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EMDEN EQUATION INVOLVING THE CRITICAL SOBOLEV

EXPONENT WITH THE THIRD-KIND BOUNDARY

CONDITION IN S3

Atsushi Kosaka

Abstract

We consider a positive solution of the Emden equation with the critical Sobolev

exponent on a geodesic ball in S3. In the case of the Dirichlet boundary condition,

Bandle and Peletier [2] proved the precise result on the existence of a positive radial

solution. We investigate the same equation with the third kind boundary condition and

obtain a more general result. Namely we prove that the existence and the nonexistence

of solutions depend on the geodesic radius and the boundary condition. Moreover the

set of solutions consists of a unique radial classical solution and a continuum of singular

solutions.

1. Introduction

Our aim is to investigate the structure of positive solutions to the Emden
equation having the critical Sobolev exponent on a geodesic ball

DSN uþ uðNþ2Þ=ðN�2Þ ¼ 0 in By0 ;

u > 0 in By0 ;

uþ k
qu

qn
¼ 0 on qBy0 ;

8>>><
>>>:

ð1:1Þ

where Nb 3, SN ¼ fx A RNþ1 j jxj ¼ 1g, DSN is the Laplace-Beltrami operator on
SN , n is the outer unit normal vector to qBy0 and kb 0. Here By0 is a geodesic
ball in SN with its geodesic radius y0 A ð0; pÞ, and its center is located at the
north pole Pn ¼ ðx1; x2; . . . ; xNþ1Þ ¼ ð0; 0; . . . ; 1Þ. In this paper we consider
a classical solution and a singular solution u A C2ðBy0nfPngÞ to (1.1) with
limx!Pn

uðxÞ ¼ þy.
First, for the sake of comparison with results on (1.1), we refer to known

results on the Emden equation in B� :¼ fx A RN j jxj < 1g, that is, a ball in the
Euclidean space with the same dimensions as SN :
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Duþ up ¼ 0 in B�;

u > 0 in B�;

uþ k
qu

qn
¼ 0 on qB�:

8>><
>>:

ð1:2Þ

If k ¼ 0, then we can immediately show that the problem (1.2) with p ¼
ðN þ 2Þ=ðN � 2Þ has no solution by applying the well-known Pohozaev identity.
In fact, for a solution u to (1.2), there holds the Pohozaev identity

N

pþ 1
�N � 2

2

� �ð
B �

upþ1 dx ¼ 1

2

ð
qB�

qu

qn

����
����
2

x � n ds:ð1:3Þ

Set p ¼ ðN þ 2Þ=ðN � 2Þ. Then the left hand side of (1.3) vanishes, and hence
we obtain qu=qn ¼ 0 on qB� from x � n ¼ 1. Therefore it follows that u1 0 in
B� from the Hopf boundary lemma (e.g., see Lemma 3.4 in [4]). Moreover, in
the case of kb 0 and N ¼ 3, Kabeya, Yanagida and Yotsutani [6] proved that
if 0a ka 1, then (1.2) has no radial classical or singular solution. On the other
hand, if k > 1, then (1.2) has a unique classical solution and a continuum of
singular solutions. Namely the existence of a solution to (1.2) depends on k,
and k ¼ 1 is the critical value of the existence or the nonexistence of a solution.
Concerning a higher dimensional case, e.g., see [5].

For (1.1) with N ¼ 3 and k ¼ 0, Bandle, Brillard and Flucher [1] proved
the existence of a radial solution from the viewpoint of the Sobolev imbedding.
Here a solution to (1.1) depending only on the geodesic distance from Pn is said
to be a radial solution. They proved that there exists some constant yc such that

(a) a radial classical solution to (1.1) exists if y0 A ðyc; pÞ;
(b) (1.1) has no radial classical solution if y0 A ð0; ycÞ.

To obtain yc exactly, Bandle and Peletier [2] investigated (1.1) with N ¼ 3 more
precisely. They used the stereographic projection from the south pole ð0; 0; 0;�1Þ
onto the plane x4 ¼ 0 and investigated the existence of a positive radial solution
in a ball on R3. Namely let y be the geodesic distance from Pn, and define
r ¼ tanðy=2Þ. Then a radial solution to (1.1) satisfies

r2

1þ r2
ur

� �
r

þ r2

ð1þ r2Þ3
u5 ¼ 0 for r A ð0;RÞ;

uðrÞ > 0 for r A ð0;RÞ;
uðRÞ ¼ 0;

8>>><
>>>:

ð1:4Þ

where R ¼ tanðy0=2Þ. Let uðrÞ A C2ðð0;RÞÞ be a solution to (1.4). If uðrÞ
converges to a positive constant as r ! 0, then urðrÞ ! 0 as r ! 0 (see Lemma
1 in [2]). Hence uðtanðy=2ÞÞ is a classical solution to (1.1). Bandle and Peletier
proved the following theorem.

Theorem A (Theorem 1 in [2]). For (a) and (b), it holds that yc ¼ p=2.
Moreover if y0 ¼ p=2, then (1.1) has no radial classical solution.
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From Theorem A, it seems that the structure of solutions to (1.1) with kb 0
also has a di¤erence between the case By0 HBp=2 and the case By0 IBp=2.
Furthermore Kumaresan and Prajapat [8] proved that if there exists a solution
u A C2ðBy0Þ to (1.1) with k ¼ 0 and 0 < y0 < p=2, then u is radially symmetric.
The Kumaresan–Prajapat result is the analogue of the Gidas–Ni–Nirenberg
result [3], and thus we see that there exists no positive solution in the case of
0 < y0 < p=2. In contrast it is not yet known whether or not the analogue of
the Gidas–Ni–Nirenberg result holds for p=2a y0 < p. The above result on
N ¼ 3 is di¤erent from that on Nb 4 in [1]: for any y0 A ð0; pÞ, there exists a
radial solution to (1.1) with Nb 4 and k ¼ 0. Namely it holds that yc ¼ 0 if
Nb 4. In addition the Kumaresan–Prajapat result also holds with Nb 4 and
0 < y0 < p=2.

On the other hand, suppose that u is a classical or singular solution to (1.1)
with the Neumann boundary condition (k ¼ þy) and N ¼ 3. Then u is a
solution to (1.4) with urðRÞ ¼ 0 instead of uðRÞ ¼ 0. By integrating (1.4) from
r A ð0;RÞ to R, it holds that

urðrÞ ¼
1þ r2

r2

ðR

r

s2

ð1þ s2Þ3
uðsÞ5 ds > 0 for r A ð0;RÞ:ð1:5Þ

The relation (1.5) implies limr!0 urðrÞ ¼ þy. If u is a classical solution to (1.1),
then urð0Þ ¼ 0, which is a contradiction to limr!0 urðrÞ ¼ þy. Thus u is not a
classical solution. Similarly we see that u is not a singular solution. In fact if u
is a singular solution to (1.1), then limr!0 urðrÞ ¼ �y. Therefore there exists no
classical or singular solution to (1.1) with the Neumann boundary condition.

Our main purpose is to investigate the structure of radial solutions to (1.1)
in the case of N ¼ 3 and 0a k < þy. First we adopt the polar coordinates
instead of the stereographic projection used in Bandle and Peletier’s investi-
gation. It seems that the polar coordinates is more natural than the stereo-
graphic projection to investigate (1.1) from the standpoint of ODE. For
x ¼ ðx1; x2; x3; x4Þ A S3, let

x1 ¼ sin y sin j1 sin j2
x2 ¼ sin y sin j1 cos j2
x3 ¼ sin y cos j1
x4 ¼ cos y

8>>><
>>>:

with y; j1 A ½0; p� (i ¼ 1; 2) and j2 A ½0; 2p�. Then the Laplace-Beltrami operator
DS3 is described by

DS3u ¼ 1

sin2 y

q

qy
sin2 y

qu

qy

� �

þ 1

sin2 y sin j1

q

qj1
sin j1

qu

qj1

� �
þ 1

sin2 y sin2 j1

q2u

qj2
2

:
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Therefore a radial solution to (1.1) satisfies

1

sin2 y
ðuy sin2 yÞy þ u5 ¼ 0 for y A ð0; y0Þ;

uðyÞ > 0 for y A ð0; y0Þ;
uðy0Þ þ kuyðy0Þ ¼ 0:

8>>><
>>>:

ð1:6Þ

Next we define some notations for a solution to (1.6). In this paper we
consider the following two types of solutions to (1.6).

Definition 1.1. (i) A solution u A C2ðð0; y0ÞÞ to ð1:6Þ is said to be a regular
solution if u converges to some positive constant as y ! 0.

(ii) A solution u A C2ðð0; y0ÞÞ to ð1:6Þ is said to be a singular solution if u
has singularity at y ¼ 0.

Here we remark that a regular solution to (1.6) defined in Definition 1.1 is a
classical solution to (1.1). Similarly a singular solution to (1.6) is corresponding
to a singular solution to (1.1). In addition let uðy; aÞ be a solution to (1.6)
satisfying uyðy0Þ ¼ �a. Moreover the principal value of arcsin x is denoted by
Arcsin x. Our main result is the following theorem for (1.6).

Theorem 1.1. For the problem ð1:6Þ; the following statements hold.
(i) Suppose that 0a ka 1=2.

(a) If y0 satisfies y0 0 0 and

1

2
Arcsin 2ka y0 a

1

2
ðp�Arcsin 2kÞ;

then ð1:6Þ does not have a regular or singular solution.
(b) On the other hand, if y0 satisfies

0 < y0 <
1

2
Arcsin 2k or

1

2
ðp�Arcsin 2kÞ < y0;

then there exists a constant a� > 0 such that the solution uðy; a�Þ
is a regular solution. Moreover uðy; aÞ is a singular solution for a A
ð0; a�Þ. In addition, for a A ða�;þyÞ, the problem ð1:6Þ does not have
either a regular solution or a singular solution.

(ii) Suppose that k > 1=2. Then there exists a constant a� > 0 such that the
solution uðy; a�Þ is a regular solution. Moreover uðy; aÞ is a singular
solution for a A ð0; a�Þ. In addition, for a A ða�;þyÞ, the problem ð1:6Þ
does not have either a regular solution or a singular solution.

Remark 1.1. Compare Theorem A and Theorem 1.1. Since a regular
solution to (1.6) is a classical solution to (1.4), Theorem 1.1 with k ¼ 0 implies
the same result as in Theorem A. Thus Theorem 1.1 is the extension of
Theorem A and this provides us a comprehensive view to (1.1).
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The proof of Theorem 1.1 is due to the method used in [6]. Namely we
change the variable and consider the corresponding exterior problem

1

t2
ðt2wtÞt þ KðtÞw5ðtÞ ¼ 0 for t A ðr;þyÞ;

wðrÞ ¼ b;

wtðrÞ ¼ 0;

8>>><
>>>:

where b > 0 and rb 0 depend on k and y0. Next we investigate the structure of
solutions to the exterior problem by using results proved in [7], [9] and [10].

Our paper is organized as follows: we precisely define the change of the
variable to transform (1.6) to the exterior problem in Section 2. The structure
theorem concerning this exterior problem is stated in Section 3. Theorem 1.1 is
shown in Section 4 by using the structure theorem.

2. Transforming to the exterior problem

In this section, we transform (1.6) to an exterior problem. Hereafter let u
be a regular solution or a singular solution to (1.6). First set

r :¼ k

sin2 y0
;ð2:1Þ

t :¼
ð y0

y

dc

sin2 c
þ r ¼ cot y� cot y0 þ r:ð2:2Þ

From (2.1), r ¼ 0 if and only if k ¼ 0. Moreover, from (2.2), t attains r as
y ¼ y0, and t ! þy as y ! 0. Next we define

wðtÞ :¼ uðyÞ
t

:ð2:3Þ

By using t and w defined above, we can transform (1.6) to the following exterior
problem.

Lemma 2.1. The function w ¼ u=t satisfies

1

t2
ðt2wtÞt þ KðtÞw5ðtÞ ¼ 0 for t A ðr;þyÞ;

wðrÞ ¼ b;

wtðrÞ ¼ 0;

8>>><
>>>:

ð2:4Þ

where b :¼ a sin2 y0 with a :¼ �uyðy0Þ. Here KðtÞ is defined as

KðtÞ :¼ t4 sin4 y ¼ ½cos yþ ðr� cot y0Þ sin y�4:ð2:5Þ

Conversely if w A C2ðr;þyÞ is a positive solution to (2.4), then u ¼ tw is a
solution to ð1:6Þ.
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Proof. First, from (2.2), it holds that d=dy ¼ �ðsin yÞ�2
d=dt. Hence it

follows that

ðuy sin2 yÞy ¼
1

sin2 y
½ðtwÞt�t ¼

1

t sin2 y
ðt2wtÞt:

From (1.6), we obtain

1

t2
ðt2wtÞt þ KðtÞw5 ¼ 0:ð2:6Þ

Next we consider the boundary condition. We prove that wtðtÞ ! 0 as
t ! r. If r > 0 (k > 0), then, from

t2wtðtÞ ¼ �tuyðyÞ sin2 y� uðyÞ;ð2:7Þ
it follows that

r2wtðrÞ ¼ �ruyðy0Þ sin2 y0 � uðy0Þ ¼ �kuyðy0Þ � uðy0Þ ¼ 0;

and hence we obtain wtðrÞ ¼ 0. Moreover, from (1.6), (2.1) and (2.3), it follows
that

wðrÞ ¼ � kuyðy0Þ
r

¼ �uyðy0Þ sin2 y0:ð2:8Þ

From the above arguments, the function w defined in (2.3) satisfies (2.4) with
r > 0.

On the other hand, suppose that r ¼ 0 (k ¼ 0). First we show that t2wtðtÞ
! 0 as t ! 0. Multiplying (1.6) by sin2 y and integrating it over ðy; y0Þ, we
obtain

uyðy0Þ sin2 y0 ¼ uyðyÞ sin2 y�
ð y0

y

uðcÞ5 sin2 c dc for y A ð0; y0Þ:ð2:9Þ

From u A C2ðð0; y0ÞÞ, the right hand side of (2.9) is finite. Hence it follows that

juyðy0Þj < þy:ð2:10Þ
Therefore, from (2.7), (2.10) and uðy0Þ ¼ 0, it follows that

t2wtðtÞ ¼ �tuyðyÞ sin2 y� uðyÞ ! 0 as t ! 0:ð2:11Þ
Next, to prove wtð0Þ ¼ 0, we show that wð0Þ is finite. From (2.2) and (2.3), it
holds that

wð0Þ ¼ lim
y!y0

uðyÞ � 0

y� y0

y� y0

t� 0
¼ �uyðy0Þ sin2 y0:ð2:12Þ

From (2.10) and (2.12), it follows that wð0Þ is finite. Therefore, from (2.6) and
(2.11), wtðtÞ is described by

wtðtÞ ¼ �
ð t

0

s2

t2
KðsÞwðsÞ5 ds:
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Since wð0Þ is finite and Kð0Þ ¼ 0 (see (2.5)), we obtain wtð0Þ ¼ 0. From the
above arguments, the function w defined in (2.3) satisfies (2.4) with r ¼ 0.

Conversely if w A C2ððr;þyÞÞ be a positive solution to (2.4), then the
function u :¼ tw is a solution to (1.6), which is confirmed by direct calculation.

9

3. Structure theorem for the exterior problem

From the argument in Section 2, a solution u to (1.6) is associated with a
solution w to (2.4). In this section we state the structure theorem for

1

t2
ðt2wtÞt þ LðtÞwp

þðtÞ ¼ 0 for t A ðr;þyÞ;
wðrÞ ¼ b;

wtðrÞ ¼ 0;

8>>><
>>>:

ð3:1Þ

where wþ :¼ maxfw; 0g and b is a positive constant. Here the function L
satisfies

LðtÞ A C1ððr;þyÞÞ;
LðtÞb 0 and LðtÞ2 0 on ðr;þyÞ;
tLðtÞ A L1ðr; r�Þ;
t1�pLðtÞ A L1ðr�;þyÞ;

8>>><
>>>:

ðLÞ

where r� A ðr;þyÞ is an arbitrary constant. Hereafter the solution to (3.1) with
an initial data b is denoted by wðt; bÞ.

The problem (3.1) is more general than (2.4). In fact it is obvious that KðtÞ
defined in (2.5) satisfies KðtÞ A C1ððr;þyÞÞ, KðtÞb 0 on ðr;þyÞ and KðtÞ2 0.
Moreover, for any t A ðr;þyÞ, it holds that

ð t

r

jsKðsÞj ds ¼
ð y0

y

sin2 cðcot cþ r� cot y0Þ5 dc < þy;

and ðþy

t

js�4KðsÞj ds ¼
ð y

0

sin2 c dc < þy:

Thus K satisfies condition (L), and therefore we consider (3.1) in this section.
We classify solutions to (3.1) into one of the following three types. First,

for a solution to (3.1), the following statement holds.

Lemma 3.1. If a solution w to (3.1) satisfies w > 0 on ðr;þyÞ, then twðtÞ is
non-decreasing for t A ðr;þyÞ.
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Proof. From

wtt þ
2

t
wt þ LðtÞwp ¼ 0;

it follows that

ðtwÞttðtÞ ¼ 2wtðtÞ þ twttðtÞ ¼ �tLðtÞwpðtÞa 0:

Hence if ðtwÞtðt1Þ < 0 for some t1 A ðr;þyÞ, then it holds that

ðtwÞtðtÞa ðtwÞtðt1Þ < 0 for t > t1:

Therefore there exists some t2 > t1 such that wðt2Þ ¼ 0, and it is contradiction to
w > 0 on ðr;þyÞ. This lemma is proved. 9

By Lemma 3.1, limt!þy twðtÞ is a positive value or þy if w > 0 in
ðr;þyÞ. Thus every solution to (3.1) is classified into one of the following three
types.

Definition 3.1. (i) A solution w to ð3:1Þ is said to be a rapidly decaying
solution if w > 0 on ½r;þyÞ and twðtÞ converges to some positive
constant as t ! þy.

(ii) A solution w to ð3:1Þ is said to be a slowly decaying solution if w > 0
on ½r;þyÞ and twðtÞ ! þy as t ! þy.

(iii) A solution w to ð3:1Þ is said to be a crossing solution if w has a zero
in ðr;þyÞ.

Remark 3.1. If w is a rapidly decaying solution, then the solution u :¼ tw
to (1.6) is a regular solution; if w is a slowly decaying solution, then the solution
u ¼ tw to (1.6) is a singular solution; if w is a crossing solution, then there exists
no regular or singular solution to (1.6) corresponding to w.

Next we state the structure theorem which classifies solutions to (3.1) into
one of the above three types. To classify solutions to (3.1), it is e¤ective to use
the Pohozaev identity. Define

Pðt;wÞ :¼ 1

2
t2wtftwt þ wg þ t3

pþ 1
LðtÞwpþ1

þ :ð3:2Þ

The following proposition implies that three types of solutions defined in Defini-
tion 3.1 are characterized by using (3.2).

Proposition 3.1. Under the condition (L), let w be a solution to (3.1). If w
satisfies lim inf t!þy Pðt;wÞ > 0, then w is a crossing solution. In contrast if w
satisfies lim supt!þy Pðt;wÞ < 0, then w is a slowly decaying solution.

If r ¼ 0, then Proposition 3.1 is identical to Propositions 3.1 and 3.2 in [10].
Moreover we can prove that with r > 0 by minor modifications.
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Before we state the structure theorem, some preliminaries are needed. First
we define

GðtÞ :¼ 1

pþ 1
t3LðtÞ � 1

2
ðpþ 1Þ

ð t

r

s2LðsÞ ds
� �

;

HðtÞ :¼ 1

pþ 1
t2�pLðtÞ � 1

2
ðpþ 1Þ

ðþy

t

s1�pLðsÞ ds
� �

:

The above functions are well-defined on ðr;þyÞ under the condition (L). For
G and H, it holds that

GtðtÞ ¼
tðpþ1Þ=2

pþ 1
ðt�xLÞt ¼ tpþ1HtðtÞð3:3Þ

with

x ¼ p� 5

2
:

Hence the functions G and H attain a critical value at the same point. In
addition P is associated with G and H by the following lemma.

Lemma 3.2 (Lemma 3.2 in [6]). Any solution w to ð3:1Þ satisfies the identity

d

dt
Pðt;wÞ ¼ GtðtÞwpþ1

þ ðtÞð3:4Þ

and its integral form

Pðt;wÞ ¼ GðtÞwpþ1
þ ðtÞ � ðpþ 1Þ

ð t

r

GðsÞwp
þwsðsÞ ds:

By using G and H, we define

tG :¼ infft A ½r;þyÞ jGðtÞ < 0g;ð3:5Þ
tH :¼ supft A ½r;þyÞ jHðtÞ < 0g:ð3:6Þ

Here we define tG ¼ þy if GðtÞb 0 on ðr;þyÞ and tH ¼ r if HðtÞb 0 on
ðr;þyÞ. Next we introduce the following condition

there exists h1 A ½r;þyÞ such that
GðtÞb 0 for ðr; h1Þ and GtðtÞa 0 for ðh1;þyÞ:

�
ðGÞ

Now we are ready to state the structure theorem of solutions to (3.1).

Proposition 3.2. Assume (L) and G2 0 on ðr;þyÞ. Then the following
four statements hold.
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(i) If tG ¼ þy, then the structure of solutions to ð3:1Þ is of type C: wðt; bÞ
is a crossing solution for any b > 0.

(ii) If r ¼ 0 and tH ¼ 0, then the structure of solutions to ð3:1Þ is of type
S: wðt; bÞ is a slowly decaying solution for any b > 0.

(iii) If r < tH a tG < þy, then the structure of solutions to ð3:1Þ is of type
M: there exists a constant b� > 0 such that wðt; bÞ is a slowly decaying
solution for b A ð0; b�Þ, wðt; b�Þ is a rapidly decaying solution, and wðt; bÞ
is a crossing solution for b A ðb�;þyÞ.

(iv) If 0 < r ¼ tH a tG < þy and G satisfies (G), then the structure of
solutions to (3.1) is of type M.

Propositions 3.2 (i)–(iii) are already proved, e.g., see Theorem 3.3 in [6]. How-
ever Proposition 3.2 (iv) is not shown yet, and thus we prove that below.

Before beginning the proof of Proposition 3.2, we mention some lemmas
required to prove Proposition 3.2.

Lemma 3.3. Define t0 :¼ infft jLðtÞ > 0g. Then a solution w to ð3:1Þ sat-
isfies wt 1 0 for t A ðr; t0� and wt < 0 for t A ðt0;þyÞ.

Proof. Since wt is written by

wtðtÞ ¼ �
ð t

r

s

t

� �2

LðsÞwp
þ ds;

this lemma follows. 9

By the following two lemmas, if we find a rapidly decaying solution to (3.1), then
we see that the structure of solutions to ð3:1Þ is of type M.

Lemma 3.4. Assume (L) and (G). If w is a rapidly decaying solution to
(3.1), then it holds that

Pðt;wÞb 0 and Pðt;wÞ2 0 on ðr;þyÞ:

Lemma 3.5. Assume (L). If there exists a rapidly decaying solution w to
(3.1) satisfying

Pðt;wÞb 0 and Pðt;wÞ2 0 on ðr;þyÞ;

then the structure of solutions to ð3:1Þ is of type M.

The next lemma describes behaviors of w and Pðt;wÞ as b ! 0.

Lemma 3.6. Assume (L). If wðt; bÞ is a solution to (3.1), then there hold

limb!0 b
�1wðt; bÞ ¼ 1 and limb!0 b

�p�1Pðt;wÞ ¼ GðtÞ uniformly in ½r; h2�, where
h2 A ðr;þyÞ is an arbitrarily fixed number.
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In the case of r ¼ 0, Lemmas 3.4–3.6 are identical to Propositions 4.1, 4.2 in [7]
and Lemma 2.5 in [10], respectively. Moreover we can show the above lemmas
by simple modifications, and we omit precise arguments. While behaviors of w
and Pðt;wÞ for a small b are described by Lemma 3.6, the following lemma
describes the behavior of w for a large b.

Lemma 3.7 (Lemma 3.4 in [6]). Suppose that r > 0. If b > 0 is su‰ciently
large, then the unique solution wðt; bÞ to ð3:1Þ is a crossing solution.

Next, for three types of solutions to (3.1) defined in Definition 3.1, we define
three sets of initial data.

Definition 3.2. We define sets of initial data of ð3:1Þ as follows:

Ac :¼ fb > 0 jwðt; bÞ is a crossing solution to ð3:1Þg;
As :¼ fb > 0 jwðt; bÞ is a slowly decaying solution to ð3:1Þg;
Ar :¼ fb > 0 jwðt; bÞ is a rapidly decaying solution to ð3:1Þg:

Remark 3.2. Since every solution to (3.1) is classified into one of three types
defined in Definition 3.1, there holds Ac UAs UAr ¼ ð0;þyÞ.

For sets Ac and As, the following lemma holds.

Lemma 3.8. The set Ac is open in ð0;þyÞ. Moreover if (G) is satisfied,
then As is open in ð0;þyÞ.

In the case of r ¼ 0, Lemma 3.8 is equivalent to Lemmas 2.6 and 2.7 in [7], and
we can show that in the case of r > 0 by simple modifications. Hence we omit
the proof of Lemma 3.8. Now we show Proposition 3.2 (iv).

Proof of Proposition 3.2 (iv). Assume (G) and 0 < ra tH a tG < þy.
Then, from Lemma 3.7, wðt; bÞ is a crossing solution for a su‰ciently large
b > 0, and hence Ac 0j.

Next we prove As 0j. From tG < þy, it holds that GðmÞ < 0 for su‰-
ciently large m > tG. Since G satisfies (G), it follows that m A ðh1;þyÞ. Hence
there holds GðmÞ < 0 and GtðmÞa 0. From Lemma 3.6, there exist a constant
d1 > 0 and a su‰ciently small b1 > 0 such that, for any b A ð0; b1Þ, it holds
that

Pðm;wðm; bÞÞa bpþ1ðGðmÞ þ d1Þ < 0:ð3:7Þ

From (3.4) and GtðtÞa 0 on ðm;þyÞ, it follows that

dPðt;wÞ
dt

¼ GtðtÞw pþ1
þ a 0 on ½m;þyÞ:ð3:8Þ
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From (3.7) and (3.8), it follows that, for any b < b1,

Pðt;wðt; bÞÞa�d2 < 0 on ½m;þyÞ;

where some d2 > 0. By Proposition 3.1, wðt; bÞ is a slowly decaying solution for
any b < b1, and hence As 0j.

By Lemma 3.8, it holds that Ac UAs 0 ð0;þyÞ. Hence, from Ac 0j,
As 0j and Remark 3.2, we obtain Ar 0j. Thus, by Lemma 3.4, it follows
that, for wðt; bÞ with b A Ar,

Pðt;wÞb 0 and Pðt;wÞ2 0 on ðr;þyÞ:

Therefore, from Lemma 3.5, the structure of solutions to (3.1) is of type M. The
proof is completely finished. 9

Remark 3.3. By similar arguments above, we can confirm that Proposition
3.2 is valid for more general problems

1

tN�1
ðtN�1wtÞt þ LðtÞwp

þðtÞ ¼ 0 for t A ðr;þyÞ;
wðrÞ ¼ b;

wtðrÞ ¼ 0;

8>>><
>>>:

where Nb 4 and LðtÞ satisfies (L) with t1�ðN�2ÞpLðtÞ A L1ðr�;þyÞ instead of
t1�pLðtÞ A L1ðr�;þyÞ.

4. Proof of Theorem 1.1

In this section we will show Theorem 1.1. Before we start the proof of
Theorem 1.1, we prove several lemmas as its preliminary.

First, for our problem (2.4), G and H are written by

GðtÞ ¼ 1

6
t3KðtÞ � 1

2

ð t

r

s2KðsÞ ds;ð4:1Þ

HðtÞ ¼ 1

6
t�3KðtÞ � 1

2

ðþy

t

s�4KðsÞ ds:ð4:2Þ

Here we define

kðyÞ :¼ cos yþ ðr� cot y0Þ sin y:ð4:3Þ

and KðtÞ is written by KðtÞ ¼ kðyÞ4 (see (2.5)). Moreover, from (3.3), it follows
that

GtðtÞ ¼
1

6
t3KtðtÞ ¼ t6HtðtÞ;ð4:4Þ
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where

KtðtÞ ¼ �4kðyÞ3kyðyÞ sin2 yð4:5Þ

¼ �4 sin6 yðcot yþ r� cot y0Þ3½�1þ ðr� cot y0Þ cot y�:

Furthermore, as a critical point of G and H, the following lemma holds.

Lemma 4.1. If y0 A ð0; p=2�, then G and H have at most one critical point in
ðr;þyÞ. On the other hand, if y0 A ðp=2; pÞ, then G and H have one critical point
or two critical points in ðr;þyÞ.

Proof. From (4.4), Gt and Ht attain a zero at the same point as Kt.
Moreover, to investigate a zero of Kt, it su‰ces to consider a zero of kky in
ð0; y0Þ (see (4.5)). By direct computation, it follows that

ðkkyÞðyÞ ¼ ðA2 þ B2Þ1=2 sinð2yþ nÞ;
where

A ¼ 1

2
fðr� cot y0Þ2 � 1g; B ¼ r� cot y0; tan n ¼ B

A
:ð4:6Þ

If y0 A ð0; p=2�, then kky attains a zero once or does not attain a zero in ð0; y0Þ.
On the other hand, if y0 A ðp=2; pÞ, then kky attains a zero once or twice.
Therefore the lemma follows. 9

Second we show the result on the behavior of G as t ! þy.

Lemma 4.2. Under y0 A ð0; pÞ, if k > 2�1 sin 2y0, then GðtÞ ! �y as t !
þy. In contrast if ka 2�1 sin 2y0, then GðtÞ ! þy as t ! þy.

Proof. From (2.2), (4.4) and (4.5), we obtain

GtðtÞ ¼
1

6
t3KtðtÞ ¼ � 2

3
ðcos yþ B sin yÞ6ð�1þ B cot yÞ:

Here we used B defined in (4.6). If k > 2�1 sin 2y0, then B ¼ r� cot y0 > 0
follows from (2.1). Thus GtðtÞ ! �y as y ! 0 (t ! þy), and therefore
GðtÞ ! �y as t ! þy. Similarly if ka 2�1 sin 2y0, then GtðtÞ ! þy or
2=3 as y ! 0. Therefore GðtÞ ! þy as t ! þy. 9

Finally we prove the result on behaviors of G and H near t ¼ r.

Lemma 4.3. Assume y0 A ð0; p=2Þ. If 0a k < tan y0, then G and H in-
crease near t ¼ r. On the contrary if kb tan y0, then G and H decrease near
t ¼ r.
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Proof. From (4.4), it su‰ces to investigate Kt near t ¼ r. First suppose
that k ¼ 0 (then r ¼ 0). From r ¼ 0 and (4.5), we obtain

KtðtÞ ¼ 4 sin6 yðcot y� cot y0Þ3ð1þ cot y0 cot yÞ:ð4:7Þ

Since y0 A ð0; p=2Þ, it follows that KtðtÞ > 0 near y ¼ y0, that is, t ¼ 0.
Next suppose that k > 0 (then r > 0). Since t ¼ r is equivalent to y ¼ y0,

it follows that

KtðrÞ ¼ �4r3 sin6 y0½�1þ ðr� cot y0Þ cot y0�ð4:8Þ
and

�1þ ðr� cot y0Þ cot y0 ¼
�sin3 y0 þ k cos y0 � cos2 y0 sin y0

sin3 y0
ð4:9Þ

¼ cos y0

sin3 y0
ðk� tan y0Þ:

If 0 < k < tan y0, then we obtain KtðrÞ > 0. Therefore, by the continuity of
KðtÞ, there holds KtðtÞ > 0 near t ¼ r. Similarly if k > tan y0, then it holds that
KtðtÞ < 0 near t ¼ r.

Finally we prove that if k ¼ tan y0, then KtðtÞ < 0 near t ¼ r. From (4.9),
it follows that

�1þ ðr� cot y0Þ cot y0 ¼ 0:ð4:10Þ

In addition (4.10) implies r� cot y0 > 0. Thus, since cot y is monotone decreas-
ing in ð0; y0Þ, it holds that

�1þ ðr� cot y0Þ cot y > 0 for y A ð0; y0Þ:ð4:11Þ

Therefore, from (4.5) and (4.11), we see that KtðtÞ < 0 near y ¼ y0 (t ¼ r), that
is, near t ¼ r. This lemma is shown. 9

Now we are ready to show Theorem 1.1 with 0 < y0 a p=2.

Proof of Theorem 1.1 with 0 < y0 a p=2. First we assume 0a ka
2�1 sin 2y0. From Lemmas 4.2 and 4.3, it holds that GðtÞ increase near t ¼ r
and GðtÞ ! þy as t ! þy. Moreover, from Lemma 4.1, we see that G has
no critical point in ðr;þyÞ, that is, G is monotone increasing in ðr;þyÞ. In
addition, from (2.5) and (4.1), it holds that

GðrÞ ¼ 1

6
r3KðrÞ ¼ 1

6
r7 sin4 y0 b 0:ð4:12Þ

Thus we obtain tG ¼ þy by (3.5). By Proposition 3.2 (i), the structure of
solutions is of type C. Namely, for any b, a solution wðt; bÞ to (2.4) is a
crossing solution, and hence (1.6) has no regular and no singular solution (see
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Definition 3.1 and Remark 3.1). Furthermore we rewrite the above result as
k. Namely 0a ka 2�1 sin 2y0 with 0 < y0 a p=2 is equivalent to y0 0 0 and
2�1 Arcsin 2ka y0 a 2�1ðp�Arcsin 2kÞ with 0a ka 2�1. Therefore Theorem
1.1 (i–a) with 0 < y0 a p=2 is proved.

Next we assume k > 2�1 sin 2y0. From Lemma 4.2, it follows that GtðtÞ
< 0 for su‰ciently large t and tG < þy. In addition, since GðrÞ > 0 from
(4.12) and G has at most one critical point by (4.1), the function G satisfies
(G). Moreover, from (2.5) and (4.2), it follows that, as t ! þy,

HðtÞ ¼ 1

6
t�3KðtÞ þ oð1Þ ¼ 1

6
ðcot yþ r� cot y0Þ sin4 yþ oð1Þ ! 0:ð4:13Þ

From (4.4) and GtðtÞ < 0 for su‰ciently large t, it holds that HtðtÞ < 0 for
su‰ciently large t, and hence HðtÞ > 0 for su‰ciently large t. Thus we obtain
ra tH < þy from (3.6). Furthermore, since G has at most one critical point
and H attains its critical value at the same t as G, it holds that 0 < ra
tH a tG < þy. Thus we can apply Propositions 3.2 (iii) and (iv), and it is
proved that the structure of solutions is of type M. From (2.8), we define
a ¼ bðsin y0Þ�2 and a� ¼ b�ðsin y0Þ�2. Recall that uðy; aÞ is a solution to (1.6)
satisfying uyðy0Þ ¼ �a. If a A ð0; a�Þ, then uðy; aÞ is a singular solution. More-
over uðr; aÞ is a regular solution for a ¼ a�. On the other hand, if a A ða�;þyÞ,
then a regular or singular solution uðy; aÞ to (1.6) does not exist.

We also rewrite this result as k. Namely 2�1 sin 2y0 < ka 2�1 with 0 <
y0 a p=2 is equivalent to 0 < y0 < 2�1 Arcsin 2k or 2�1ðp�Arcsin 2kÞ < y0 with
0a ka 2�1. Therefore Theorem 1.1 (i–b) with 0 < y0 a p=2 is proved. Fur-
thermore, since the structure of solutions is of type M in the case of k > 2�1

with 0 < y0 a p=2, Theorem 1.1 (ii) with 0 < y0 a p=2 is shown. 9

Next we will prove Theorem 1.1 with p=2 < y0 < p. Instead of Lemma 4.3,
the following lemma holds.

Lemma 4.4. If y0 A ðp=2; pÞ, then G and H increase near t ¼ r.

Proof. If k > 0 (r > 0), then, from (4.8) and (4.9), we obtain KtðrÞ > 0.
Therefore, by the continuity of KðtÞ, it holds that KtðtÞ > 0 near t ¼ r. On the
other hand, If k ¼ 0 (r ¼ 0), then, from (4.7), KtðtÞ > 0 near y ¼ y0 (t ¼ 0).

9

Now we prove Theorem 1.1 with p=2 < y0 < p.

Proof of Theorem 1.1 with p=2 < y0 < p. From Lemma 4.1, functions G
and H have one critical point or two critical points. In addition, by Lemmas 4.2
and 4.4, it holds that GðtÞ ! �y as t ! þy and G and H increase near
t ¼ r. Hence G and H have one local maximum point t0. Therefore it holds
that tG A ðt0;þyÞ and G satisfies (G).
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If r > 0 (k > 0), then we obtain tH A ½r; t0Þ from the above arguments.
By Propositions 3.2 (iii) and (iv), it is proved that the structure of solutions is
of type M.

On the other hand, if r ¼ 0 (k ¼ 0), then, from (2.2), (2.5) and (4.2), it
follows that

Hð0Þ ¼ t sin4 yjt¼0 �
1

2

ð y0

0

sin2 y dy < 0:

Since HðtÞ ! 0 as t ! þy (see (4.13)), there holds HðtÞ > 0 for tb t0. Hence
tH A ð0; t0Þ, and we obtain 0 < tH < t0 < tG < þy. Therefore, by Proposition
3.2 (iii), it is proved that the structure of solutions is of type M. The proof of
Theorem 1.1 is completely finished. 9
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