Omega_{\mathbf{P}^2}$, where $\Omega_{\mathbf{P}^2}$ is the cotangent sheaf of \mathbf{P}^2 .

We first consider the case where $\mathscr{T}_{\pi} \cong \mathscr{O}_{\mathbf{P}^2}(-2) \oplus \mathscr{O}_{\mathbf{P}^2}(-1)$.

PROPOSITION 2.4. Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover with $\mathscr{T}_{\pi} \cong \mathscr{O}_{\mathbf{P}^2}(-2) \oplus \mathscr{O}_{\mathbf{P}^2}(-1)$. Then X is a normal cubic surface in \mathbf{P}^3 , and π is identified with a projection centered at a point of $\mathbf{P}^3 \setminus X$.

Proof. Since \mathbf{P}^2 is simply connected, π is not étale. By (1.1.7), X is a triple section of the total space of the line bundle $\mathcal{O}_{\mathbf{P}^2}(1)$. Note that the total space of $\mathcal{O}_{\mathbf{P}^2}(1)$ is isomorphic to $\mathbf{P}^3 \setminus \{P\}$ with the projection centered at P for a point $P \in \mathbf{P}^3$ over \mathbf{P}^2 . Thus X is a cubic surface in \mathbf{P}^3 , and π is identified with a projection centered at a point of \mathbf{P}^3 .

Next we show that X is a \mathbf{P}^1 -bundle over an elliptic curve if $\mathcal{T}_{\pi} \cong \Omega_{\mathbf{P}^2}$. Let V be a vector space of dimension 3, and v_0 , v_1 , v_2 a basis of V. We regard \mathbf{P}^2 as the set of 1-dimensional subspaces of V, $\mathbf{P}(V)$. Then $\check{\mathbf{P}}^2 = \mathbf{P}(V^*)$, where V^* is the dual space of V, and we can regard x_0 , x_1 and x_2 as the dual of v_0 , v_1 and v_2 , respectively. Note that V and V^* are naturally identified with $H^0(\check{\mathbf{P}}^2, \mathcal{O}_{\check{\mathbf{P}}^2}(1))$ and $H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(1))$, respectively.

LEMMA 2.5. There is a natural isomorphism of vector spaces

 $\theta: H^0(\check{\mathbf{P}}^2, \mathcal{O}_{\check{\mathbf{P}}^2}(3)) \xrightarrow{\sim} H^0(\mathbf{P}^2, (S^3\Omega_{\mathbf{P}^2})^* \otimes \det \Omega_{\mathbf{P}^2}).$

Furthermore θ is defined as follows:

Let f be a global section of $\mathcal{O}_{\check{\mathbf{P}}^2}(3)$ as follows:

$$f = t_1 v_0^3 + 3t_2 v_0^2 v_1 + 3t_3 v_0^2 v_2 + 3t_4 v_0 v_1^2 + 3t_5 v_0 v_1 v_2 + 3t_6 v_0 v_2^2 + t_7 v_1^3 + 3t_8 v_1^2 v_2 + 3t_9 v_1 v_2^2 + t_1 v_2^3,$$

where $t_1, \ldots, t_{10} \in \mathbb{C}$. Then $\theta(f)$ is locally $-b_f(z^3)^* \otimes (z \wedge w) + a_f(z^2w)^* \otimes (z \wedge w) - d_f(zw^2)^* \otimes (z \wedge w) + c_f(w^3)^* \otimes (z \wedge w),$ where

$$a_f = -t_1 u_2 u_1^2 + 2t_2 u_2 u_1 + t_3 u_1^2 - t_4 u_2 - t_5 u_1 + t_8,$$

$$b_f = t_1 u_1^3 - 3t_2 u_1^2 + 3t_4 u_1 - t_7,$$

A NOTE ON NORMAL TRIPLE COVERS OVER \mathbf{P}^2

$$c_f = -t_1 u_2^3 + 3t_3 u_2^2 - 3t_6 u_2 + t_{10},$$

$$d_f = t_1 u_2^2 u_1 - t_2 u_2^2 - 2t_3 u_2 u_1 + t_5 u_2 + t_6 u_1 - t_9,$$

and z and w are the differential forms du_1 and du_2 , respectively.

Proof. Note that the \mathbf{P}^1 -bundle $\mathbf{P}(\Omega_{\mathbf{P}^2})$ over \mathbf{P}^2 is isomorphic to the flag variety F, and the projection $\mathbf{P}(\Omega_{\mathbf{P}^2}) \to \mathbf{P}^2$ coincides with $p: F \to \mathbf{P}^2$. The canonical embedding $F \hookrightarrow \mathbf{P}^2 \times \check{\mathbf{P}}^2$ is given by the surjection α of the exact sequence

$$0 \to \mathcal{O}_{\mathbf{P}^2}(-1) \to V \otimes \mathcal{O}_{\mathbf{P}^2} \xrightarrow{\alpha} \Omega^*_{\mathbf{P}^2}(-1) \to 0,$$

where α is locally defined by $\alpha(v_0) = -u_1 z^*/x_0 - u_2 w^*/x_0$, $\alpha(v_1) = z^*/x_0$ and $\alpha(v_2) = w^*/x_0$ (cf. [4, II, Proposition 7.12 and the proof of II, Theorem 8.13]). Let $\mathcal{O}_F(1)$ be an invertible sheaf on F such that $p_*\mathcal{O}_F(1) \cong \Omega^*_{\mathbf{P}^2}(-1)$. Then α induces an isomorphism $q^*\mathcal{O}_{\mathbf{P}^2}(3) \xrightarrow{\sim} \mathcal{O}_F(3)$. In particular, since $H^0(F, \mathcal{O}_F(3))$ and $H^0(F, q^*\mathcal{O}_{\mathbf{P}^2}(3))$ are identified with $H^0(\mathbf{P}^2, S^3(\Omega^*_{\mathbf{P}^2}(-1)))$ and S^3V , respectively, the symmetric product of α gives an isomorphism

$$S^3 \alpha : H^0(\check{\mathbf{P}}^2, \mathcal{O}_{\check{\mathbf{P}}}(3)) \xrightarrow{\sim} H^0(\mathbf{P}^2, S^3(\Omega^*_{\mathbf{P}^2}(-1))).$$

Note that there is the natural isomorphism $\kappa : (S^3 \Omega_{\mathbf{P}^2})^* \otimes \det \Omega_{\mathbf{P}^2} \xrightarrow{\sim} S^3(\Omega_{\mathbf{P}^2}^*(-1))$, which is locally defined by

$$(z^3)^* \otimes (z \wedge w) \mapsto (z^*)^3 / x_0^3, \qquad (z^2 w)^* \otimes (z \wedge w) \mapsto 3(z^*)^2 w^* / x_0^3, (w^3)^* \otimes (z \wedge w) \mapsto (w^*)^3 / x_0^3, \qquad (zw^2)^* \otimes (z \wedge w) \mapsto 3z^* (w^*)^2 / x_0^3.$$

Therefore we obtain a natural isomorphism $\theta = \kappa^{-1} \circ S^3 \alpha$. We can see the second assertion by direct computation.

Let $f = f(v_0, v_1, v_2)$ be a global section of $\mathcal{O}_{\check{\mathbf{P}}^2}(3)$ as in Lemma 2.5. Put $\delta_f = \delta_f(u_1, u_2)$ the discriminant of $f(-u_1v_1 - u_2v_2, v_1, v_2)$ with respect to v_1 and v_2 . We denote D for $\theta(f)$ in (1.1.5) by D_f .

LEMMA 2.6. Let f, δ_f and D_f be as above. Then $\delta_f = -27D_f$.

Proof. The global section f of $\mathcal{O}_{\mathbf{P}^2}(3)$ is as in Lemma 2.5. We have $D_f = B_f^2 - 4A_f C_f$, where $A_f = a_f^2 - b_f d_f$, $B_f = a_f d_f - b_f c_f$ and $C_f = d_f^2 - a_f c_f$. By direct computation, we obtain $\delta_f + 27D_f = 0$.

We can identify $H^0(\mathbf{P}^2, (S^3\Omega_{\mathbf{P}^2})^* \otimes \det \Omega_{\mathbf{P}^2})$ with $H^0(\check{\mathbf{P}}^2, \mathcal{O}_{\check{\mathbf{P}}^2}(3))$ by the isomorphism θ .

PROPOSITION 2.7. Let $\pi: X \to \mathbf{P}^2$ and $\pi': X' \to \mathbf{P}^2$ be normal triple covers corresponding to $f, f' \in H^0(\check{\mathbf{P}}^2, \mathcal{O}_{\check{\mathbf{P}}^2}(3))$, respectively. Then $\Delta_{\pi} = \Delta_{\pi'}$ if and only if $f' = \lambda f$ for some non-zero constant λ . In particular, there is an isomorphism $\sigma: X \to X'$ such that $\pi = \pi' \circ \sigma$ in this case.

Proof. We first show that f is irreducible. Assume that f is reducible. We may assume that f has v_0 as its factor (i.e. $t_i = 0$ for i = 7, ..., 10), and $b_f \neq 0$. Then z satisfies the following equation (cf. [8, p. 1128]):

$$z^{3} - 3A_{f}z + (b_{f}B_{f} - 2a_{f}A_{f}) = 0,$$

where $A_f = a_f^2 - b_f d_f$ and $B_f = a_f d_f - b_f c_f$. The above polynomial is divided by $z - t_2 u_1 u_2 + t_3 u_1^2 + 2t_4 u_2 - t_5 u_1$. Thus X is reducible, which is a contradiction.

Hence we may assume that f is irreducible. Let Γ^{\vee} be the curve on $\check{\mathbf{P}}^2$ defined by f = 0. Then $\delta_f = 0$ defines a divisor of degree 6 on \mathbf{P}^2 whose support is the union of the dual curve of Γ^{\vee} and the lines corresponding to the singular points of Γ^{\vee} . Therefore, by Lemma 2.6, $\Delta_{\pi} = \Delta_{\pi'}$ if and only if $f' = \lambda f$ for some $\lambda \in \mathbf{C}^*$.

The above proposition enables us to distinguish normal covers for $\Omega_{\mathbf{P}^2}$ by their branch loci.

PROPOSITION 2.8. Let $\pi: X \to \mathbf{P}^2$ be a triple cover for $f \in H^0(\check{\mathbf{P}}^2, \mathcal{O}_{\check{\mathbf{P}}^2}(3))$. Then X is normal if and only if the curve $\Gamma^{\vee} \subset \check{\mathbf{P}}^2$ defined by f = 0 is smooth. Moreover, if X is normal, then Δ_{π} is the dual curve of Γ^{\vee} , X is isomorphic to $q^{-1}(\Gamma^{\vee}) \subset F$, and π is identified with the restriction of $p: F \to \mathbf{P}^2$ to $q^{-1}(\Gamma^{\vee})$.

Proof. Suppose X is normal. By the proof of Proposition 2.7, Γ^{\vee} is reduced and irreducible. Put $X' = q^{-1}(\Gamma^{\vee})$. Then $p|_{X'}: X' \to \mathbf{P}^2$ is a triple cover with $\mathscr{T}_{p|_{X'}} \cong \Omega_{\mathbf{P}^2}$ ([8, Proposition 8.1]) whose branch locus is given by $\delta_f = 0$. Thus there is an isomorphism $\sigma: X \to X'$ such that $\pi = p|_{X'} \circ \sigma$ by Proposition 2.7. If Γ^{\vee} is singular, then X' is not normal since X' has 1-dimensional singular locus over the singularity of Γ^{\vee} . Therefore Γ^{\vee} is smooth. Conversely, we can see that X is normal if Γ^{\vee} is smooth as above argument.

Proof of Theorem 0.3. Let $\pi: X \to \mathbf{P}^2$ be a normal triple cover with deg $\overline{\Delta}_{\pi} = 6$. We can see the first assertion of Theorem 0.3 from Corollary 2.3, Proposition 2.4 and 2.8. We show the second assertion. We can easily check that, if $\pi: X \to \mathbf{P}^2$ satisfies (i) in Theorem 0.3, the 9 cusps of Δ_{π} are total branched points of π .

Assume that Δ_{π} is a sextic curve with 9 cusps, and the 9 cusps are total branched points of π . Suppose that X is a normal cubic surface. Then we may assume that there are homogeneous polynomials $G_i(x_0, x_1, x_2)$ of degree *i* for i = 2, 3 such that X is defined by $x_3^3 + 3G_2x_3 + 2G_3 = 0$, and π is the projection centered at P = (0:0:0:1). Here we regard $(x_0:x_1:x_2:x_3)$ as a system of homogeneous coordinates of \mathbf{P}^3 . In this case, $\overline{\Delta}_{\pi} = \Delta_{\pi}$ is defined by $G_2^3 + G_3^2$ = 0. Since Δ_{π} has just 9 cusps as its singularities, $G_2 = 0$ and $G_3 = 0$ define reduced curves Γ_2 and Γ_3 , respectively, such that they intersect transversally each other. Then it is easy to see that the total branched points of π are just 6

intersection points of Γ_2 and Γ_3 , which is a contradiction. Hence X is a subvariety of F.

Our proof of Corollary 0.6 is almost the same as the proof of [5, Theorem 1.1].

Proof of Corollary 0.6. Suppose that Δ is defined by the equation $G_2^3 + G_3^2 = 0$ with the conditions in the corollary. Let X be the cubic surface in \mathbf{P}^3 given by $x_3^3 + 3G_2x_3 + 2G_3 = 0$, and $P = (0:0:0:1) \in \mathbf{P}^3$. Then X is smooth in codimension one by [8, Lemma 5.1], and hence X is normal. Moreover the projection $\pi_P: X \to \mathbf{P}^2$ centered at P is a normal triple cover with $\overline{\Delta}_{\pi_P} = \Delta$. Conversely, we suppose that $\pi: X \to \mathbf{P}^2$ is a normal triple cover with

Conversely, we suppose that $\pi: X \to \mathbf{P}^2$ is a normal triple cover with $\overline{\Delta}_{\pi} = \Delta$. If Δ is a reduced sextic curve with 9 cusps, then it is known that Δ is a (2,3)-torus curve (cf. [17]). Hence suppose that X is a normal cubic surface, and π is a projection centered at $P \in \mathbf{P}^3 \setminus X$. We may assume that P = (0:0:0:1), and X is given by an equation $x_3^3 + 3G_2x_3 + 2G_3 = 0$ for some homogeneous polynomials G_i of degree i (i = 2, 3) (cf. [1, Proposition 3.17]). Then Δ is given by $G_2^3 + G_3^2 = 0$. Since X is normal, G_2 and G_3 satisfy the conditions (2) and (3) in the corollary.

REFERENCES

- E. ARTAL BARTOLO, J.-I. COGOLLUDO AND H. TOKUNAGA, A survey on Zariski pairs, Adv. Stud. Pure Math. 50 (2008), 1–100.
- [2] G. CASNATI AND T. EKEDAHL, Covers of algebraic varieties. I. A general structure theorem, covers of degree 3, 4 and Enriques surfaces, J. Algebraic Geom. 5 (1996), 439–460.
- [3] T. FUJITA, Triple covers by smooth manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 169–175.
- [4] R. HARTSHORNE, Algebraic geometry, Grad. text in math. 52, Springer-Verlag, New York, 1977.
- [5] H. ISHIDA AND H. TOKUNAGA, Triple covers of algebraic surfaces and a generalization of Zariski's example, Adv. Stud. Pure Math. 56 (2007), 169–185.
- [6] VIK. S. KULIKOV, On plane algebraic curves of positive Albanese dimension, Izv. Ross. Akad. Nauk Ser. Mat. 59 (1995), 75–94.
- [7] H. MATSUMURA, Commutative ring theory, Cambridge studies in advanced mathematics 8, Cambridge University Press, Cambridge, 1989.
- [8] R. MIRANDA, Triple covers in algebraic geometry, Amer. J. Math. 107 (1985), 1123-1158.
- [9] M. OKA, Geometry of reduced sextics of torus type, Tokyo J. Math. 26 (2003), 301–327.
- [10] M. OKA, Alexander polynomial of sextics, J. Knot Theory Ramifications 12 (2003), 619-636.
- [11] M. OKA AND D. T. PHO, Classification of sextics of torus type, Tokyo J. Math. 25 (2002), 399-433.
- [12] T. SHIRANE, Families of Galois closure curves for plane quintic curves, J. Algebra 342 (2011), 175–196.
- T. SHIRANE, Corrigendum to "Families of Galois closure curves for plane quintic curves", J. Algebra 377 (2013), 317–319.
- [14] S.-L. TAN, Triple covers on smooth algebraic varieties, Geometry and nonlinear partial differential equations, Hangzhou, 2001, AMS/IP Stud. Adv. Math. 29 (2002), 143–164.

- [15] H. TOKUNAGA, Triple coverings of algebraic surfaces according to the Cardano formula, J. Math. Kyoto Univ. 31 (1991), 359–375.
- [16] H. TOKUNAGA, On dihedral Galois coverings, Canad. J. Math. 46 (1994), 1299-1317.
- [17] H. TOKUNAGA, Irreducible plane curves with the Albanese dimension 2, Proc. Amer. Math. Soc. 127 (1999), 1935–1940.
- [18] H. TOKUNAGA, Galois covers for \mathscr{G}_4 and \mathscr{A}_4 and their applications, Osaka J. Math. **39** (2002), 621–645.
- [19] H. TOKUNAGA, Dihedral covers and an elementary arithmetic on elliptic surfaces, J. Math. Kyoto Univ. 44 (2004), 255–270.
- [20] A. VAN DE VEN, On uniform vector bundles, Math. Ann. 195 (1972), 245-248.
- [21] T. YASUMURA, Triple coverings of the projective plane branched along quintic curves, Nihonkai Math. J. 21 (2010), 73–89.

Taketo Shirane UBE NATIONAL COLLEGE OF TECHNOLOGY 2-14-1 TOKIWADAI UBE 755-8555, YAMAGUCHI JAPAN E-mail: tshirane@ube-k.ac.jp