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EMDEN EQUATION INVOLVING THE CRITICAL SOBOLEV
EXPONENT WITH THE THIRD-KIND BOUNDARY
CONDITION IN S3

ATsusH1 KosAkA

Abstract

We consider a positive solution of the Emden equation with the critical Sobolev
exponent on a geodesic ball in S*. 1In the case of the Dirichlet boundary condition,
Bandle and Peletier [2] proved the precise result on the existence of a positive radial
solution. We investigate the same equation with the third kind boundary condition and
obtain a more general result. Namely we prove that the existence and the nonexistence
of solutions depend on the geodesic radius and the boundary condition. Moreover the
set of solutions consists of a unique radial classical solution and a continuum of singular
solutions.

1. Introduction

Our aim is to investigate the structure of positive solutions to the Emden
equation having the critical Sobolev exponent on a geodesic ball

AsNu + uN+2/(N=2) — (0 in ng
(1.1) u>0 in B(;O,

0
Ut K =0 on 0By,

where N >3, SV = {x e RV ||x| = 1}, Agv is the Laplace-Beltrami operator on
SY, n is the outer unit normal vector to 0By, and x > 0. Here By, is a geodesic
ball in SV with its geodesic radius 6 e (0,7), and its center is located at the
north pole P, = (x1,x2,...,xy+1) = (0,0,...,1). In this paper we consider
a classical solution and a singular solution ue C?(By\{P,}) to (1.1) with
lim,_p, u(x) =+c0.

First, for the sake of comparison with results on (1.1), we refer to known
results on the Emden equation in B* := {x e R ||x| < 1}, that is, a ball in the
Euclidean space with the same dimensions as S*:
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Au+u?’ =0 in B*,

M-I-K%:O on 0B*.
on

If k=0, then we can immediately show that the problem (1.2) with p =
(N +2)/(N —2) has no solution by applying the well-known Pohozaev identity.
In fact, for a solution u to (1.2), there holds the Pohozaev identity

N N -2 1
1.3 BEAS At g :_J
(13) Grr"a ), e ae=3]

Set p=(N+2)/(N—2). Then the left hand side of (1.3) vanishes, and hence
we obtain du/dn =0 on dB* from x-n=1. Therefore it follows that u =0 in
B* from the Hopf boundary lemma (e.g., see Lemma 3.4 in [4]). Moreover, in
the case of k > 0 and N = 3, Kabeya, Yanagida and Yotsutani [6] proved that
if 0 < x < 1, then (1.2) has no radial classical or singular solution. On the other
hand, if x > 1, then (1.2) has a unique classical solution and a continuum of
singular solutions. Namely the existence of a solution to (1.2) depends on «,
and x =1 is the critical value of the existence or the nonexistence of a solution.
Concerning a higher dimensional case, e.g., see [5].

For (1.1) with N =3 and x =0, Bandle, Brillard and Flucher [1] proved
the existence of a radial solution from the viewpoint of the Sobolev imbedding.
Here a solution to (1.1) depending only on the geodesic distance from P, is said
to be a radial solution. They proved that there exists some constant . such that

(a) a radial classical solution to (1.1) exists if 6y € (0., 7);

(b) (1.1) has no radial classical solution if 6y € (0,0,).

To obtain 6. exactly, Bandle and Peletier [2] investigated (1.1) with N = 3 more
precisely. They used the stereographic projection from the south pole (0,0,0,—1)
onto the plane x4 = 0 and investigated the existence of a positive radial solution
in a ball on R®. Namely let 0 be the geodesic distance from P,, and define
r=tan(#/2). Then a radial solution to (1.1) satisfies

2

Ou x-ndo.

on

2 ) 5
(1+r2u,.> +(1+72)3u =0 forre(0,R),

u(r) >0 for re (0, R),
u(R) =0,

(1.4)

where R =tan(6p/2). Let u(r) e C*((0,R)) be a solution to (1.4). If u(r)
converges to a positive constant as r — 0, then u.(r) — 0 as r — 0 (see Lemma
1 in [2]). Hence u(tan(0/2)) is a classical solution to (1.1). Bandle and Peletier
proved the following theorem.

THEOREM A (Theorem 1 in [2]). For (a) and (b), it holds that 0, = r/2.
Moreover if 0y = n/2, then (1.1) has no radial classical solution.
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From Theorem A, it seems that the structure of solutions to (1.1) with x >0
also has a difference between the case By, = B, and the case By, > By.
Furthermore Kumaresan and Prajapat [8] proved that if there exists a solution
ue C*(By,) to (1.1) with x =0 and 0 < 0y < 7/2, then u is radially symmetric.
The Kumaresan—Prajapat result is the analogue of the Gidas—Ni—Nirenberg
result [3], and thus we see that there exists no positive solution in the case of
0 < 6y <mn/2. In contrast it is not yet known whether or not the analogue of
the Gidas—Ni—Nirenberg result holds for n/2 < 6y <n. The above result on
N =3 is different from that on N >4 in [1]: for any 6y € (0,7), there exists a
radial solution to (1.1) with N >4 and x =0. Namely it holds that 6. =0 if
N >4. In addition the Kumaresan—Prajapat result also holds with N >4 and
0< 6y <m/2.

On the other hand, suppose that u is a classical or singular solution to (1.1)
with the Neumann boundary condition (x =+o0) and N =3. Then u is a
solution to (1.4) with u,(R) =0 instead of u(R) =0. By integrating (1.4) from
re(0,R) to R, it holds that

(1.5) u,(r) u(s)> ds >0 for re (0,R).

1+r2JR 5>
r2 ) (14s2)°

The relation (1.5) implies lim, ¢ u,(r) = +00. If u is a classical solution to (1.1),
then %,(0) = 0, which is a contradiction to lim, .o u,(r) = +0c0. Thus u is not a
classical solution. Similarly we see that u is not a singular solution. In fact if u
is a singular solution to (1.1), then lim,_ u,(r) = —oo. Therefore there exists no
classical or singular solution to (1.1) with the Neumann boundary condition.

Our main purpose is to investigate the structure of radial solutions to (1.1)
in the case of N =3 and 0 <x < +o0. First we adopt the polar coordinates
instead of the stereographic projection used in Bandle and Peletier’s investi-
gation. It seems that the polar coordinates is more natural than the stereo-
graphic projection to investigate (1.1) from the standpoint of ODE. For
x = (x1,X2,X3,X4) € S3, let

X1 = sin 0 sin ¢, sin ¢,
X, = sin 0 sin ¢; cos ¢,
X3 = sin 0 cos ¢,

X4 = cos 0

with 0,9, € [0,7] (i=1,2) and ¢, € [0,27]. Then the Laplace-Beltrami operator
Ags is described by

1 0 .2 Ju
ASSle@(SIH 0@)

+ ! (sin 6u> + ! O
sin” 0 sin ¢, 09, i’ Jp, sin? 0 sin” g, 993



616 ATSUSHI KOSAKA

Therefore a radial solution to (1.1) satisfies

1

—— (ug sin” 0), +u> =0 for 0 e (0,0),
(1.6) sin” 0

u(@) >0 for 6 € (0, 6y),

u(0y) + ruy(6y) = 0.

Next we define some notations for a solution to (1.6). In this paper we
consider the following two types of solutions to (1.6).

DeriNITION 1.1, (i) A solution u € C%((0,0y)) to (1.6) is said to be a regular
solution if u converges to some positive constant as 6 — 0.

(ii) A solution u e C?((0,6p)) to (1.6) is said to be a singular solution if u
has singularity at 0 = 0.

Here we remark that a regular solution to (1.6) defined in Definition 1.1 is a
classical solution to (1.1). Similarly a singular solution to (1.6) is corresponding
to a singular solution to (I.1). In addition let u(6;«) be a solution to (1.6)
satisfying up(6y) = —o. Moreover the principal value of arcsin x is denoted by
Arcsin x. Our main result is the following theorem for (1.6).

THEOREM 1.1.  For the problem (1.6), the following statements hold.
(i) Suppose that 0 <k <1/2.
(@) If 6y satisfies 6y # 0 and

1 1
3 Arcsin 2k < 0y < 3 (m — Arcsin 2k),

then (1.6) does not have a regular or singular solution.
(b) On the other hand, if 6y satisfies

1 1
0<0) < 3 Arcsin 2x or ) (m — Arcsin 2x) < 6y,

then there exists a constant a, >0 such that the solution u(0;o.)
is a regular solution. Moreover u(60;a) is a singular solution for o €
(0,0). In addition, for o € (o, +00), the problem (1.6) does not have
either a regular solution or a singular solution.

(i) Suppose that k > 1/2.  Then there exists a constant o, > 0 such that the
solution u(6;0.) is a regular solution. Moreover u(6;a) is a singular
solution for o€ (0,0). In addition, for o€ (o, +00), the problem (1.6)
does not have either a regular solution or a singular solution.

Remark 1.1. Compare Theorem A and Theorem 1.1. Since a regular
solution to (1.6) is a classical solution to (1.4), Theorem 1.1 with x = 0 implies
the same result as in Theorem A. Thus Theorem 1.1 is the extension of
Theorem A and this provides us a comprehensive view to (1.1).
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The proof of Theorem 1.1 is due to the method used in [6]. Namely we
change the variable and consider the corresponding exterior problem

2
w(p) =,
Wr(p) =0,

1
T—(Tzw,)T + K(t)w’(t) =0 for t e (p,+x0),

where f > 0 and p > 0 depend on x and 6. Next we investigate the structure of
solutions to the exterior problem by using results proved in [7], [9] and [10].

Our paper is organized as follows: we precisely define the change of the
variable to transform (1.6) to the exterior problem in Section 2. The structure
theorem concerning this exterior problem is stated in Section 3. Theorem 1.1 is
shown in Section 4 by using the structure theorem.

2. Transforming to the exterior problem

In this section, we transform (1.6) to an exterior problem. Hereafter let u
be a regular solution or a singular solution to (1.6). First set

K
2.1 =
@1) r sin” 6,
)
(2.2) r::J _d;// + p = cot 6 — cot Oy + p.
0 sin”

From (2.1), p=0 if and only if x =0. Moreover, from (2.2), t attains p as
0 =0y, and T — +o0 as 8 — 0. Next we define

(2.3) w(t) := @

T

By using 7 and w defined above, we can transform (1.6) to the following exterior
problem.

LemMmA 2.1.  The function w = u/t satisfies

Tiz(rzwf)r + K(r)ws(r) =0 for te(p,+o),

w(p) = B,
wi(p) =0,

where f:= o sin® 0y with o := —up(6y). Here K(t) is defined as

(2.4)

(2.5) K(7) := 1% sin* 0 = [cos O+ (p — cot bp) sin 6]".

Conversely if we C?(p,+o0) is a positive solution to (2.4), then u=1tw is a
solution to (1.6).
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Proof. First, from (2.2), it holds that d/d0 = —(sin 0) 2d/dr. Hence it
follows that

1 1

) 2

0 = — = — ).
(le(g sin )H sin2 0 [(TM})‘L’]T . sin2 H(T w )7:
From (1.6), we obtain

(2.6) 1 (*w,), + K(z)w® = 0.

2
Next we consider the boundary condition. We prove that w.(z) — 0 as
T—p. If p>0 (x>0), then, from
(2.7) 2w, (1) = —1up(0) sin’® 0 — u(P),
it follows that
pPwe(p) = —pug(0o) sin® Oy — u(0y) = —rug(6o) — u(o) = 0,

and hence we obtain w.(p) = 0. Moreover, from (1.6), (2.1) and (2.3), it follows
that

(2.8) w(p) = _ euo(6)

p

From the above arguments, the function w defined in (2.3) satisfies (2.4) with
p>0.

On the other hand, suppose that p =0 (x = 0). First we show that z2w.(z)
— 0 as 7 — 0. Multiplying (1.6) by sin® @ and integrating it over (0,6,), we
obtain

= —ug(@o) Sin2 0().

0o
(2.9)  up(6y) sin? Oy = uy(6) sin* 6 — J u(y)’ sin® y dyy for 0 e (0,6).
0

From u e C?((0,0)), the right hand side of (2.9) is finite. Hence it follows that
(2.10) [ug(0o)| < +o0.

Therefore, from (2.7), (2.10) and u(6y) =0, it follows that

(2.11) 2w, (1) = —1up(0) sin® 6 —u(d) — 0 as 7 — 0.

Next, to prove w;(0) = 0, we show that w(0) is finite. From (2.2) and (2.3), it
holds that

o u(0)—00—0,
@ = i R

From (2.10) and (2.12), it follows that w(0) is finite. Therefore, from (2.6) and
(2.11), w(t) is described by

we (1) = —J

0

= —up(6y) sin* 6.

‘L’S2

T_zK(S)W(S)S ds.
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Since w(0) is finite and K(0) =0 (see (2.5)), we obtain w,(0) =0. From the

above arguments, the function w defined in (2.3) satisfies (2.4) with p = 0.
Conversely if we C?((p,+o)) be a positive solution to (2.4), then the
function u := 7w is a solution to (1.6), which is confirmed by direct calculation.
]

3. Structure theorem for the exterior problem

From the argument in Section 2, a solution u to (1.6) is associated with a
solution w to (2.4). In this section we state the structure theorem for

1
— (t*w,), + L(t)w! (r) =0 for 7€ (p, +0),

T2
(31) w(p) = B,
we(p) = O,

where w, :=max{w,0} and f is a positive constant. Here the function L
satisfies

(L)
7 L(7) € L) (p,, +o0),
where p, € (p,+0o0) is an arbitrary constant. Hereafter the solution to (3.1) with
an initial data f is denoted by w(z;p).
The problem (3.1) is more general than (2.4). In fact it is obvious that K(7)

defined in (2.5) satisfies K(t) € C'((p, +0)), K(1) =0 on (p,+00) and K(z) # 0.
Moreover, for any 7€ (p,400), it holds that

T o
J |sK(s)|ds:J sin® y(cot Y + p — cot 6y)° dif < +co0,
P 0
and

+ 00 0
J |s™*K(s)| ds = J sin? Y dyy < +0.
0

T

Thus K satisfies condition (L), and therefore we consider (3.1) in this section.
We classify solutions to (3.1) into one of the following three types. First,
for a solution to (3.1), the following statement holds.

Lemma 3.1, If a solution w to (3.1) satisfies w > 0 on (p,+00), then tw(z) is
non-decreasing for t € (p,+o0).
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Proof. From
2
Wee +=we + L(t)w? =0,
T

it follows that
(tw) (1) = 2w, (1) 4+ we (1) = —TL(7)W’(7) < 0.
Hence if (tw) (7)) < 0 for some 7; € (p,+0), then it holds that
(tw), (1) < (ww),(11) <0 for 7> 7.

Therefore there exists some 7, > 7| such that w(z,) =0, and it is contradiction to
w>0 on (p,+o0). This lemma is proved. |

By Lemma 3.1, lim,_ ., tw(7) is a positive value or +oo if w>0 in
(p,+0o0). Thus every solution to (3.1) is classified into one of the following three

types.

DeriNiTION 3.1, (i) A solution w to (3.1) is said to be a rapidly decaying
solution if w >0 on [p,4+00) and Tw(r) converges to some positive
constant as 7 — +00.

(i) A solution w to (3.1) is said to be a slowly decaying solution if w > 0
on [p,+o0) and tw(r) — +o0 as T — +o0.

(iii) A solution w to (3.1) is said to be a crossing solution if w has a zero
in (p,+00).

Remark 3.1. If w is a rapidly decaying solution, then the solution u := tw
to (1.6) is a regular solution; if w is a slowly decaying solution, then the solution
u=1tw to (1.6) is a singular solution; if w is a crossing solution, then there exists
no regular or singular solution to (1.6) corresponding to w.

Next we state the structure theorem which classifies solutions to (3.1) into
one of the above three types. To classify solutions to (3.1), it is effective to use
the Pohozaev identity. Define

3

1 T 1
(3.2) P(t;w) = Erzwf{rwr +w} + PR L(r)wh ™.

The following proposition implies that three types of solutions defined in Defini-
tion 3.1 are characterized by using (3.2).

PropPOSITION 3.1.  Under the condition (L), let w be a solution to (3.1). If w
satisfies liminf,_ o, P(t;w) > 0, then w is a crossing solution. In contrast if w
satisfies limsup,_,,  P(t;w) <0, then w is a slowly decaying solution.

If p =0, then Proposition 3.1 is identical to Propositions 3.1 and 3.2 in [10].
Moreover we can prove that with p > 0 by minor modifications.
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Before we state the structure theorem, some preliminaries are needed. First
we define

6(0) = { 1O =30+ ) | 2L arf
H(z) := # {‘L'sz(T) - %(p +1) J:y s'7PL(s) ds}.

The above functions are well-defined on (p,+o00) under the condition (L). For
G and H, it holds that

3.3 G.(0) =2 () — i
(3:3) (0 = (L) = A

with

Hence the functions G and H attain a critical value at the same point. In
addition P is associated with G and H by the following lemma.

LemMa 3.2 (Lemma 3.2 in [6]). Any solution w to (3.1) satisfies the identity

(3.4) %P(f; w) = G.(t)w! ™ (7)

and its integral form

P(t;w) = G(r)w:ﬁl(r) —(p+1) JT G(s)Whwy(s) ds.
By using G and H, we define
(3.5) 76 :=inf{7 € [p, +0) | G(7) < 0},
(3.6) Ty = sup{t € [p,+00) | H(z) < 0}.

Here we define 7¢ = +o0 if G(7) >0 on (p,+o0) and ty =p if H(r) >0 on
(p,+00). Next we introduce the following condition

(G) there exists #; € [p,+00) such that
G(t) =0 for (p,n,) and G.(r) <0 for (1,,+0).

Now we are ready to state the structure theorem of solutions to (3.1).

ProposITION 3.2.  Assume (L) and G %0 on (p,+o0). Then the following
four statements hold.



622 ATSUSHI KOSAKA

(i) If t¢ = +o0, then the structure of solutions to (3.1) is of type C: w(z;p)
is a crossing solution for any f > 0.

(i) If p=0 and ty =0, then the structure of solutions to (3.1) is of type
S: w(z;p) is a slowly decaying solution for any f > 0.

(iii) If p <ty < 16 < +00, then the structure of solutions to (3.1) is of type
M: there exists a constant f, > 0 such that w(z;f) is a slowly decaying
solution for € (0,5,), w(t; p,) is a rapidly decaying solution, and w(z; )
is a crossing solution for € (f,,+o0).

(V) If O<p=1y <16 <+ and G satisfies (G), then the structure of
solutions to (3.1) is of type M.

Propositions 3.2 (i)—(iii) are already proved, e.g., see Theorem 3.3 in [6]. How-
ever Proposition 3.2 (iv) is not shown yet, and thus we prove that below.

Before beginning the proof of Proposition 3.2, we mention some lemmas
required to prove Proposition 3.2.

LEmMA 3.3. Define to :=inf{z|L(z) > 0}. Then a solution w to (3.1) sat-
isfies w, =0 for 7€ (p,79] and w, <0 for 7€ (19,+00).

Proof. Since w, is written by

wie)=- [ (i)zus)wﬁ ds,

By the following two lemmas, if we find a rapidly decaying solution to (3.1), then
we see that the structure of solutions to (3.1) is of type M.

this lemma follows. [ |

Lemma 3.4. Assume (L) and (G). If w is a rapidly decaying solution to
(3.1), then it holds that

P(t;w) >0 and P(t;w)#£0 on (p,+0).

Lemma 3.5. Assume (L). If there exists a rapidly decaying solution w to
(3.1) satisfying
P(t;w) >0 and P(t;w)#£0 on (p,+0),

then the structure of solutions to (3.1) is of type M.

The next lemma describes behaviors of w and P(z;w) as ff— 0.

LemMa 3.6.  Assume (L). If w(t;f) is a solution to (3.1), then there hold
limg_o B~'w(z; 8) = 1 and limg_o B7"' P(r;w) = G(z) uniformly in [p,n,], where
1, € (p,+00) is an arbitrarily fixed number.
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In the case of p =0, Lemmas 3.4-3.6 are identical to Propositions 4.1, 4.2 in [7]
and Lemma 2.5 in [10], respectively. Moreover we can show the above lemmas
by simple modifications, and we omit precise arguments. While behaviors of w
and P(t;w) for a small f are described by Lemma 3.6, the following lemma
describes the behavior of w for a large f.

Lemma 3.7 (Lemma 3.4 in [6]). Suppose that p > 0. If f > 0 is sufficiently
large, then the unique solution w(z;[) to (3.1) is a crossing solution.

Next, for three types of solutions to (3.1) defined in Definition 3.1, we define
three sets of initial data.

DEerFINITION 3.2. We define sets of initial data of (3.1) as follows:

Ac:={f>0]|w(r;f) is a crossing solution to (3.1)};
Ag:={f>0|w(r;pB) is a slowly decaying solution to (3.1)};
A, :={p>0]|w(r;p) is a rapidly decaying solution to (3.1)}.

Remark 3.2.  Since every solution to (3.1) is classified into one of three types
defined in Definition 3.1, there holds A.U A;U A4, = (0,+00).

For sets A, and A;, the following lemma holds.

LemMa 3.8. The set A, is open in (0,+c0). Moreover if (G) is satisfied,
then Ay is open in (0,400).

In the case of p =0, Lemma 3.8 is equivalent to Lemmas 2.6 and 2.7 in [7], and
we can show that in the case of p > 0 by simple modifications. Hence we omit
the proof of Lemma 3.8. Now we show Proposition 3.2 (iv).

Proof of Proposition 3.2 (iv). Assume (G) and 0<p <1y <716 < +00.
Then, from Lemma 3.7, w(z;f) is a crossing solution for a sufficiently large
B >0, and hence A. # 0.

Next we prove A, # 0. From 75 < 4oo, it holds that G(u) <0 for suffi-
ciently large u > 7¢. Since G satisfies (G), it follows that u € (n,,+0o0). Hence
there holds G(u) < 0 and G.(x) <0. From Lemma 3.6, there exist a constant
01 >0 and a sufficiently small f, > 0 such that, for any fe (0,f,), it holds
that

(3.7) P w(p; B)) < BP1(G(p) +61) < 0.
From (3.4) and G.(r) <0 on (u,+0), it follows that

dP(t;w)
dt

(3.8) = G.()w!™ <0 on [u,+o).
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From (3.7) and (3.8), it follows that, for any § < f;,
P(ryw(r; ) < =02 <0 on [u,+0),

where some d, > 0. By Proposition 3.1, w(z; f) is a slowly decaying solution for
any B < f,, and hence A # 0.

By Lemma 3.8, it holds that A4.U A4, # (0,+c0). Hence, from A, # 0,
Ay # 0 and Remark 3.2, we obtain A4, # (. Thus, by Lemma 3.4, it follows
that, for w(z;f) with fe 4,,

P(z;w) >0 and P(r;w)#0 on (p,+0).

Therefore, from Lemma 3.5, the structure of solutions to (3.1) is of type M. The
proof is completely finished. |

Remark 3.3. By similar arguments above, we can confirm that Proposition
3.2 is valid for more general problems

1

(V"'w,), + L()wh(t) =0 for 7€ (p,+m0),

TNfl
w(p) = B,
we(p) =0,

where N >4 and L(t) satisfies (L) with t!=V=27L(7) e L'(p,,+0) instead of
' PL(t) e L' (p,,+0).

4. Proof of Theorem 1.1

In this section we will show Theorem 1.1. Before we start the proof of
Theorem 1.1, we prove several lemmas as its preliminary.
First, for our problem (2.4), G and H are written by

4.1 G(t) = l‘C3K(‘5) - lj s?K(s) ds,
6 2/,
1 3 1 00 4
(4.2) H(t) = rd K(7) — EJ s K(s) ds.
Here we define
(4.3) k(0) :=cos 0+ (p — cot ) sin 0.

and K(r) is written by K(z) = k(0)* (see (2.5)). Moreover, from (3.3), it follows
that

(4.4) G.(7) = —T3KT(‘[) = TGHT(T),
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where
(45)  K.(1) = —4k(0)*ky(0) sin® 0
= —4sin® O(cot O+ p — cot 0)*[—1 + (p — cot by) cot 6].
Furthermore, as a critical point of G and H, the following lemma holds.

Lemma 4.1. If 6y € (0,7/2), then G and H have at most one critical point in
(p,+0). On the other hand, if 0y € (n/2,7), then G and H have one critical point
or two critical points in (p,+o0).

Proof. From (4.4), G, and H, attain a zero at the same point as K.
Moreover, to investigate a zero of K, it suffices to consider a zero of kky in
(0,00) (see (4.5)). By direct computation, it follows that

(kko)(0) = (4% + B*)"/* sin(20 + v),
where

(4.6) A:%{(p—cotﬁo)z—l}, B = p — cot 0, tanv:g.

If 6y € (0,7/2], then kky attains a zero once or does not attain a zero in (0, 6).
On the other hand, if 6y € (n/2,7), then kky attains a zero once or twice.
Therefore the lemma follows. |

Second we show the result on the behavior of G as 7 — +o0.

LemMA 4.2.  Under 0y € (0,7), if k > 27! sin 20y, then G(t) — —c0 as t —
+o0.  In contrast if k¥ <27 'sin 20y, then G(t) — +o0 as T — +o0.

Proof. From (2.2), (4.4) and (4.5), we obtain

2
G.(1) = 6131@(1) = —3(cos 0+ Bsin 0)°(~1+ Bcot 0).

Here we used B defined in (4.6). If x >27!sin 26y, then B=p—cotf >0
follows from (2.1). Thus G;(t) - —c0 as 0 — 0 (t — +o0), and therefore
G(t) —» —0 as t— +oo. Similarly if x <27!sin 20y, then G.(r) — +oo or
2/3 as 0 — 0. Therefore G(r) — 4o as 7 — +oo0. |

Finally we prove the result on behaviors of G and H near 7 = p.

LEmMa 4.3. Assume 0y e (0,7/2). If 0 <k <tanby, then G and H in-
crease near T=p. On the contrary if k > tan 0y, then G and H decrease near

T=p.
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Proof. From (4.4), it suffices to investigate K; near v = p. First suppose
that x =0 (then p=0). From p=0 and (4.5), we obtain

4.7 K. () = 4 sin® O(cot 0 — cot 0y)*(1 + cot by cot 0).

Since 0y € (0,7/2), it follows that K (t) > 0 near 0 = 0, that is, 7 =0.
Next suppose that x > 0 (then p > 0). Since 7 = p is equivalent to 0 = 0,
it follows that

(4.8) K. (p) = —4p> sin® Gy[—1 + (p — cot ) cot by
and

—sin® 0y + x cos Oy — cos? B sin O,

(4.9) —1+ (p—cot ) cot Oy = —
sin” 0y
_cos by

sin® 6,

(rc — tan 6p).

If 0 <x <tan#p, then we obtain K;(p) > 0. Therefore, by the continuity of
K(7), there holds K,(t) > 0 near 7 = p. Similarly if x > tan 6y, then it holds that
K:(7) < 0 near 7= p.

Finally we prove that if x = tan 0y, then K;(7) < 0 near 7= p. From (4.9),
it follows that

(4.10) =1+ (p—cot ) cot y = 0.

In addition (4.10) implies p — cot y > 0. Thus, since cot § is monotone decreas-
ing in (0,6p), it holds that

(4.11) —1+4+ (p—cot ) cotd >0 for 6e(0,6).

Therefore, from (4.5) and (4.11), we see that K;(7r) < 0 near 6 = 6y (v = p), that
is, near 7 = p. This lemma is shown. |

Now we are ready to show Theorem 1.1 with 0 < 6y < 7/2.

Proof of Theorem 1.1 with 0< 0y <mn/2. First we assume 0 <k <
271sin 20y. From Lemmas 4.2 and 4.3, it holds that G(t) increase near 7 = p
and G(r) — 400 as T — +o0. Moreover, from Lemma 4.1, we see that G has
no critical point in (p,+o0), that is, G is monotone increasing in (p,+o0). In
addition, from (2.5) and (4.1), it holds that

(4.12) G(p) = ép3K(p) = %/ﬂ sin* 0y > 0.

Thus we obtain 7 =400 by (3.5). By Proposition 3.2 (i), the structure of
solutions is of type C. Namely, for any S, a solution w(z;f) to (2.4) is a
crossing solution, and hence (1.6) has no regular and no singular solution (see
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Definition 3.1 and Remark 3.1). Furthermore we rewrite the above result as
x. Namely 0 <x <27!sin20, with 0 < 0y <n/2 is equivalent to 0y # 0 and
271 Arcsin 2k < 0y < 27!(n — Arcsin 2x) with 0 <x <2~!. Therefore Theorem
1.1 (i-a) with 0 < 0y < m/2 is proved.

Next we assume x > 27! sin 20;. From Lemma 4.2, it follows that G,(t)
< 0 for sufficiently large 7 and 7 < +00. In addition, since G(p) >0 from
(4.12) and G has at most one critical point by (4.1), the function G satisfies
(G). Moreover, from (2.5) and (4.2), it follows that, as 7 — o0,

(4.13) H(r) = ér‘3K(‘c) +o(l) = %(cot 0+ p — cot b) sin* 0+ o(1) — 0.
From (4.4) and G,(r) <0 for sufficiently large 7, it holds that H.(r) <0 for
sufficiently large 7, and hence H(7) > 0 for sufficiently large 7. Thus we obtain
p <ty < +oo from (3.6). Furthermore, since G has at most one critical point
and H attains its critical value at the same 7 as G, it holds that 0 < p <
Ty <176 < +o0. Thus we can apply Propositions 3.2 (iii) and (iv), and it is
proved that the structure of solutlons is of type M. From (2.8), we define
o = B(sin 0)) "% and o, = B,(sin 0p) 2. Recall that u(0;0) is a solution to (1.6)
satisfying ug(6y) = —o. If a e (0,0,), then u(6;x) is a singular solution. More-
over u(r,o) is a regular solution for o = a,. On the other hand, if o € (a.,+00),
then a regular or singular solution u(6;a) to (1.6) does not exist.

We also rewrite this result as x. Namely 27! sin 20y < x <2~! with 0 <
0p < /2 is equivalent to 0 < 0y < 27! Arcsin 2x or 27! (z — Arcsin 2x) < 0p with
0 <x <27'. Therefore Theorem 1.1 (i-b) with 0 < 6y < x/2 is proved. Fur-
thermore, since the structure of solutions is of type M in the case of x > 27!
with 0 < 0y < /2, Theorem 1.1 (ii) with 0 < 8y < /2 is shown. [ |

Next we will prove Theorem 1.1 with 7/2 < 0y < 7. Instead of Lemma 4.3,
the following lemma holds.

Lemma 44. If Oy e (n/2,n), then G and H increase near t = p.

Proof. 1If k>0 (p>0), then, from (4.8) and (4.9), we obtain K;(p) > 0.
Therefore, by the continuity of K(7), it holds that K;(t) > 0 near 7 = p. On the
other hand, If x =0 (p =0), then, from (4.7), K;(t) >0 near 0 =06y (r=0).

|

Now we prove Theorem 1.1 with n/2 < 6y < .

Proof of Theorem 1.1 with n/2 < 0y <. From Lemma 4.1, functions G
and H have one critical point or two critical points. In addition, by Lemmas 4.2
and 4.4, it holds that G(r) —» —c0 as 7 — 4o and G and H increase near
7=p. Hence G and H have one local maximum point 75. Therefore it holds
that 7 € (19, +o0) and G satisfies (G).
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If p>0 (x>0), then we obtain 7y € [p,79) from the above arguments.
By Propositions 3.2 (iii) and (iv), it is proved that the structure of solutions is
of type M.

On the other hand, if p =0 (x =0), then, from (2.2), (2.5) and (4.2), it
follows that

. NN
H(0) = tsin* 0],_, — EJ sin? 0 df < 0.
0
Since H(t) — 0 as 7 — +oo (see (4.13)), there holds H(z) > 0 for 7 > 75. Hence
7 € (0,79), and we obtain 0 < 7y < 79 < 7¢ < +00. Therefore, by Proposition
3.2 (iii), it is proved that the structure of solutions is of type M. The proof of

Theorem 1.1 is completely finished. ]
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