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A NOTE ON NORMAL TRIPLE COVERS OVER P2 WITH BRANCH

DIVISORS OF DEGREE 6

Taketo Shirane

Abstract

Let S and T be reduced divisors on P2 which have no common components, and

D ¼ S þ 2T : We assume deg D ¼ 6: Let p : X ! P2 be a normal triple cover with

branch divisor D, i.e. p is ramified along S (resp. T) with the index 2 (resp. 3). In this

note, we show that X is either a P1-bundle over an elliptic curve or a normal cubic

surface in P3: Consequently, we give a necessary and su‰cient condition for D to be

the branch divisor of a normal triple cover over P2:

Introduction

The first systematic study on triple covers was done by Miranda [8].
Afterwards, triple covers are studied by many mathematicians (e.g. [2, 3, 14,
15]). Yet it is di‰cult to deal with general triple covers. For example, the
following fundamental problem still remains as an open problem.

Problem 0.1. Let D ¼ S þ 2T be a divisor on P2 ¼ P2
C, where S and T

are reduced divisors which have no common components. Give a necessary and
su‰cient condition for D to be the branch divisor of a normal triple cover over
P2 (see below for the notation).

The above problem is an analogy to [5, Question 1.1]. The di¤erence
between Problem 0.1 and [5, Question 1.1] is whether a condition of ramification
is given, or not. In some cases, Problem 0.1 was solved by some mathema-
ticians, mainly Tokunaga, as follows:

If S ¼ 0, then a normal triple cover p : X ! P2 with branch divisor D must
be a Galois cover, hence one can see an answer of Problem 0.1 from [8]. In the
cases where ðdeg S; deg TÞ ¼ ð2; 1Þ, ð2; 2Þ, ð4; 0Þ and ð4; 1Þ (i.e. degðS þ TÞa 5),
Tokunaga solved Problem 0.1 by using his theory of dihedral covers in [16] and
[19]. Moreover, Yasumura showed that, if p : X ! P2 is a normal triple cover
with branch divisor D and ðdeg S; deg TÞ ¼ ð4; 1Þ, then X is a cubic surface in P3
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and p is a projection centered at a point of P3nX ([21]). In the case where
T ¼ 0 and S is a sextic curve with at most simple singularities, Ishida and
Tokunaga showed that X is either a quotient of an abelian surface by an
involution or a normal cubic surface in P3, and gave an answer of Problem 0.1
([5]).

The author is inspired by these results to do this study. The aim is to
characterize normal triple covers over P2 with branch divisors of degree 6, and to
give an answer of Problem 0.1 in the case deg D ¼ 6 without any assumptions.
However, it seems di‰clut to do that by the same way of these results because
of the following facts:

If degðS þ TÞa 5, then the double cover over P2 branched along S is
rational. In [16] and [19], this fact plays important role. In [5], Ishida–
Tokunaga showed the result by explicit computation of the minimal resolution
of each singularity of X :

The new idea of this paper is to use Miranda’s theory on triple covers [8] in
order to answer Problem 0.1. This idea gives a simple proof and generalization
of the known results. We introduce notation based on [8].

Notation. The base field is the field of complex numbers C throughout this
note. We call a finite flat morphism p : X ! Y from a scheme X to a variety
Y a cover. If, in addition, X and Y are normal varieties, we call p a normal
cover. If the degree of a cover (resp. a normal cover) is three, we call it a triple
cover (resp. a normal triple cover). Let p : X ! Y be a normal triple cover. We
denote the branch locus in Y of p by Dp: Suppose Y is non-singular. Then Dp

has purely codimension 1 in Y : Hence we can regard Dp as a reduced divisor.
Moreover we can decompose Dp into Sp þ Tp, where p is ramified along Sp

(resp. Tp) with the index 2 (resp. 3). We denote Sp þ 2Tp by Dp and call it the
branch divisor of p: We say that P A Y is a total branched point of p if p�1ðPÞ
consists of one point.

Remark 0.2. Since normal singularities of surfaces are Cohen-Macaulay, a
finite surjective morphism from a normal surface to a smooth surface is a normal
cover (cf. [7]). In [1, 5, 15, 16, 18, 19, 21], a normal triple cover over a smooth
surface are simply called a ‘‘triple cover’’.

Main theorem. To state the main theorem, we introduce some notation.
We denote the dual space of P2 by �PP2: Let F be the flag variety of pairs of
points and lines in P2, and p : F ! P2 and q : F ! �PP2 the canonical projections.
For an irreducible curve GHP2, we denote the dual curve of G in �PP2 by G4:
We will show the following theorem based on Miranda’s theory.

Theorem 0.3. Let p : X ! P2 be a normal triple cover with deg Dp ¼ 6:
Then p : X ! P2 satisfies one of the following two conditions;

(i) Sp is a sextic curve with 9 cusps (hence Dp ¼ Sp and S4
p is smooth),

X G q�1ðS4
p ÞHF , and p is the restriction of p to X ; or

331a note on normal triple covers over P2



(ii) X is a cubic surface in P3, and p is a projection centered at a point of
P3nX :

Furthermore, p : X ! P2 satisfies (i) if and only if Sp is a sextic curve with 9 cusps
and the 9 cusps are total branched points of p:

Remark 0.4. Let p : X ! P2 be a normal triple cover satisfying the con-
dition (i) in the above theorem. Let ~pp : ~XX ! P2 be the L-normalization of P2,
where L is the Galois closure of the extension of the rational function fields
CðXÞ=CðP2Þ: Then it is easy to see that ~XX is isomorphic to D4p � D4p (cf. [13]),
and ~pp is the S3-cover in [18, Example 6.3], where S3 is the symmetric group of
degree 3: Moreover similar covers to p are used to construct families of Galois
closure curves in [12].

Remark 0.5. Let p : X ! P2 be a normal triple cover with deg Dp ¼ 6:
Ishida and Tokunaga showed that, if Dp is a sextic curve with at most simple
singularities, then either X is a quotient of an abelian surface by an involution or
p satisfies the condition (ii) in Theorem 0.3 ([5]). Yasumura showed that, if
ðdeg Sp; deg TpÞ ¼ ð4; 1Þ, then p satisfies the condition (ii) in Theorem 0.3 ([21]).
(In the case where ðdeg Sp; deg TpÞ ¼ ð2; 2Þ, no characterization of p was known.)
Theorem 0.3 is a generalization of these results without any assumptions.

Consequently, we will show the following corollary, which is a generalization
of [5, Theorem 1.1].

Corollary 0.6. Let D be a divisor of degree 6 on P2: Then there is a
normal triple cover p with Dp ¼ D if and only if there are homogeneous polynomials
Giðx0; x1; x2Þ of degree i for i ¼ 1; 2 with the following three conditions:

(1) G3
2 þ G2

3 ¼ 0 defines D;
(2) G2 B mE or G3 B m2

E for any prime divisor E, where mE is the maximal
ideal of the local ring OE at E; and

(3) G2 A mE or G3
2 þ G2

3 B m2
E for any prime divisor E:

Remark 0.7. Let p : X ! P2 be a normal triple cover with deg Dp ¼ 6:
(i) If deg Tp ¼ 3, then p is a cyclic triple cover since P2 is simply con-

nected. Conversely, for a reduced cubic curve GHP2, there is a cyclic
triple cover whose branch divisor is 2G:

(ii) In the cases where deg Tp is 2 and 1, Tokunaga determined the types of
Dp in [16] and [18], respectively.

(iii) If a reduce sextic curve D is defined as (1) in Corollary 0.6, then the
pair ðG2;G3Þ satisfies (2) and (3) in Corollary 0.6. In this case, D is
called a ð2; 3Þ-torus sextic (see [6]). Such curves are studied by Oka ([9,
10, 11]).

(iv) If Dp is a reduced sextic curve with at most simple singularities, Ishida
and Tokunaga showed that Dp is a ð2; 3Þ-torus sextic ([5]). Corollary
0.6 is a generalization of this result without such assumption.
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1. Preliminary

In this section, we recall the theory of triple covers based on Miranda’s work
[8] and some facts for locally free sheaves of rank 2 on P2:

1.1. Triple covers. See [3], [8] and [14] for details and proofs. Let Y be a
non-singular variety for simplicity.

1.1.1. Let p : X ! Y be a triple cover. We denote the kernel of the
trace map p�OX ! OY by Tp, which is the locally free OY -module of rank two
called the Tschirnhausen module for p : X ! Y : Then we have p�OX GOY lTp

([8, Theorem 3.6]).

1.1.2. Given a locally free sheaf E of rank two on Y , the OY -algebra
structures of A ¼ OY lE giving triple covers with Tp ¼ E are in one-to-one
correspondence with OY -linear maps F : S3E! det E ([8, Theorem 3.6]).

1.1.3. We precisely describe the above correspondence. We do this locally
on Y : Hence we assume that Y is a‰ne and E is free. Let fz;wg be a basis of
E over OY :

1) Let f : S2E!A be the map induced by the multiplication of A: Then
f is of the following form:

fðz2Þ ¼ 2Aþ azþ bw;

fðzwÞ ¼ �B� dz� aw;

fðw2Þ ¼ 2C þ czþ dw;

where a, b, c and d are in OY , and A ¼ a2 � bd, B ¼ ad � bc and C ¼ d 2 � ac:
In particular, b0 0 and c0 0 if A is an integral domain.

2) Define F : S3E! det E by Fðz3Þ ¼ �bðz5wÞ, Fðz2wÞ ¼ aðz5wÞ,
Fðzw2Þ ¼ �dðz5wÞ and Fðw3Þ ¼ cðz5wÞ: This definition does not depend
on the choice of the basis fz;wg of E and gives the correspondence in (1.1.2).

1.1.4. Let SðEÞ be the symmetric algebra of E and VðEÞ ¼ SpecY SðEÞ:
This is identified with the total space of the dual vector bundle of E: Then
X ¼ SpecY ðAÞ is embedded in VðEÞ as a closed subvariety by the natural
surjection SðEÞ !A: The local description of X over Y is as follows:

Let z, w, a, b, c, d, A, B and C be as in (1.1.3). Then z, w are fiber
coordinate of VðEÞGA2

Y , and X is defined by

z2 � fðz2Þ ¼ zw� fðzwÞ ¼ w2 � fðw2Þ ¼ 0;

where f’s are the polynomials as in (1.1.3). Moreover, X is Cohen-Macaulay.

1.1.5. Assume that F : S3E! det E gives a normal triple cover p : X ! Y
with Tp ¼ E as above. Then the branch divisor Dp is locally given by

D :¼ B2 � 4AC ¼ 0;
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where A, B and C are as in (1.1.3) ([8, Lemma 4.5] and [14, Theorem 1.3]).
Moreover, the line bundle associated to Dp is ðdet TpÞ�2 ([8, Proposition 4.7]).

1.1.6. Let p : X ! Y be a normal triple cover. If Tp GL�1 lM�1,
where L and M are line bundles on Y , then a A H 0ðLÞ, b A H 0ðL2 nM�1Þ,
c A H 0ðL�1 nM2Þ and d A H 0ðMÞ: Hence L2 bM and M2 bL ([8, Section
6]).

1.1.7. Let p : X ! Y be a triple cover. Suppose that p is not étale. Then
X is a triple section in the total space of a line bundle L over Y if and only
if Tp GL�1 lL�2 ([3]).

1.2. Locally free sheaves of rank 2 on P2. By a result of Grothendieck,
each locally free sheaf of rank 2 on the projective line P1 is isomorphic to a
direct sum OP1ðk1ÞlOP1ðk2Þ, where integers k1, k2 are determined up to a
permutation.

Let E be a locally free sheaf of rank 2 on P2, and we denote the restric-
tion of E to a line L on P2 by EL: Then EL splits EL GOLðk1;LÞlOLðk2;LÞ as
above. We put dðELÞ ¼ jk1;L � k2;Lj for a line L and dðEÞ ¼ minfdðELÞ jL is a
line on P2g: It is a consequence of the semi-continuity theorems for proper flat
morphisms that the set of lines L with dðELÞ ¼ dðEÞ forms a Zariski-open set in
the dual space �PP2 of P2: If dðELÞ > dðEÞ for a line L, it is called a jumping line
of E: If E has no jumping lines, E is said to be uniform.

2. Proofs

In this section, let ðx0 : x1 : x2Þ be a system of homogeneous coordinates of
P2, U HP2 the open set given by x0 0 0, and put u1 ¼ x1=x0 and u2 ¼ x2=x0:
We first show the following lemma.

Lemma 2.1. Let p : X ! P2 be a normal cover. Then p�L is connected for
any line LHP2:

Proof. Let XF be the fiber product of X and F over P2, and pX : XF ! X
and pF : XF ! F the projections. Note that pX induces the isomorphism
ðq � pF Þ�L!@ p�L for any line LHP2 since p induces the isomorphism q�L!@ L.
Here we regard lines on P2 as points of �PP2: By the Stein factorization of q � pF ,
we have a finite morphism p 0 : X 0 ! �PP2 and a projective morphism q 0 : XF ! X 0

with connected fiber such that q � pF ¼ p 0 � q 0:

X  ����
pX

XF ���!q
0

X 0

p

?
?
?
y pF

?
?
?
y

?
?
?
yp 0

P2  ����
p

F ����!
q

�PP2
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If there is a line L0 such that p�L is disconnected, then deg p 0 > 1, thus p�L is
disconnected for a general L A �PP2, which is a contradiction to X irreducible.

r

Let p : X ! P2 be a normal triple cover with deg Dp ¼ 6: Then det Tp G
OP2ð�3Þ by (1.1.5). For a general line L on P2, the restriction Tp;L of Tp to L
is isomorphic to OLð�1ÞlOLð�2Þ by (1.1.6) since pjp �L : p�L! L is a normal
triple cover whose branch divisor is degree 6: We show that Tp is uniform.

Proposition 2.2. Let p : X ! P2 be a normal triple cover with deg Dp ¼ 6:
Then Tp is uniform.

Proof. Suppose that Tp has a jumping line L: Then Tp;L GOLð�m� 2Þl
OLðm� 1Þ for some integer m > 0: We may assume that L is defined by x1 ¼ 0:
Let F : S3Tp ! det Tp be the map corresponding to p : X ! P2: The restriction
of F to L gives sections aL, bL, cL and dL of OLðmþ 2Þ, OLð3mþ 3Þ, OLð�3mÞ
and OLð1�mÞ, respectively. In particular, cL ¼ 0 and dL is constant. We may
assume that aL (resp. bL) vanishes at mþ 2 (resp. 3mþ 3) points of LVU if
aL 0 0 (resp. bL 0 0). By choosing a basis fz;wg of E on U , F is described as
in (1.1.3) such that the restrictions of a, b, c and d to LVU are aL, bL, cL and
dL, respectively.

Suppose dL 0 0: Since cL ¼ 0, p�L is locally defined by

z2L � aLzL � bLwL � 2ða2L � bLdLÞ ¼ 0;

zLwL þ dLzL þ aLwL þ aLdL ¼ 0;

ðwL � 2dLÞðwL þ dLÞ ¼ 0;

where zL and wL are the restrictions of z and w to L, respectively. Hence p�L is
disconnected, which is contradiction to Lemma 2.1. Thus dL ¼ 0:

Since cL ¼ dL ¼ 0, c and d have u1 as their factor, say c ¼ u1c1 and
d ¼ u1d1: Then we have D ¼ u1D1, where

D1 ¼ u1ðad1 � bc1Þ2 � 4ða2 � u1bd1Þðu1d 2
1 � ac1Þ:

Since D ¼ 0 defines a divisor of degree 6 on P2, D1 ¼ 0 defines one of degree 5:
Therefore a3c1 vanishes along L since aL A H 0ðOLðmþ 2ÞÞ:

Suppose aL 0 0 on L, then c1 has u1 as its factor, say c1 ¼ u1c2: We have
D ¼ u21D2, where

D2 ¼ ðad1 � u1bc2Þ2 � 4ða2 � u1bd1Þðd 2
1 � ac2Þ

Hence a2d 2
1 � 4a2ðd 2

1 � ac2Þ vanishes along L since D2 ¼ 0 defines a quartic
curve on P2 and aL A H 0ðOLðmþ 2ÞÞ: Then D has u31 as its factor, which is a
contradiction to (1.1.5). Thus aL ¼ 0 on L, and a has u1 as its factor, say
a ¼ u1a1: We have D ¼ u21D3, where

D3 ¼ ðu1a1d1 � bc1Þ2 � 4u1ðu1a21 � bd1Þðd 2
1 � a1c1Þ:
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As above argument, we can see that b2c21 vanishes along L: Therefore D has u31
as its factor, which is a contradiction, and Tp has no jumping lines. r

From the theorem of [20] and (1.1.5), we have the following corollary.

Corollary 2.3. For a normal triple cover p : X ! P2 with deg Dp ¼ 6,
Tp is either OP2ð�2ÞlOP2ð�1Þ or WP2 , where WP2 is the cotangent sheaf
of P2:

We first consider the case where Tp GOP2ð�2ÞlOP2ð�1Þ:

Proposition 2.4. Let p : X ! P2 be a normal triple cover with Tp G
OP2ð�2ÞlOP2ð�1Þ: Then X is a normal cubic surface in P3, and p is identified
with a projection centered at a point of P3nX :

Proof. Since P2 is simply connected, p is not étale. By (1.1.7), X is a
triple section of the total space of the line bundle OP2ð1Þ: Note that the total
space of OP2ð1Þ is isomorphic to P3nfPg with the projection centered at P for

a point P A P3 over P2. Thus X is a cubic surface in P3, and p is identified with
a projection centered at a point of P3: r

Next we show that X is a P1-bundle over an elliptic curve if Tp GWP2 :
Let V be a vector space of dimension 3, and v0, v1, v2 a basis of V : We regard
P2 as the set of 1-dimensional subspaces of V , PðVÞ: Then �PP2 ¼ PðV �Þ, where
V � is the dual space of V , and we can regard x0, x1 and x2 as the dual of
v0, v1 and v2, respectively. Note that V and V � are naturally identified with
H 0ð�PP2;O�PP2ð1ÞÞ and H 0ðP2;OP2ð1ÞÞ, respectively.

Lemma 2.5. There is a natural isomorphism of vector spaces

y : H 0ð�PP2;O�PP2ð3ÞÞ !@ H 0ðP2; ðS3WP2Þ�n det WP2Þ:

Furthermore y is defined as follows:
Let f be a global section of O�PP2ð3Þ as follows:

f ¼ t1v
3
0 þ 3t2v

2
0v1 þ 3t3v

2
0v2 þ 3t4v0v

2
1 þ 3t5v0v1v2

þ 3t6v0v
2
2 þ t7v

3
1 þ 3t8v

2
1v2 þ 3t9v1v

2
2 þ t10v

3
2 ;

where t1; . . . ; t10 A C: Then yð f Þ is locally

�bf ðz3Þ�n ðz5wÞ þ af ðz2wÞ�n ðz5wÞ � df ðzw2Þ�n ðz5wÞ þ cf ðw3Þ�n ðz5wÞ;

where

af ¼ �t1u2u21 þ 2t2u2u1 þ t3u
2
1 � t4u2 � t5u1 þ t8;

bf ¼ t1u
3
1 � 3t2u

2
1 þ 3t4u1 � t7;
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cf ¼ �t1u32 þ 3t3u
2
2 � 3t6u2 þ t10;

df ¼ t1u
2
2u1 � t2u

2
2 � 2t3u2u1 þ t5u2 þ t6u1 � t9;

and z and w are the di¤erential forms du1 and du2, respectively.

Proof. Note that the P1-bundle PðWP2Þ over P2 is isomorphic to the flag

variety F , and the projection PðWP2Þ ! P2 coincides with p : F ! P2: The
canonical embedding F ,! P2 � �PP2 is given by the surjection a of the exact
sequence

0! OP2ð�1Þ ! V nOP2 !a W�
P2ð�1Þ ! 0;

where a is locally defined by aðv0Þ ¼ �u1z�=x0 � u2w
�=x0, aðv1Þ ¼ z�=x0 and

aðv2Þ ¼ w�=x0 (cf. [4, II, Proposition 7.12 and the proof of II, Theorem 8.13]).
Let OF ð1Þ be an invertible sheaf on F such that p�OF ð1ÞGW�

P2ð�1Þ: Then a
induces an isomorphism q�O�PP2ð3Þ !@ OF ð3Þ: In particular, since H 0ðF ;OF ð3ÞÞ
and H 0ðF ; q�O�PP2ð3ÞÞ are identified with H 0ðP2;S3ðW�

P2ð�1ÞÞÞ and S3V , respec-
tively, the symmetric product of a gives an isomorphism

S3a : H 0ð�PP2;O�PPð3ÞÞ !
@

H 0ðP2;S3ðW�
P2ð�1ÞÞÞ:

Note that there is the natural isomorphism k : ðS3WP2Þ�n det WP2 !@
S3ðW�

P2ð�1ÞÞ, which is locally defined by

ðz3Þ�n ðz5wÞ 7! ðz�Þ3=x3
0 ; ðz2wÞ�n ðz5wÞ 7! 3ðz�Þ2w�=x3

0 ;

ðw3Þ�n ðz5wÞ 7! ðw�Þ3=x3
0 ; ðzw2Þ�n ðz5wÞ 7! 3z�ðw�Þ2=x3

0 :

Therefore we obtain a natural isomorphism y ¼ k�1 � S3a: We can see the
second assertion by direct computation. r

Let f ¼ f ðv0; v1; v2Þ be a global section of O�PP2ð3Þ as in Lemma 2.5. Put
df ¼ df ðu1; u2Þ the discriminant of f ð�u1v1 � u2v2; v1; v2Þ with respect to v1 and
v2: We denote D for yð f Þ in (1.1.5) by Df :

Lemma 2.6. Let f , df and Df be as above. Then df ¼ �27Df .

Proof. The global section f of OP2ð3Þ is as in Lemma 2.5. We have
Df ¼ B2

f � 4Af Cf , where Af ¼ a2f � bf df , Bf ¼ af df � bf cf and Cf ¼ d 2
f � af cf .

By direct computation, we obtain df þ 27Df ¼ 0. r

We can identify H 0ðP2; ðS3WP2Þ�n det WP2Þ with H 0ð�PP2;O�PP2ð3ÞÞ by the
isomorphism y:

Proposition 2.7. Let p : X ! P2 and p 0 : X 0 ! P2 be normal triple covers
corresponding to f ; f 0 A H 0ð�PP2;O�PP2ð3ÞÞ, respectively. Then Dp ¼ Dp 0 if and only
if f 0 ¼ lf for some non-zero constant l: In particular, there is an isomorphism
s : X ! X 0 such that p ¼ p 0 � s in this case.
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Proof. We first show that f is irreducible. Assume that f is reducible.
We may assume that f has v0 as its factor (i.e. ti ¼ 0 for i ¼ 7; . . . ; 10), and
bf 0 0: Then z satisfies the following equation (cf. [8, p. 1128]):

z3 � 3Af zþ ðbf Bf � 2af Af Þ ¼ 0;

where Af ¼ a2f � bf df and Bf ¼ af df � bf cf : The above polynomial is divided
by z� t2u1u2 þ t3u

2
1 þ 2t4u2 � t5u1: Thus X is reducible, which is a contradic-

tion.
Hence we may assume that f is irreducible. Let G4 be the curve on �PP2

defined by f ¼ 0: Then df ¼ 0 defines a divisor of degree 6 on P2 whose
support is the union of the dual curve of G4 and the lines corresponding to the
singular points of G4: Therefore, by Lemma 2.6, Dp ¼ Dp 0 if and only if f 0 ¼ lf
for some l A C�: r

The above proposition enables us to distinguish normal covers for WP2 by
their branch loci.

Proposition 2.8. Let p : X ! P2 be a triple cover for f A H 0ð�PP2;O�PP2ð3ÞÞ:
Then X is normal if and only if the curve G4H �PP2 defined by f ¼ 0 is smooth.
Moreover, if X is normal, then Dp is the dual curve of G4, X is isomorphic to
q�1ðG4ÞHF , and p is identified with the restriction of p : F ! P2 to q�1ðG4Þ:

Proof. Suppose X is normal. By the proof of Proposition 2.7, G4 is
reduced and irreducible. Put X 0 ¼ q�1ðG4Þ: Then pjX 0 : X 0 ! P2 is a triple
cover with TpjX 0 GWP2 ([8, Proposition 8.1]) whose branch locus is given
by df ¼ 0: Thus there is an isomorphism s : X ! X 0 such that p ¼ pjX 0 � s
by Proposition 2.7. If G4 is singular, then X 0 is not normal since X 0 has
1-dimensional singular locus over the singularity of G4. Therefore G4 is smooth.
Conversely, we can see that X is normal if G4 is smooth as above argument.

r

Proof of Theorem 0.3. Let p : X ! P2 be a normal triple cover with
deg Dp ¼ 6: We can see the first assertion of Theorem 0.3 from Corollary
2.3, Proposition 2.4 and 2.8. We show the second assertion. We can easily
check that, if p : X ! P2 satisfies (i) in Theorem 0.3, the 9 cusps of Dp are total
branched points of p:

Assume that Dp is a sextic curve with 9 cusps, and the 9 cusps are total
branched points of p: Suppose that X is a normal cubic surface. Then we may
assume that there are homogeneous polynomials Giðx0; x1; x2Þ of degree i for
i ¼ 2; 3 such that X is defined by x3

3 þ 3G2x3 þ 2G3 ¼ 0, and p is the projection
centered at P ¼ ð0 : 0 : 0 : 1Þ: Here we regard ðx0 : x1 : x2 : x3Þ as a system of

homogeneous coordinates of P3: In this case, Dp ¼ Dp is defined by G3
2 þ G2

3
¼ 0: Since Dp has just 9 cusps as its singularities, G2 ¼ 0 and G3 ¼ 0 define
reduced curves G2 and G3, respectively, such that they intersect transversally each
other. Then it is easy to see that the total branched points of p are just 6
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intersection points of G2 and G3, which is a contradiction. Hence X is a sub-
variety of F : r

Our proof of Corollary 0.6 is almost the same as the proof of [5, Theorem
1.1].

Proof of Corollary 0.6. Suppose that D is defined by the equation G3
2 þ G2

3

¼ 0 with the conditions in the corollary. Let X be the cubic surface in P3 given
by x3

3 þ 3G2x3 þ 2G3 ¼ 0, and P ¼ ð0 : 0 : 0 : 1Þ A P3: Then X is smooth in
codimension one by [8, Lemma 5.1], and hence X is normal. Moreover the
projection pP : X ! P2 centered at P is a normal triple cover with DpP ¼ D:

Conversely, we suppose that p : X ! P2 is a normal triple cover with
Dp ¼ D: If D is a reduced sextic curve with 9 cusps, then it is known that
D is a ð2; 3Þ-torus curve (cf. [17]). Hence suppose that X is a normal cubic
surface, and p is a projection centered at P A P3nX : We may assume that
P ¼ ð0 : 0 : 0 : 1Þ, and X is given by an equation x3

3 þ 3G2x3 þ 2G3 ¼ 0 for some
homogeneous polynomials Gi of degree i (i ¼ 2; 3) (cf. [1, Proposition 3.17]).
Then D is given by G3

2 þ G2
3 ¼ 0: Since X is normal, G2 and G3 satisfy the

conditions (2) and (3) in the corollary. r

References

[ 1 ] E. Artal Bartolo, J.-I. Cogolludo and H. Tokunaga, A survey on Zariski pairs, Adv.

Stud. Pure Math. 50 (2008), 1–100.

[ 2 ] G. Casnati and T. Ekedahl, Covers of algebraic varieties. I. A general structure theorem,

covers of degree 3, 4 and Enriques surfaces, J. Algebraic Geom. 5 (1996), 439–460.

[ 3 ] T. Fujita, Triple covers by smooth manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35

(1988), 169–175.

[ 4 ] R. Hartshorne, Algebraic geometry, Grad. text in math. 52, Springer-Verlag, New York,

1977.

[ 5 ] H. Ishida and H. Tokunaga, Triple covers of algebraic surfaces and a generalization of

Zariski’s example, Adv. Stud. Pure Math. 56 (2007), 169–185.

[ 6 ] Vik. S. Kulikov, On plane algebraic curves of positive Albanese dimension, Izv. Ross. Akad.

Nauk Ser. Mat. 59 (1995), 75–94.

[ 7 ] H. Matsumura, Commutative ring theory, Cambridge studies in advanced mathematics 8,

Cambridge University Press, Cambrige, 1989.

[ 8 ] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math. 107 (1985), 1123–1158.

[ 9 ] M. Oka, Geometry of reduced sextics of torus type, Tokyo J. Math. 26 (2003), 301–327.

[10] M. Oka, Alexander polynomial of sextics, J. Knot Theory Ramifications 12 (2003), 619–636.

[11] M. Oka and D. T. Pho, Classification of sextics of torus type, Tokyo J. Math. 25 (2002),

399–433.

[12] T. Shirane, Families of Galois closure curves for plane quintic curves, J. Algebra 342 (2011),

175–196.

[13] T. Shirane, Corrigendum to ‘‘Families of Galois closure curves for plane quintic curves’’,

J. Algebra 377 (2013), 317–319.

[14] S.-L. Tan, Triple covers on smooth algebraic varieties, Geometry and nonlinear partial

di¤erential equations, Hangzhou, 2001, AMS/IP Stud. Adv. Math. 29 (2002), 143–164.

339a note on normal triple covers over P2



[15] H. Tokunaga, Triple coverings of algebraic surfaces according to the Cardano formula,

J. Math. Kyoto Univ. 31 (1991), 359–375.

[16] H. Tokunaga, On dihedral Galois coverings, Canad. J. Math. 46 (1994), 1299–1317.

[17] H. Tokunaga, Irreducible plane curves with the Albanese dimension 2, Proc. Amer. Math.

Soc. 127 (1999), 1935–1940.

[18] H. Tokunaga, Galois covers for S4 and A4 and their applications, Osaka J. Math. 39

(2002), 621–645.

[19] H. Tokunaga, Dihedral covers and an elementary arithmetic on elliptic surfaces, J. Math.

Kyoto Univ. 44 (2004), 255–270.

[20] A. Van de Ven, On uniform vector bundles, Math. Ann. 195 (1972), 245–248.

[21] T. Yasumura, Triple coverings of the projective plane branched along quintic curves,

Nihonkai Math. J. 21 (2010), 73–89.

Taketo Shirane

Ube National College of Technology

2-14-1 Tokiwadai

Ube 755-8555, Yamaguchi

Japan

E-mail: tshirane@ube-k.ac.jp

340 taketo shirane


