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HOMOGENEOUS REINHARDT DOMAINS CONTAINING

NO COORDINATE HYPERPLANES

Satoru Shimizu* and Kouichi Kimura

Abstract

As is well-known, a homogeneous Reinhardt domain in C� coinsides with C�. In

this paper, generalizing this fact, we show that a pseudoconvex homogeneous Reinhardt

domain in ðC�Þn coinsides with ðC�Þn itself.

1. Introduction

In the study of Reinhardt domains D, investigating the structures of their
holomorphic automorphism groups AutðDÞ has fundamental importance. When
D is bounded, the structure of AutðDÞ was clarified by, for example, Sunada [6],
Shimizu [2], [3]. But, in the general case, or when D is not necessarily bounded,
a little is known about the structure of AutðDÞ. For instance, related to the
investigation of the structure of AutðDÞ, we have the fundamental problem of
determining a homgeneous Reinhardt domain, that is, the problem that when a
Reinhardt domain D admits a transitive action by AutðDÞ, what form does D
have? When D is bounded, the following result is shown [3] (for the definition
of the algebraic equivalence relation between Reinhardt domains, see Section 2
below):

Theorem 1.1. Let D be a bounded Reinhardt domain in Cn. If D is homo-
geneous, then D is algebraically equivalent to the direct product Bn1 � � � � � Bnk of
balls, where Bni denotes the unit ball in Cni .

On the other hand, as for the general case, there is a conjecture as follows:
Conjecture. For every homogeneous pseudoconvex Reinhardt domain D in

Cn, there exist k positive integers n1; . . . ; nk (k may be 0) and non-negative
integers l, m such that n ¼ n1 þ � � � þ nk þ l þm and D is algebraically equivalent
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to the direct product Bn1 � � � � � Bnk � C l � ðC�Þm, where C� denotes the puctured
complex plane.

Theorem 1.1 implies that this conjecture is true when D is bounded. But
it remains open in the unbounded case. The purpose of this paper is to give
a partial answer in such case by applying the method given in Shimizu [5].
Namely, we prove the following:

Theorem 1.2. Let D be a pseudoconvex Reinhardt domain in ðC�Þn. If D is
homogeneous, then D coincides with ðC�Þn.

Note that the above theorem gives a higher-dimensional generalization of the
classical fact that a Reinhardt domain D in C� is inhomogeneous except when D
coincides with C� itself.

This paper is organized as follows. In Section 2, we recall basic concepts
and results on Reinhardt domains. In particular, we collect some preliminary
results used for proving Theorem 1.2 mainly from Shimizu [5]. Section 3 is
devoted to the proof of Theorem 1.2.

2. Preliminaries

We first collect some notations and terminology. As a general notational
convention, we denote elements of Zn, Rn, or Cn by column vectors. When
dealing with matrices, we denote by Ip and O the unit matrix of degree p and the
zero matrix, respectively. The set of non-zero complex numbers is denoted by
C�. The multiplicative group of complex numbers of absolute value 1 is denoted
by Uð1Þ. An automorphism of a complex manifold M means a biholomorphic
mapping of M onto itself. The group of all automorphisms of M is denoted by
AutðMÞ. Two complex manifolds are said to be holomorphically equivalent if
there is a biholomorphic mapping between them.

We now recall basic concepts and results on Reinhardt domains (cf. Shimizu
[2], [3]). Write T ¼ ðUð1ÞÞn. The group T acts as a group of automorphisms
on Cn by the standard rule

a � z ¼ tða1z1; . . . ; anznÞ for a ¼ tða1; . . . ; anÞ A T and z ¼ tðz1; . . . ; znÞ A Cn:

By definition, a Reinhardt domain D in Cn is a domain in Cn which is stable
under the action of T , that is, such that a �DHD for all a A T . The group T
then acts as a group of automorphisms on D. The subgroup of AutðDÞ induced
by the action of T is denoted by TðDÞ.

An automorphism j of ðC�Þn is called an algebraic automorphism of ðC�Þn
if the components of j are given by Laurent monomials, that is, j is of the
form

j : ðC�Þn C tðz1; . . . ; znÞ 7! tðw1; . . . ;wnÞ A ðC�Þn;
wi ¼ aiz

ai1
1 � � � zainn ; i ¼ 1; . . . ; n;
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where ðaijÞ A GLðn;ZÞ and ðaiÞ A ðC�Þn. The set AutalgððC�ÞnÞ of all algebraic
automorphisms of ðC�Þn forms a subgroup of AutððC�ÞnÞ.

Let j be an algebraic automorphisms of ðC�Þn and write jðzÞ ¼ tðj1ðzÞ; . . . ;
jnðzÞÞ. In general, the components j1; . . . ; jn have zeroes or poles along each
coordinate hyperplane. If, for two domains D and D 0 in Cn not necessarily
contained in ðC�Þn, they have no poles on D and j : D ! Cn maps D biholo-
morphically onto D 0, then we say that j induces a biholomorphic mapping of D
onto D 0.

Consider a biholomorphic mapping j : D ! D 0 between two Reinhardt
domains D onto D 0 in Cn. The following proposition gives a necessary and
su‰cient condition for j to be equivariant with respect to the T-actions.

Proposition 2.1 (cf. [3, Section 2]). j is induced by an algebraic auto-
morphism of ðC�Þn if and only if it has the property that jTðDÞj�1 ¼ TðD 0Þ.

Biholomorphic mappings between Reinhardt domains equivariant with re-
spect to the T-actions may be considered as natural isomorphisms in the category
of Reinhardt domains. In view of this observation, we say that two Reinhardt
domains in Cn are algebraically equivalent if there is a biholomorphic mapping
between them induced by an algebraic automorphism of ðC�Þn.

There is a useful correspondence between Reinhardt domains and tube
domains. A tube domain TW in Cn is a domain in Cn given by TW ¼
Wþ

ffiffiffiffiffiffiffi
�1

p
Rn, where W is a domain in Rn. We call W the base of TW. For

each element h of Rn, we define an automorphism sh of TW given as a translation
of Cn by shðzÞ ¼ zþ

ffiffiffiffiffiffiffi
�1

p
h for z A TW. Now consider a mapping ord : ðC�Þn !

Rn defined by

ordð tðz1; . . . ; znÞÞ ¼
t

� 1

2p
logjz1j; . . . ;�

1

2p
logjznj

� �
for tðz1; . . . ; znÞ A ðC�Þn:

If D is a Reinhardt domain in ðC�Þn, then ordðDÞ is a domain in Rn, and it is
well-known that D is pseudoconvex if and only if ordðDÞ is a convex domain in
Rn. To each Reinhardt domain D in ðC�Þn, there is associated a tube domain
TW in Cn with W ¼ ordðDÞ. The tube domain TW naturally becomes a covering
manifold of D. Indeed, introduce a covering $ : Cn ! ðC�Þn defined by

$ð tðz1; . . . ; znÞÞ ¼ tðe�2pz1 ; . . . ; e�2pznÞ for tðz1; . . . ; znÞ A Cn:

Then we have TW ¼ $�1ðDÞ, and the restriction $ : TW ! D is a covering
projection. The covering transformation group for $ : TW ! D is given by
fsh j h A Zng. We call TW the covering tube domain of D and $ : TW ! D the
canonical covering projection. Note that if D is pseudoconvex, then $ : TW ! D
gives the universal covering of D. Indeed, if D is pseudoconvex, then TW is
simply connected, because W is convex, and consequently simply connected.

Let D be a Reinhardt domain in ðC�Þn and write W ¼ ordðDÞ. Suppose
that D is pseudoconvex. It follows that, for the convex domain W, there exists
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an a‰ne transformation f of Rn such that

f ðWÞ ¼ Xð1Þ � R l ;ð2:1Þ

where l is an integer between 0 and n and Xð1Þ is a convex domain in Rn�l

containing no complete straight lines (cf. [1]). This implies that if, for each
point x of W, we denote by Vx the maximal vector subspace of Rn such that
xþ Vx HW, then the vector subspaces Vx; x A W coincide to each other, which
we denote by VðDÞ, and its dimension is equal to l. As a consequence, l is
independent of the choice of f satisfying (2.1). Therefore the integer l is an
invariant associated with D, which we denote by lðDÞ.

Here are some observations about lðDÞ. Let D be a pseudoconvex
Reinhardt domain in ðC�Þn and write W ¼ ordðDÞ. When lðDÞ ¼ 0, the domain
D is algebraically equivalent to a bounded Reinhardt domain in ðC�Þn (cf. [1]).
On the other hand, when lðDÞ > 0, write an a‰ne transformation f of Rn

satisfying (2.1) as f ðxÞ ¼ Lxþ b for x A Rn, where L A GLðn;RÞ and b A Rn. If
we define an a‰ne transformation F of Cn by F ðzÞ ¼ Lzþ b for z A Cn, then we
have

FðTWÞ ¼ Tf ðWÞ ¼ TXð1Þ�R lðDÞ ¼ TXð1Þ � TR lðDÞ ¼ TXð1Þ � C lðDÞ;

and hence TW is holomorphically equivalent to TXð1Þ � C lðDÞ. Note that lðDÞ ¼ n
if and only if D ¼ ðC�Þn.

The following lemma is easily proved by using the notion of Liouville
foliation introduced in Shimizu [4] (cf. [5]).

Lemma 2.1. Let E � C l and E 0 � C l 0 be two domains in Cn, where E and E 0

are domains in Cn�l and Cn�l 0 , respectively, that are holomorphically equivalent to
bounded domains. Suppose that there is a biholomorphic mapping F of E � C l

onto E 0 � C l 0 . Then l and l 0 coincide. Moreover, if each point w A Cn ¼
Cn�l � C l is written as

w ¼ wð1Þ

wð2Þ

� �
; wð1Þ A Cn�l ; wð2Þ A C l ;

then F has the form

F : E � C l C w ¼ wð1Þ

wð2Þ

� �
7! Fð1Þðwð1ÞÞ

Fð2ÞðwÞ

� �
A E 0 � C l 0 ;

where Fð1Þ : E C wð1Þ 7! Fð1Þðwð1ÞÞ A E 0 gives a biholomorphic mapping of E onto
E 0.

As an immediate consequence of this lemma, we see that lðDÞ is a biholo-
morphic invariant:

Corollary 2.1. If two pseudoconvex Reinhardt domains D and D 0 in ðC�Þn
are holomorphically equivalent, then lðDÞ and lðD 0Þ coincide.
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We denote by GLðn;ZÞyCn the group of all complex a‰ne transformations
of Cn whose linear parts belong to GLðn;ZÞ. We discuss the relation between
AutalgððC�ÞnÞ and GLðn;ZÞyCn. Let F be any element of GLðn;ZÞyCn and
write FðzÞ ¼ Azþ b for z A Cn, where A ¼ ðaijÞ A GLðn;ZÞ and b ¼ ðbiÞ A Cn.
Then we can define an element j of AutalgððC�ÞnÞ by

j : ðC�Þn C tðz1; . . . ; znÞ 7! tðw1; . . . ;wnÞ A ðC�Þn;
wi ¼ e�2pbi zai11 � � � zainn ; i ¼ 1; . . . ; n:

The mapping r : GLðn;ZÞyCn ! AutalgððC�ÞnÞ sending F to j is a group
homomorphism of GLðn;ZÞyCn onto AutalgððC�ÞnÞ. Note that the kernel of r
is given by fsh j h A ZngHAutðCnÞ, and that F, rðFÞ, and the covering projec-
tion $ : Cn ! ðC�Þn commute in the following sense:

$ �F ¼ rðFÞ �$ for every F A GLðn;ZÞyCn:ð2:2Þ

If D and D 0 are Reinhardt domains in ðC�Þn with the covering tube domains
TW and TW 0 , respectively, and if F is an element of GLðn;ZÞyCn, then, by (2.2),
we have rðFÞðDÞ ¼ D 0 precisely when FðTWÞ ¼ TW 0 . As a consequence of this,
we see that if there exists an element F of GLðn;ZÞyCn such that FðTWÞ ¼ TW 0 ,
then D and D 0 are algebraically equivalent.

To discuss the correspondence of biholomorphic mappings between Rein-
hardt domains with biholomorphic mappings between tube domains, let D and D 0

be two Reinhardt domains in ðC�Þn and let TW and TW 0 denote the covering tube
domains of D and D 0, respectively. Suppose F : TW ! TW 0 is a biholomorphic
mapping between TW and TW 0 and satisfies the condition that, for some A A
GLðn;ZÞ, we have

Fðzþ
ffiffiffiffiffiffiffi
�1

p
mÞ ¼ FðzÞ þ

ffiffiffiffiffiffiffi
�1

p
Am for every z A TW and every m A Zn:ð2:3Þ

Then, since the covering transformation groups for $ : TW ! D and $ : TW 0 !
D 0 are given by fsh j h A ZngHAutðTWÞ and fsh j h A ZngHAutðTW 0 Þ, respec-
tively, it follows that there exists a biholomorphic mapping j : D ! D 0 between
D and D 0 such that $ �F ¼ j �$. Conversely, when D and D 0 are pseudo-
convex, every biholomorphic mapping j : D ! D 0 between D and D 0 has a lifting
F : TW ! TW 0 , or a biholomorphic mapping F of TW onto TW 0 such that $ �F ¼
j �$ and satisfying (2.3) for some A A GLðn;ZÞ, because $ : TW ! D and
$ : TW 0 ! D 0 are the universal coverings of D and D 0, respectively. As a
consequence of these observations and [2, Section 6, Corollary to Theorem
2], we have the following proposition, which gives a useful tool in our inves-
tigation.

Proposition 2.2. Let F : TW ! TW 0 be a biholomorphic mapping between
two tube domains TW and TW 0 in Cn whose bases W and W 0 have the convex hulls
containing no complete straight lines. Suppose that there exist elements A and B
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of GLðn;RÞ such that

Fðzþ
ffiffiffiffiffiffiffi
�1

p
AmÞ ¼ FðzÞ þ

ffiffiffiffiffiffiffi
�1

p
Bm for every z A TW and every m A Zn:ð2:4Þ

Then F is an a‰ne transformation of Cn whose linear part belongs to GLðn;RÞ.

Proof. The proof of this proposition is given in Shimizu [5]. Although
there are overlaps with that, we carry out the proof in detail for the sake of
completeness and self-containedness.

We define automorphisms FA and FB of Cn given as linear transformations
by

FAðwÞ ¼ Aw for w A Cn and FBðoÞ ¼ Bo for o A Cn:

Then the domains F �1
A ðTWÞ and F �1

B ðTW 0 Þ in Cn are tube domains. Indeed,
writing X ¼ A�1W and X 0 ¼ B�1W 0, we have F �1

A ðTWÞ ¼ TX and F �1
B ðTW 0 Þ ¼ TX 0 .

Note that, since W and W 0 have the convex hulls containing no complete straight
lines, X and X 0 also have the convex hulls containing no complete straight lines.
We set E ¼ $ðTXÞ and E 0 ¼ $ðTX 0 Þ. By the definition of $, the domains E and
E 0 are Reinhardt domains in ðC�Þn, and TX and TX 0 are the covering tube
domains of E and E 0, respectively. An application of [2, Section 6, Corollary to
Theorem 2] to E and E 0 yields that every biholomorphic mapping of E onto E 0 is
induced by an algebraic automorphism of ðC�Þn.

Now consider a biholomorphic mapping C : TX ! TX 0 between TX and TX 0

given by C ¼ F �1
B �F � FA. Then we see from (2.4) that C satisfies the con-

dition that

Cðwþ
ffiffiffiffiffiffiffi
�1

p
mÞ ¼ CðwÞ þ

ffiffiffiffiffiffiffi
�1

p
m for every w A TX and every m A Zn:

Therefore, as observed above, there exists a biholomorphic mapping c : E ! E 0

between E and E 0 such that $ �C ¼ c �$. By the result of the preceding
paragraph, c is induced by an algebraic automorphism of ðC�Þn. This implies
that we can find an element C0 of GLðn;ZÞyCn such that C0ðTXÞ ¼ TX 0 and
$ �C0 ¼ c �$ on TX. Note that both C : TX ! TX 0 and C0 : TX ! TX 0 are
liftings of c. Replacing, if necessary, C0 by sh �C0 for some h A Zn, we
may assume that Cðw0Þ ¼ C0ðw0Þ for a point w0 of TX. Then we see by the
uniqueness of lifting that C ¼ C0, or F ¼ FB �C0 � F �1

A . Since FB �C0 � F �1
A is

an a‰ne transformation of Cn, this completes the proof of the proposition.
r

To apply the above proposition to our proof of Theorem 1.2, we need a
lemma.

Lemma 2.2. Let F : TW ! TW 0 be a biholomorphic mapping between two tube
domains TW and TW 0 in Cn. Suppose that there exists a real n� n matrix A such
that the condition (2.3) holds. Then the matrix A is non-singular.
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Proof. We denote by Ker A the kernel of the linear transformation of Rn

determined by A. Suppose that Ker A0 f0g and we shall derive a contradic-
tion.

Consider first the case where Ker AVZn 0 f0g. Then, taking a non-zero
element m of Ker AVZn, we see from (2.3) that

Fðzþ
ffiffiffiffiffiffiffi
�1

p
mÞ ¼ FðzÞ þ

ffiffiffiffiffiffiffi
�1

p
Am ¼ FðzÞ for z A TW;

which contradicts the assumption that F is injective.
Consider next the case where Ker AVZn ¼ f0g. Let H be the closure

AZn of AZn in Rn. Then H is a closed subgroup of the vector group ARn.
Consequently, H is a Lie subgroup of the abelian Lie group ARn. Note that the
identity component of H is a linear subspace of ARn.

When dim H ¼ 0, the group H is a lattice with

rank Ha dim ARn < n:ð2:5Þ

On the other hand, H contains the subgroup AZn, which is isomorphic to the
lattice Zn, because Ker AVZn ¼ f0g by the assumption. Therefore we have
rank Hb n. This contradicts (2.5).

Suppose that dim H > 0. Fix a point z0 of TW and take a neighborhood W
of z0 such that W V ðz0 þ

ffiffiffiffiffiffiffi
�1

p
ZnÞ ¼ fz0g. Since F : TW ! TW 0 is a biholomor-

phic mapping, FðWÞ is a neighborhood of Fðz0Þ and we have

FðWÞVFðz0 þ
ffiffiffiffiffiffiffi
�1

p
ZnÞ ¼ fFðz0Þg:ð2:6Þ

By H ¼ AZn and dim H > 0, there exists a non-zero element of AZn arbitrarily
close to 0. Therefore, since Fðz0 þ

ffiffiffiffiffiffiffi
�1

p
mÞ ¼ Fðz0Þ þ

ffiffiffiffiffiffiffi
�1

p
Am by (2.3), there

exists an element of Fðz0 þ
ffiffiffiffiffiffiffi
�1

p
ZnÞ arbitrarily close to Fðz0Þ which does not

coincide with Fðz0Þ itself. This contradicts (2.6), and the lemma is proved.
r

3. Proof of Theorem 1.2

Let D be a pseudoconvex homogeneous Reinhardt domain in ðC�Þn. Then,
D coinsides with ðC�Þn if and only if lðDÞ ¼ n. Therefore, suppose lðDÞ < n and
we shall derive a contradiction.

If lðDÞ ¼ 0, then D is algebraically equivalent to a bounded Reinhardt
domain. By Theorem 1.1, every homogeneous bounded Reinhardt domain is
algebraically equivalent to the direct product D 0 :¼ Bn1 � � � � � Bnk of balls,
which contains the origin. Hence there exists a holomorphic isomorphism of
D onto D 0 induced by an algebraic automorphism ðziÞ 7! ðwiÞ of ðC�Þn of the
form wi ¼ aiztðiÞ, i ¼ 1; . . . ; n, where t is a permutation of f1; 2; . . . ; ng and
ða1; . . . ; anÞ A ðC�Þn. Consequently, D contains the origin and this contradicts
the assumption that DH ðC�Þn.

Now we suppose 0 < lðDÞ < n and set k ¼ n� lðDÞ. We divide the proof
into four steps.
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Step 1. Let TW be the covering tube domain of D and let G :¼ fsh j h A Zng
be its covering transformarion group. We denote by ~jj A AutðTWÞ a lifting of
j A AutðDÞ. The set G of all liftings ~jj forms a subgroup of AutðTWÞ and is
given as the normalizer of G in AutðTWÞ. Since the covering transformation
group G is isomorphic to the additive group Zn, for every ~jj A G there exists a
unique A A GLðn;ZÞ such that

~jj � sh � ~jj�1 ¼ sAh:ð3:1Þ
From this, we have a linear representation r of G on GLðn;ZÞ such that
G C ~jj 7! A A GLðn;ZÞ. By the assumption, AutðDÞ acts on D transitively.
Therefore G acts on TW transitively.

Next, we shall see what influences a permutation of coordinates has on the
linear representation r of G. We consider a linear transformation of Cn repre-
sented by a matrix Pt :¼ ðdtðiÞ jÞ A GLðn;ZÞ, where t is a permutation of
f1; 2; . . . ; ng. Then, the universal covering $ : TW ! D is replaced by the cover-
ing Pt �$ � P�1

t : TPtðWÞ ! PtðDÞ, and a lifting of Pt � j � P�1
t A AutðPtðDÞÞ is

given by Pt � ~jj � P�1
t A AutðTPtðWÞÞ. The equation (3.1) means that

~jjðzþ
ffiffiffiffiffiffiffi
�1

p
mÞ ¼ ~jjðzÞ þ

ffiffiffiffiffiffiffi
�1

p
Amð3:2Þ

for every z A TW and for every m A Zn. Hence we have

Pt � ~jj � P�1
t ðzþ

ffiffiffiffiffiffiffi
�1

p
mÞ ¼ Pt � ~jjðP�1

t ðzÞ þ
ffiffiffiffiffiffiffi
�1

p
P�1
t ðmÞÞ

¼ Ptð~jjðP�1
t ðzÞÞ þ

ffiffiffiffiffiffiffi
�1

p
AP�1

t ðmÞÞ

¼ Pt � ~jj � P�1
t ðzÞ þ

ffiffiffiffiffiffiffi
�1

p
PtAP

�1
t m

for every z A TPtðWÞ and for every m A Zn. Consequently the linear representation
r : G ! GLðn;ZÞ is just replaced by r 0 : PtGP

�1
t C Pt � ~jj � P�1

t 7! PtAP
�1
t A

GLðn;ZÞ.

Step 2. We would like to represent the domain W ¼ ordðDÞ in Rn as simple
as possible. By means of a linear transformation L on Rn induced by a suitable
permutation of coordinates, we make VðDÞ parallel to some coordinate axes.

For simplicity, write l :¼ lðDÞ. Since dim VðDÞ ¼ l, there exists a basis
fv1; . . . ; vlg of VðDÞ over R. We write V :¼ ðv1; . . . ; vlÞ, which is an n� l matrix
consisting of column vectors v1; . . . ; vl . As rank V ¼ l, doing a suitable per-
mutation of coordinates, we have

V ¼ V ð1Þ

V ð2Þ

� �
;

where V ð1Þ is a k � l matrix and V ð2Þ is a non-singular l � l matrix. Moreover,
by means of elementary transformations to column vectors of V if necessary, we
have V ð2Þ ¼ Il and

V ¼ V ð1Þ

Il

� �
:
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We define a matrix L by

L :¼ Ik �V ð1Þ

O Il

� �
A GLðn;RÞ:ð3:3Þ

Then we see

LV ¼ Ik �V ð1Þ

O Il

� �
V ð1Þ

Il

� �
¼ O

Il

� �
:

Writing X :¼ LW, we have

X ¼ Xð1Þ � R l ;ð3:4Þ

where Xð1Þ is a convex domain in Rk containing no complete straight lines. If
we consider L as a linear transformation of Cn, then LðTWÞ ¼ TLðWÞ ¼ TX ¼
TXð1Þ � C l , and F :¼ L � ~jj � L�1 A AutðTXÞ satisfies

Fðwþ
ffiffiffiffiffiffiffi
�1

p
LmÞ ¼ FðwÞ þ

ffiffiffiffiffiffiffi
�1

p
LAmð3:5Þ

for every w A TX and for every m A Zn. Indeed, by (3.2),

Fðwþ
ffiffiffiffiffiffiffi
�1

p
LmÞ ¼ L � ~jj � L�1ðwþ

ffiffiffiffiffiffiffi
�1

p
LmÞ

¼ L � ~jj ðL�1wþ
ffiffiffiffiffiffiffi
�1

p
mÞ

¼ Lð~jj ðL�1wÞ þ
ffiffiffiffiffiffiffi
�1

p
AmÞ

¼ FðwÞ þ
ffiffiffiffiffiffiffi
�1

p
LAm:

Note that LGL�1 acts on TX transitively.

Step 3. We consider a holomorphic autmorphism:

F : TXð1Þ � C l C w ¼ wð1Þ

wð2Þ

� �
7! Fð1ÞðwÞ

Fð2ÞðwÞ

� �
A TXð1Þ � C l ;

where wð1Þ;Fð1ÞðwÞ A TXð1Þ and wð2Þ;Fð2ÞðwÞ A C l . Since Xð1Þ is a convex domain
in Rk containing no complete straight lines, TXð1Þ is holomorphically equivalent to

a bounded domain in Ck. Hence, Lemma 2.1 implies that the first component
Fð1Þ depends only on wð1Þ and Fð1Þ : TXð1Þ C wð1Þ 7! Fð1Þðwð1ÞÞ A TXð1Þ is a holo-
morphic automorphism.

We shall see a more precise form of Fð1Þ. For every A ¼ rð~jjÞ with ~jj A G,
set

LA ¼:
Að1Þ Að2Þ

Að3Þ Að4Þ

� �
;ð3:6Þ

where Að1Þ is a k � k matrix, and Að2Þ, Að3Þ, Að4Þ are k � l, l � k, l � l matrices
respectively. Note that the matrix L defined by (3.3) is independent of A. We
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see that Að1Þ is an element of GLðk;RÞ later. Set

Lð1Þ :¼ ðIk;�V ð1ÞÞ; ðLAÞð1Þ :¼ ðAð1Þ;Að2ÞÞ:ð3:7Þ

Then, by (3.5), Fð1Þ satisfies

Fð1Þðwð1Þ þ
ffiffiffiffiffiffiffi
�1

p
Lð1ÞmÞ ¼ Fð1Þðwð1ÞÞ þ

ffiffiffiffiffiffiffi
�1

p
ðLAÞð1Þmð3:8Þ

for every wð1Þ A TXð1Þ and for every m A Zn: In particular, putting

m ¼ tðm1; . . . ;mk; 0; . . . ; 0Þ;

and writing mð1Þ :¼ tðm1; . . . ;mkÞ, by (3.7) we have

Lð1Þm ¼ mð1Þ; ðLAÞð1Þm ¼ Að1Þmð1Þ:

Hence, (3.8) implies that

Fð1Þðwð1Þ þ
ffiffiffiffiffiffiffi
�1

p
mð1ÞÞ ¼ Fð1Þðwð1ÞÞ þ

ffiffiffiffiffiffiffi
�1

p
Að1Þmð1Þð3:9Þ

for every wð1Þ A TXð1Þ and for every mð1Þ A Zk, and, by Lemma 2.2, the matrix Að1Þ

is non-singular. By Proposition 2.2, we see Fð1Þ A GLðk;RÞyCk, that is, there
exist Bð1Þ A GLðk;RÞ and bð1Þ A Ck such that

Fð1Þðwð1ÞÞ ¼ Bð1Þwð1Þ þ bð1Þ:ð3:10Þ

Substituting (3.10) into (3.9) yields Bð1Þmð1Þ ¼ Að1Þmð1Þ for every mð1Þ A Zk.
Consequently, we see that Bð1Þ ¼ Að1Þ, or

Fð1Þðwð1ÞÞ ¼ Að1Þwð1Þ þ bð1Þ for every wð1Þ A TXð1Þ :ð3:11Þ

Note that Gð1Þ :¼ fFð1Þ jF A LGL�1g acts on TXð1Þ transitively.

In (3.11), we can decompose Fð1Þ into real and imaginary components, since
Að1Þ A GLðk;RÞ. Namely, write

wð1Þ ¼: xð1Þ þ
ffiffiffiffiffiffiffi
�1

p
hð1Þ; bð1Þ ¼: að1Þ þ

ffiffiffiffiffiffiffi
�1

p
bð1Þ;

where xð1Þ, hð1Þ, að1Þ, bð1Þ are elements of Rk. Then, we have

Fð1Þðwð1ÞÞ ¼ Að1Þxð1Þ þ að1Þ þ
ffiffiffiffiffiffiffi
�1

p
ðAð1Þhð1Þ þ bð1ÞÞ

and the real component

Re Fð1Þðxð1ÞÞ :¼ Að1Þxð1Þ þ að1Þð3:12Þ
gives an a‰ne automorphism of the domain Xð1Þ. Then, H ð1Þ :¼ fRe Fð1Þ j
Fð1Þ A G ð1Þg acts on Xð1Þ transitively.

Step 4. We see that in (3.12), the translational part að1Þ is uniquely deter-
mined by the linear part Að1Þ:

Lemma 3.1. If Að1Þxð1Þ þ að1Þ and Að1Þxð1Þ þ bð1Þ are elements of H ð1Þ, then
að1Þ ¼ bð1Þ.
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Proof. By the assumptions, we have

Að1ÞðXð1ÞÞ þ að1Þ ¼ Xð1Þ; Að1ÞðXð1ÞÞ þ bð1Þ ¼ Xð1Þ:

Since Xð1Þ � að1Þ ¼ Að1ÞðXð1ÞÞ, it follows that

Xð1Þ þ ðbð1Þ � að1ÞÞ ¼ ðXð1Þ � að1ÞÞ þ bð1Þ ¼ Að1ÞðXð1ÞÞ þ bð1Þ ¼ Xð1Þ:

Since Xð1Þ is a convex domain containning no complete straight lines, this can
only happen when bð1Þ � að1Þ ¼ 0. r

Note that in (3.6), Að1Þ is the k � k principal matrix of LA, where
L A GLðn;RÞ is the fixed matrix determined by the domain D and A A rðGÞH
GLðn;ZÞ. By Lemma 3.1, we have a surjection of rðGÞ onto H ð1Þ. Since rðGÞ
is at most countable, so is H ð1Þ. This contradicts the fact that H ð1Þ acts on Xð1Þ

transitively, and the proof of Theorem 1.2 completely finished.
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