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A MATHEMATICAL THEORY FOR DOUBLE-SLIT

EXPERIMENTS OF WALBORN ET AL

Masao Nagasawa

1. Introduction

Walborn et al (2002) performed remarkable experiments on Young’s double-
slit problem. In their experiments a pair of photons are employed. Photons
from an argon ion pump laser are used as a source. A source photon is
transformed by a special nonlinear crystal to a pair of photons, the polarizations
of which are orthogonal of each other. They use this pair of photons in their
experiments which consist of four di¤erent experimental setups.

To realize the four experiments they choose, in terms of statistics, four
di¤erent sub-populations from the total population which consists of all photons
from the source. This point has, however, never been clarified anywhere.

We will give a mathematical model for the double-slit problem, in particular
for the experiments of Walborn et al, based on a theory of stochastic processes
originated by Schrödinger (1931) and developed by Nagasawa (cf. e.g. (1993),
(2000), (2002), (2007)).

2. Experiments of Walborn et al

We first explain briefly the experiment performed by Walborn et al (2002).
A photon (351.1 nm) from an argon ion pump laser is used as a source. A

special nonlinear crystal called BBO (beta-barium borate) transforms the source
photon to a couple of photons of 702.2 nm, the polarizations of which are
orthogonal of each other. One photon will be called p-photon and the other one
s-photon. They will play di¤erent roles in the experiments.

In the figure below explaining their experimental setup, p-photons will go
along the upper path, and s-photons will go along the lower path on which the
double slit is placed.

If the detector Dp catches a p-photon, it sends a click to the coincidence
counter. If the detector Ds then catches a s-photon, it sends a click to the
coincidence counter. Once both clicks are detected, we resister ‘‘count 1’’. Such
counts will be done 400 seconds. Then detector Ds is moved a millimeter and
the number of counts in a 400 second interval is recorded for the new detector
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position. This is repeated until Ds has scanned across a region equivalent to the
figure below.

In the first experiment, the linear polarizer POL1 in front of detector Dp and
the quarter wave plates QWP1 and QWP2 in front of double slit are not
placed. Then a stripe-like distribution pattern was observed, as shown at the
left-hand side of the following figure.

In the second experiment, the quarter-wave plates QWP1 and QWP2 are
placed in front of double slit in the above experimental setup, but the linear
polarizer POL1 in front of detector Dp is not placed. Then no stripe-like pattern
was observed, as shown at the right-hand side in the above figure.

In the third experiment, the quarter-wave plates QWP1 and QWP2 are
placed in front of double slit in the above experimental setup as in the second
experiment, and in addition the linear polarizer POL1 in front of detector Dp is
inserted. Then stripe-like pattern was observed similar to the figure shown at the
left-hand side in the above figure.
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In the forth experiment, the experimental setup is the same as in the third
experiment, but the polarizer POL1 and detector Dp are placed farther away from
BBO crystal so that the path of the p-photon is lengthened. In this experiment if
the detector Ds catches an s-photon first and the detector Dp catches a p-photon,
we resister ‘‘count 1’’. Then stripe-like pattern was observed as in the third
experiment.

3. A theory of stochastic processes

We will give a mathematical model for the double-slit problem, in particular
for the experiments of Walborn et al, based on a theory of stochastic processes
of Schrödinger (1931) and Nagasawa (1993), (2000), (2002), (2007). We will
explain main ideas of the theory quickly.

Let S be d-dimendional Euclidian space. We assume

Postulate. There is a non-negative function called a transit function

pðs; x; t; yÞ; s; t A ½a; b�; x; y A S;

which satisfies Chapman-Kolmogorov equation, but in generalð
pða; x; b; yÞ dy0 1:

Therefore, the transit function pðs; x; t; yÞ is not a transition probability
density.

As will be explained in Appendix, a transit function is the fundamental
solution of the equation of motion of stochastic processes, which consists of a
pair of evolution equations.

Definition 3.1. We take a pair of nonnegative functions

f̂faðxÞ; x A S and fbðyÞ; y A S;

normalized as ð
dxf̂faðxÞpða; x; b; yÞfbðyÞ dy ¼ 1:ð3:1Þ

We call (3.1) the normality condition of a triplet fpðs; x; t; yÞ; f̂faðxÞ; fbðyÞg, in
which f̂faðxÞ is an entrance function and fbðyÞ is an exit function.

As will be shown, a triplet fpðs; x; t; yÞ; f̂faðxÞ; fbðyÞg determines a stochastic
process. We remark that f̂faðxÞ is not the initial distribution density of the
stochastic process. The initial distribution density maðxÞ is given by

maðxÞ ¼ f̂faðxÞfða; xÞ;
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where

fða; xÞ ¼
ð
pða; x; b; yÞfbðyÞ dy

is determined by the exit function fbðyÞ.

Theorem 3.1. Under the normality condition (3.1) of a triplet fpðs; x; t; yÞ;
f̂faðxÞ; fbðyÞg, there exists a stochastic process fXtðoÞ; t A ½a; b�;Qg, which has the
finite dimensional distribution given below:

For aa t1 a t2 a � � �a tn a b and for subsets G1;G2; . . . ;Gn

Q½fo : oðt1Þ A G1;oðt2Þ A G2; . . . ;oðtnÞ A Gng�ð3:2Þ

¼
ð
dx0f̂faðx0Þpða; x0; t1; x1Þ1G1

ðx1Þ dx1 pðt1; x1; t2; x2Þ1G2
ðx2Þ dx2

� � � pðtn�1; xn�1; tn; xnÞ1GnðxnÞ dxn pðtn; xn; b; yÞfbðyÞ dy;

where f̂faðxÞ is an entrance function and fbðyÞ is an exit function.

Proof. Under the normality condition (3.1), equation (3.2) defines a prob-
ability measure Q on the product space Sn. Therefore, by the extension theorem
(cf. e.g. Parthasarathy (1967)), we get a probability measure Q on the sample
space W ¼ foðtÞ; t A ½a; b�g. We set XtðoÞ ¼ oðtÞ. Then we get a stochastic
process fXtðoÞ; t A ½a; b�;Qg satisfying (3.2). This completes the proof.

We remark that the normality condition in (3.1) and the finite dimensional
distribution in (3.2) are intrinsic properties of the dynamic theory of random
motion of Schrödinger (1931) and Nagasawa (1993), (2000), (2002), (2007), and
di¤erent from those in the conventional theory of Kolmogoro¤ (1931).

Definition 3.2. We set

f̂fðt; xÞ ¼
ð
dzf̂faðzÞpða; z; t; xÞ;

fðt; xÞ ¼
ð
pðt; x; b; yÞfbðyÞ dy;

where f̂faðxÞ is an entrance function and fbðyÞ is an exit function, and we will call
fðt; xÞ evolution function and f̂fðt; xÞ backward evolution function.

Theorem 3.2. Let ff̂fðt; xÞ; fðt; xÞg be the pair of evolution functions de-
fined above. Then the distribution density mtðxÞ of the stochastic process fXtðoÞ;
t A ½a; b�;Qg is given by

mtðxÞ ¼ f̂fðt; xÞfðt; xÞ:ð3:3Þ
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Proof. From equation (3.2) of the finite dimensional distribution, we get

Q½XðtÞ A G� ¼
ð
dx0f̂faðx0Þpða; x0; t; xÞ1GðxÞ dxpðt; x; b; yÞfbðyÞ dy

¼
ð
f̂fðt; xÞ1GðxÞ dxfðt; xÞ;

which implies (3.3). This completes the proof.

Definition 3.3. With the evolution functions fðt; xÞ and f̂fðt; xÞ we define

Rðt; xÞ ¼ 1

2
log fðt; xÞf̂fðt; xÞ;ð3:4Þ

Sðt; xÞ ¼ 1

2
log

fðt; xÞ
f̂fðt; xÞ

:ð3:5Þ

We call the pair fRðt; xÞ;Sðt; xÞg the generating function of random motion.

Theorem 3.3. The pair of evolution functions can be written as

fðt; xÞ ¼ eRðt;xÞþSðt;xÞ; f̂fðt; xÞ ¼ eRðt;xÞ�Sðt;xÞ;ð3:6Þ

with the generating function fRðt; xÞ;Sðt; xÞg defined by (3.4) and (3.5).

We will call (3.6) the ‘‘exponential form’’ of the evolution functions. We
then define a complex-valued function in an exponential form.

Definition 3.4. We define

cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ;ð3:7Þ

with the generating function fRðt; xÞ;Sðt; xÞg given in Definition 3.3, and call it
the complex evolution function corresponding to the evolution functions in (3.6).

We remark that the same generating function fRðt; xÞ;Sðt; xÞg determines
both of the pair of evolution functions ffðt; xÞ; f̂fðt; xÞg in (3.6) and the complex
evolution function cðt; xÞ in (3.7). Hence they are equivalent. (See Theorem
7.3 in Appendix.)

There is, however, a decisive di¤erence of ability between the complex
evolution function cðt; xÞ and the pair of evolution functions ffðt; xÞ; f̂fðt; xÞg.
Namely, if a complex evolution function cðt; xÞ is given, one get a generating
function fRðt; xÞ;Sðt; xÞg from its exponent, but one can’t construct stochastic
process from the complex evolution function. To get a stochastic process we
need a pair of evolution functions ffðt; xÞ; f̂fðt; xÞg, in particular, the transit
function pðs; x; t; yÞ as shown in Theorem 3.1.
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Theorem 3.4. Let ff̂fðt; xÞ; fðt; xÞg be the pair of evolution functions in (3.6)
and cðt; xÞ be the complex evolution function in (3.7). Then the distribution
density mtðxÞ of the stochastic process fXtðoÞ; t A ½a; b�;Qg is given by

mtðxÞ ¼ f̂fðt; xÞfðt; xÞ ¼ cðt; xÞcðt; xÞ;ð3:8Þ

where cðt; xÞ is the complex conjugate of cðt; xÞ.

Proof. This is clear because f̂fðt; xÞfðt; xÞ ¼ cðt; xÞcðt; xÞ ¼ e2Rðt;xÞ:

4. Entangled random motion

The entangled random motion will be applied to the double-slit problem in
the next section. We define an ‘‘entangled random motion’’ as follows. We take
a pair of stochastic processes, and call them ‘‘stochastic process 1’’ and ‘‘stochastic
process 2’’, respectively.

Let

f1ðt; xÞ ¼ eR1ðt;xÞþS1ðt;xÞ; f̂f1ðt; xÞ ¼ eR1ðt;xÞ�S1ðt;xÞ;ð4:1Þ

be the evolution functions of the ‘‘stochastic process 1’’.
Let

f2ðt; xÞ ¼ eR2ðt;xÞþS2ðt;xÞ; f̂f2ðt; xÞ ¼ eR2ðt;xÞ�S2ðt;xÞ;ð4:2Þ

be the evolution functions of the ‘‘stochastic process 2’’.
Corresponding to the pairs of evolution functions in (4.1) and (4.2), we

introduce a ‘‘complex evolution function 1’’ defined with fR1;S1g
c1ðt; xÞ ¼ eR1ðt;xÞþiS1ðt;xÞ;

and also a ‘‘complex evolution function 2’’ with fR2;S2g

c2ðt; xÞ ¼ eR2ðt;xÞþiS2ðt;xÞ:

We then define a linear combination:

c�ðt; xÞ ¼ bðc1ðt; xÞ þ c2ðt; xÞÞ;ð4:3Þ

where b is a normalizing constant so that
Ð
jc�ðt; xÞj2 dx ¼ 1, and represent

c�ðt; xÞ in an exponential form

c�ðt; xÞ ¼ eR
�ðt;xÞþiS �ðt;xÞ:ð4:4Þ

To write c�ðt; xÞ in the exponential form is of fundamental importance in our
discussion of the entanglement.

Definition 4.1. (i) We will call c�ðt; xÞ ¼ eR
�ðt;xÞþiS �ðt;xÞ in (4.4) entangled

complex evolution function, and the pair fR�ðt; xÞ;S �ðt; xÞg in the exponent of
c�ðt; xÞ in (4.4) entangled generating function.
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(ii) With the entangled generating function fR�ðt; xÞ;S �ðt; xÞg we define a
pair of functions by

f�ðt; xÞ ¼ eR
�ðt;xÞþS �ðt;xÞ; f̂f�ðt; xÞ ¼ eR

�ðt;xÞ�S �ðt;xÞ;ð4:5Þ
which will be called entangled evolution functions.

The entangled evolution functions in (4.5) determine an entangled random
motion fXtðoÞ; t A ½a; b�;Q�g. For this we apply Theorem 7.4 to the entangled
generating function fR�ðt; xÞ;S �ðt; xÞg. Then we get a transit function
p�ðs; x; t; yÞ, and a stochastic process fXtðoÞ; t A ½a; b�;Q�g satisfying

f̂f�ðt; xÞ ¼
ð
dzf̂f�

a ðzÞp�ða; z; t; xÞ;

f�ðt; xÞ ¼
ð
p�ðt; x; b; yÞf�

b ðyÞ dy;

where f̂f�
a ðzÞ is an entrance function and f�

b ðyÞ is an exit function for the
entangled motion.

Definition 4.2. We will call the random motion fXtðoÞ; t A ½a; b�;Q�g
obtained above which has the transit function p�ðs; x; t; yÞ, the entrance function
f̂f�
a ðxÞ and the exit function f�

b ðyÞ entangled stochastic process.

In applications later on, various entangled motion will appear. This means
that we will adopt various pairs of stochastic processes for the entanglement, or
equivalently di¤erent pairs of complex evolution functions fc1ðt; xÞ;c2ðt; xÞg.

We note that these entangled stochastic processes can be distinguished by
indicating the di¤erence of their exit functions.

Theorem 4.1. Define an entangled complex evolution function c�ðt; xÞ by
(4.4) and a pair of entangled evolution functions f�ðt; xÞ and f̂f�ðt; xÞ by (4.5).
Then

f�ðt; xÞf̂f�ðt; xÞ ¼ c�ðt; xÞc�ðt; xÞ;ð4:6Þ
where c�ðt; xÞ is the complex conjugate of c�ðt; xÞ.

Proof. This is clear because both sides of (4.6) equal to a distribution
density e2R

�ðt;xÞ.

5. Entanglement by the double-slit

We now regard the ‘‘stochastic process 1’’ and the ‘‘stochastic process 2’’ as
the motion of a particle (s-photon) going through slit 1 and slit 2, respectively.

At the double slit, a particle chooses slit 1 or slit 2 at random, and hence the
entanglement occurs.
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Then the motion of a particle after the double slit is described by the
entangled stochastic process fXtðoÞ; t A ½a; b�;Q�g defined by Definition 4.2.

We apply the formula in (3.2) of the finite dimensional distribution to the
entangled stochastic process fXtðoÞ; t A ½a; b�;Q�g. We then get

Theorem 5.1. The distribution density of the stochastic process fXtðoÞ;
t A ½a; b�;Q�g entangled by the double slit is

m�
t ðxÞ ¼ f̂f�ðt; xÞf�ðt; xÞ:ð5:1Þ

Proof. This is nothing but Theorem 3.2 applied to the entangled stochastic
process.

Since f�ðb; xÞ ¼ f�
b ðxÞ, the distribution density of a particle at t ¼ b (in

applications, an s-photon counted at the detector Ds) is

m�
b ðxÞ ¼ f̂f�ðb; xÞf�

b ðxÞ:ð5:2Þ

As will be explained in Section 6, di¤erent exit functions will appear in
discussing the experiments of Walborn et al.

Theorem 5.2. Let fXtðoÞ; t A ½a; b�;Q�g be the stochastic process entangled
by double slit. Then the distribution density m�

t ðxÞ is given by

m�
t ðxÞ ¼ b2ðe2R1ðt;xÞ þ e2R2ðt;xÞÞð5:3Þ

þ 2b2eR1ðt;xÞþR2ðt;xÞ cosðS1ðt; xÞ � S2ðt; xÞÞ:

Proof. By (5.1), (4.3) and (4.6) the distribution density of the entangled
motion is

m�
t ðxÞ ¼ f�ðt; xÞf̂f�ðt; xÞ ¼ jc�ðt; xÞj2

¼ b2jc1ðt; xÞ þ c2ðt; xÞgj
2

¼ b2jc1ðt; xÞj
2 þ b2jc2ðt; xÞj

2

þ 2b2 1

2
fc1ðt; xÞc2ðt; xÞ þ c1ðt; xÞc2ðt; xÞg;

where c1ðt; xÞ ¼ eR1ðt;xÞþiS1ðt;xÞ, c2ðt; xÞ ¼ eR2ðt;xÞþiS2ðt;xÞ and

jc1ðt; xÞj
2 ¼ e2R1ðt;xÞ; jc2ðt; xÞj

2 ¼ e2R2ðt;xÞ;

1

2
fc1ðt; xÞc2ðt; xÞ þ c1ðt; xÞc2ðt; xÞg ¼ <ðc1ðt; xÞc2ðt; xÞÞ

¼ eR1ðt;xÞþR2ðt;xÞ cosðS1ðt; xÞ � S2ðt; xÞÞ:

This completes the proof.
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We remark that the distribution density m�
t ðxÞ in (5.3) of the entangled

stochastic process fXtðoÞ; t A ½a; b�;Q�g has a distribution with stripe-like pattern
induced by the cross-term, if S1ðt; xÞ � S2ðt; xÞ varies as a function of x.

6. Application of the mathematical theory to the double slit experiments
of Walborn et al

As explained in Section 2, a photon (351.1 nm) from an argon ion pump
laser is transformed by a special nonlinear crystal called BBO to a couple of
photons of 702.2 nm, the polarizations of which are orthogonal of each other.
These photons will be employed in the experiments, but they will play di¤erent
roles. The one named s-photon will be detected by the detector Ds after going
through double slit. The other named p-photon will be detected by the detector
Dp and play a special role. Namely, for each of four experiments we will pick
up an appropriate ‘‘sub-population’’ from the ‘‘total population’’ which consists
of all photons from the source. The sub-population consisting of s-photons
which should be counted by the detector Ds will be chosen with the help of the
p-photon and the coincidence counter in each of four experiments, as will be
explained.

We remark that the use of the notion ‘‘population’’ and ‘‘sub-population’’ was
not made in Walborn et al (2002).

Experiment 1.
In this experiment, POL1 in front of detector Dp and QWP1 and QWP2 in

front of double slit are not placed in the experimental setup shown in Section
2. This is a standard double spit experiment in which we use all photons from
the source.

Definition 6.1. We define the ‘‘total population’’ by

fTPg ¼ fall p-photons from the sourceg:
In the experiment 1 the total population fTPg is adopted, and a distribution

with a stripe-like pattern was observed.

Applying our mathematical theory, we take the pair of evolution functions
ff̂f�ðt; z; tpÞ, f�ðt; z; tpÞg entangled by double slit, where tp denotes the polariza-
tion of the p-photon, and z is the space variable of the s-photon. We ignore
the space variable of the p-photon, since it plays no role. We will ignore the
polarization of the s-photon, when it will play no role. (To avoid confusion with
the polarization parameters, we use z for the space variable.)

Then the distribution density of an s-photon is

m�
t ðzÞ ¼ f̂f�ðt; z; tpÞf�ðt; z; tpÞ;

by Theorem 5.1. The exit function is

f�
b ðzÞ ¼ f�ðb; z; tpÞ
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which is determined by the entanglement by the double slit and does not depend
on the polarization tp of the p-photon. In this experiment the p-photon plays
no significant role, and the distribution density of an s-photon counted by the
detector Ds is given by

m�
b ðzÞ ¼ f̂f�ðb; z; tpÞf�

b ðzÞ;ð6:1Þ

where z is the space variable of the s-photon. Here we can ignore tp, since it
plays no role.

We have used the total population fTPg without selection in this experiment.
Therefore, we can apply Theorem 5.2 and conclude that the cross-term of the
evolution functions through slit 1 and slit 2 induce a stripe-like pattern in the
distribution by the entanglement.

This experiment is a photon version of Young’s experiment. It should be
emphasized, however, that we treat no ‘‘wave’’, but a ‘‘particle (photon)’’.

Experiment 2.
In the second experiment, QWP1 and QWP2 are placed in front of double

slit, but POL1 is not placed in front of detector Dp.
If an s-photon is x-polarized, then QWP1 in front of slit 1 transforms it to

a left circularly polarized photon, and QWP2 in front of slit 2 transforms the
s-photon to a right circularly polarized photon.

And if an s-photon is y-polarized, then QWP1 in front of slit 1 transforms
it to a right circularly polarized photon, and QWP2 in front of slit 2 transforms
the s-photon to a left circularly polarized photon.

Working setup. To clarify things, in front of detector Dp we place a linear
polarizer oriented so that only y-polarized p-photons go through. (This was not
done in the experiment of Walborn et al.) Then s-photons which are x-polarized
in front of QWP1 and QWP2 will be counted by the detector Ds.

Definition 6.2. We define ‘‘sub-population 2’’ by

fSPg2 ¼ fp-photons which are y-polarizedg:

We adopt the sub-population fSPg2 in the experiment 2. In this experiment
the stripe-like pattern was not observed. (See Remark 1 below.)

Suppose an s-photon is caught by the detector Ds. If the polarization of the
corresponding p-photon is not y-polarized, then it will not go through the linear
polarizer, hence will not be detected by the detector Dp. Therefore, we won’t
count such an s-photon, even though the detector Ds caught it.

Therefore, the s-photon which is counted was x-polarized in front of QWP1
and QWP2, since the polarization of the s-photon is orthogonal to that of the
corresponding p-photon in fSPg2. Hence the s-photon was transformed by
QWP1 and QWP2 to a left circularly polarized photon and a right circularly
polarized photon, respectively.
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Walborn et al (2002) wrote that since a photon through slit 1 and a photon
through slit 2 have orthogonal polarizations, there is no probability of inducing
a stripe-like distribution. (However, we remark that ‘‘the left circular polari-
zation and the right circular polarization of photons are orthogonal’’ is not
obvious. No proof for this statement was given in Walborn et al (2002).)

Moreover, we can see which slit an s-photon went through, if we measure
the polarization of the s-photon at the detector Ds. Suppose the s-photon is
x-polarized. If it is left circularly polarized at the detector Ds, then the s-photon
came through slit 1. If it is right circularly polarized at the detector Ds, then the
s-photon came through slit 2.

We now apply our mathematical model. For the experiment 2 we must
have

1fSPg2ðtpÞf
�
b ðzÞ

as the exit function, where f�
b ðzÞ is the exit function of an s-photon at the

detector Ds, which depends on the polarization of s-photon, and 1fSPg2ðtpÞ is the
indicator function of the sub-population fSPg2, that is, if tp is y-polarized, then
1fSPg2ðtpÞ ¼ 1, and 1fSPg2ðtpÞ ¼ 0, otherwise. Namely, an s-photon detected by

the detector Ds is counted if and only if the corresponding p-photon is in the
sub-population fSPg2. We remark that the exit function and the entrance func-
tion must be normalized as in (3.1) by multiplying a constant.

Therefore, the distribution density of an s-photon counted at the detector Ds

is

m�
b ðzÞ ¼ f̂f�ðb; z; tpÞ1fSPg2ðtpÞf

�
b ðzÞ:ð6:2Þ

Since the exit function is 1fSPg2ðtpÞf
�
b ðzÞ, the s-photon which is counted at

the detector Ds was x-polarized in front of QWP1 and QWP2. Then QWP1 and
QWP2 transform the s-photon into a left circularly polarized photon and a right
circularly polarized photon, respectively.

Then the complex evolution functions cþ1ðt; r; hÞ and c�1ðt; r; hÞ of ‘‘sto-
chastic process 1’’ and ‘‘stochastic process 2’’, which describe the s-photon going
through slit 1 and slit 2, have factors eih and e�ih, respectively, where ðr; hÞ
denotes two dimensional polar coordinate. The factors eih and e�ih induce the
left circular motion and the right circular motion, respectively, see Section 8. In
particular, we look at the dependence on the variable h, since the polarization
of photons plays an essential role in this experiment.

Let

cðt; r; hÞ ¼ bðcþ1ðt; r; hÞ þ c�1ðt; r; hÞÞ

be the entangled complex evolution function, where b is a normalizing constant.
Then it is easy to see that the distribution density cðt; r; hÞcðt; r; hÞ has a factor
ð1� cos 2hÞ, which vanishes at h ¼ 0 and h ¼ p. Therefore, the distribution
density is separated into two, namely 0 < h < p and p < h < 2p. Hence paths of
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an s-photon through slit 1 and slit 2 are separated, and no stripe-like pattern
appears.

Remark 1. In the experiment of Walborn et al ‘‘a linear polarizer oriented
so that only y-polarized p-photons go through’’ is actually not placed in front of
detector Dp. Therefore, their source is not the sub-population fSPg2 but the
total population fTPg which is mixed, hence the observed distribution shown in
Section 2 as a figure (on the right-hand side) was somewhat blurred, but their
experiment is essentially the same as explained above.

Experiment 3.
In the third experiment, QWP1 and QWP2 are placed in front of double-slit,

namely, the experimental setup for s-photons is the same as in the experiment 2.
In the experiment 3, however, a linear polarizer POL1 is placed in front of

detector Dp in addition, and the POL1 is oriented (suitably for QWP1 or QWP2)
so that it will pass p-photons which are linearly polarized of a combination of x
and y.

Because of the linear polarizer POL1 placed in front of detector Dp, the
polarization of the p-photon that will be counted is a combination of x and y.

Definition 6.3. We define ‘‘sub-population 3’’ by

fSPg3 ¼ fp-photons whose polarizations are a combination of x and yg:

In the experiment 3 the sub-population fSPg3 is adopted. In this exper-
iment a stripe-like pattern was observed.

Suppose an s-photon is caught by the detector Ds. If the polarization of the
corresponding p-photon is not a combination of x and y, then it will not go
through POL1, hence will not be detected by the detector Dp. Therefore, we
won’t count such an s-photon, even though the detector Ds caught it.

We note that the polarization of an s-photon which will be counted is also a
combination of x and y in front of QWP1 and QWP2, since it is orthogonal to
that of the corresponding p-photon in fSPg3.

We now apply our mathematical model. For the experiment 3 we must
have

1fSPg3ðtpÞf
�
b ðzÞ

as the exit function. Then the distribution density of an s-photon at the detector
Ds is

m�
b ðzÞ ¼ f̂f�ðb; z; tpÞ1fSPg3ðtpÞf

�
b ðzÞ:ð6:3Þ

As noted above, the polarization of the s-photon which will be counted is a
combination of x and y. Hence QWP1 and QWP2 placed in front of double slit
won’t transform the s-photon to a circularly polarized photon. Accordingly, the
‘‘stochastic process 1’’ and ‘‘stochastic process 2’’ have polarizations ts1 and ts2
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which are not orthogonal. Therefore, the cross term of the evolution functions
through slit 1 and slit 2 induce stripe-like pattern by the entanglement.

Remark 2. The experiment 2 and experiment 3 are not standard double-slit
experiments. They are further detailed experiments. In other words, they are a
sort of paired experiments. As a matter of fact, the experimental setup of the
experiment 2 and experiment 3 for s-photons are exactly the same. Moreover,
we do not touch s-photons in the experiment 2 neither in the experiment 3.

Nevertheless, the observed distributions are completely di¤erent.

This is caused as a result that, by placing POL1, the sub-population is
changed from

fSPg2 ¼ fp-photons which are y-polarizedg;

to the other sub-population

fSPg3 ¼ fp-photons whose polarizations are a combination of x and yg;

that is, di¤erent statistics are used in the experiment 2 and experiment 3. This
point about di¤erent statistics was, however, not mentioned in Walborn et al
(2002).

In our mathematical model, equation (6.2) which has the exit function
1fSPg2ðtpÞf

�
b ðzÞ is changed to equation (6.3) which has the other exit function

1fSPg3ðtpÞf
�
b ðzÞ, namely, we use di¤erent entangled stochastic processes for the

experiment 2 and experiment 3, respectively.

Remark 3. In Walborn et al (2002), QWP1 and QWP2 placed in front of
double slit are called ‘‘marker’’, and POL1 placed in front of detector Dp

‘‘eraser’’. However, QWP1 and QWP2 alone can’t mark ‘‘which way’’. ‘‘To tell
which way’’ we need to know the polarization of the s-photon in front of QWP1
and QWP2, that is, x-polarized or y-polarized, which we can fix by changing the
orientation of the linear polarizer POL1. As a matter of fact, POL1 in front of
detector Dp plays both roles of ‘‘marker’’ and ‘‘eraser’’ by suitably adjusting its
orientation. Hence it is probably better to call QWP1 and QWP2 with fSPg2
‘‘marker’’, and with fSPg3 ‘‘eraser’’ in experiments 2 and 3.

Experiment 4.
The experimental setup is the same as in the third experiment, but the

polarizer POL1 and detector Dp are placed farther away from BBO crystal so
that the path of the p-photon is lengthened.

In this experiment if the detector Ds catches an s-photon first and the
detector Dp then catches a p-photon, we resister ‘‘count 1’’. Such counts are
repeated as in other experiments.

Since only the order of detection of s-photons and p-photons is exchanged,
the sub-population of this experiment is exactly the same as in the experiment 3.
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Definition 6.4. We define ‘‘sub-population 4’’ by

fSPg4 ¼ fp-photons whose polarizations are a combination of x and yg:
In the experiment 4 the sub-population fSPg4 is adopted. In this exper-

iment a stripe-like pattern was observed.

Suppose an s-photon is caught by the detector Ds. If the polarization of the
corresponding p-photon is not a combination of x and y, then it will not go
through POL1, hence will not be detected by the detector Dp. Therefore, we
won’t count such an s-photon, even though the detector Ds caught it. To count
or not to count is decided by the sub-population fSPg4. Namely, exchanging
the order of detection of s-photons and p-photons plays no role.

We now apply our mathematical model. Since fSPg4 ¼ fSPg3, the distri-
bution density of an s-photon which we count at the detector Ds is

m�
b ðzÞ ¼ f̂f�ðb; z; tpÞ1fSPg4ðtpÞf

�
b ðzÞ ¼ f̂f�ðb; z; tpÞ1fSPg3ðtpÞf

�
b ðzÞ:ð6:4Þ

We get naturally a stripe-like distribution pattern as in the experiment 3.

Remark 4. There exists a sort of explanation on the experiments of
Walborn et al by using ‘‘uncertainty principle’’ (Heisenberg (1927)) and ‘‘non-
locality’’ (Bell (1964)), (or ‘‘Bohr’s complementarity’’). But this is an erroneous
explanation.

In fact, we have clarified in the present paper that ‘‘uncertainty principle’’
and ‘‘non-locality’’ play no role in the double-slit problem, and that ‘‘Bohr’s
complementarity’’ has no place in our discussion.

We remark, moreover, that Heisenberg’s uncertainty principle and Bell’s
non-locality claim are both incorrect (cf. Nagasawa (1997), (2009), (2012)).

For the double-slit experiment in another experimental setup di¤erent from
that of Walborn et al, we refer to Scully-Drühl (1982) and Kim, Scully et al.
(2000).

Appendix

7. Equation of motion and equation of paths

Main theorems of the dynamic theory of random motion of a particle that
have been applied in the preceding sections will be explained, details for which we
refer to Nagasawa (1993), (2000), (2003), (2007), (2012*).

In the dynamic theory of random motion, the equation of motion is given by

qf

qt
þ 1

2
s2sfþ cðt; xÞf ¼ 0;

� qf̂f

qt
þ 1

2
s2sf̂fþ cðt; xÞf̂f ¼ 0;

ð7:1Þ
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where aa ta b, s2 is a constant and cðt; xÞ is a scaler potential. (Cf. e.g.
Nagasawa (1993), (2000), (2002), (2007), (2012*).)

Let pðs; x; t; yÞ be the fundamental solution of (7.1). The function pðs; x; t; yÞ
is a transit function in Postulate made in Section 3.

Then under the normality condition of a triplet fpðs; x; t; yÞ; f̂faðxÞ; fbðyÞg
there exists a stochastic process fXtðoÞ; t A ½a; b�;Qg by Theorem 3.1.

Theorem 7.1. (i) Let pðs; x; t; yÞ be the transit function determined by the
equation of motion (7.1), and take an evolution function fðs; xÞ ¼ eRðt;xÞþSðt;xÞ.

Then

qðs; x; t; yÞ ¼ 1

fðs; xÞ pðs; x; t; yÞfðt; yÞ

is the transition probability density of the random motion fXtðoÞ; t A ½a; b�;Qg.
(ii) The function qðs; x; t; yÞ is the fundamental solution of an evolution

equation

qu

qs
þ 1

2
s2Duþ aðs; xÞ � ‘u ¼ 0;ð7:2Þ

where

aðt; xÞ ¼ s2 ‘fðt; xÞ
fðt; xÞ ¼ s2ð‘Rðt; xÞ þ ‘Sðt; xÞÞð7:3Þ

is the evolution drift determined by the evolution function fðs; xÞ ¼ eRðt;xÞþSðt;xÞ.

Equation (7.2) is called the equation of kinematics of random motion.

Proof. It is clear that qðs; x; t; yÞ is a transition probability density. On
the right-hand side of (3.2), multiply fðti; xiÞ and divide by fðti; xiÞ at each dxi.
Then the right-hand side of the formula (3.2) can be written as

¼
ð
dx0f̂faðx0Þfða; x0Þ

1

fða; x0Þ
pða; x0; t1; x1Þfðt1; x1Þ dx1

� 1

fðt1; x1Þ
pðt1; x1; t2; x2Þfðt2; x2Þ dx2

� � � 1

fðtn; xnÞ
pðtn; xn; b; yÞfbðyÞ dyf ðx1; . . . ; xnÞ

¼
ð
dx0f̂faðx0Þfða; x0Þqða; x0; t1; x1Þ dx1qðt1; x1; t2; x2Þ dx2

� � � dxn�1qðtn�1; xn�1; tn; xnÞ dxnqðtn; xn; b; yÞ dyf ðx1; . . . ; xnÞ;

denoting maðxÞ ¼ f̂faðx0Þfða; x0Þ, we have therefore
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Q½ f ðXt1 ; . . . ;XtnÞ� ¼
ð
dx0maðx0Þqða; x0; t1; x1Þ dx1qðt1; x1; t2; x2Þ dx2

� � � dxn�1qðtn�1; xn�1; tn; xnÞ dxn f ðx1; . . . ; xnÞ;

which proves the assertion (i).

Lemma 7.1 (Nagasawa (1989)). Let pðs; x; t; yÞ be the fundamental solution
of (7.1) and fðs; xÞ be an evolution function. Then

uðs; xÞ ¼ pðs; x; t; yÞ
fðs; xÞ

satisfies

Luþ s2 1

f
‘f � ‘u ¼ 1

f
ðLpþ cðs; xÞpÞ � u

f
ðLfþ cðs; xÞfÞ;ð7:4Þ

where

L ¼ q

qs
þ 1

2
s2s:

Since the right hand side of (7.4) vanishes, the assertion (ii) follows from
Lemma 7.1. This completes the proof of Theorem 7.1.

Theorem 7.2. (i) Let fXtðoÞ; t A ½a; b�;Qg be the stochastic process deter-

mined by a triplet fpðs; x; t; yÞ; f̂faðxÞ; fbðyÞg, where pðs; x; t; yÞ is the transit func-
tion determined by the equation of motion (7.1). Then the paths (trajectories) of
the random motion of a particle are given by a stochastic di¤erential equation

Xt ¼ Xa þ sBt�a þ
ð t
a

s2‘ log fðs;XsÞ ds;ð7:5Þ

where s2‘ log f ¼ s2 ‘f

f
is the evolution drift determined by the evolution function

fðt; xÞ, Bt is a d-dimensional Brownian motion, and Xa is a random variable
independent of the Brownian motion Bt.

(ii) The distribution density mtðxÞ of the stochastic process Xt is given by

mtðxÞ ¼ fðt; xÞf̂fðt; xÞ ¼ e2Rðt;xÞ; t A ½a; b�:

Equation (7.5) is called the equation of paths of random motion.

Theorem 7.3. The following two assertions are equivalent
(i) evolution functions

fðt; xÞ ¼ eRðt;xÞþSðt;xÞ; f̂fðt; xÞ ¼ eRðt;xÞ�Sðt;xÞ

satisfy the equation of motion (7.1);
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(ii) a complex evolution function

cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ

satisfies the complex evolution equation

qc

qt
� i

1

2
s2s� Vðt; xÞ

� �
c ¼ 0;ð7:6Þ

under a condition

Vðt; xÞ þ cðt; xÞ þ ~VVðt; xÞ ¼ 0;

where

~VVðt; xÞ ¼ 2
qS

qt
þ s2ð‘SÞ2:

Remark 5. Schrödinger interpreted equation (7.6) as a complex-valued wave
equation (the ‘‘Schrödinger equation’’) in his wave mechanics, cf. Schrödinger
(1926). His ‘‘wave-interpretation’’ was, however, a mistake. The equation (7.6)
is not a wave equation but an evolution equation in our dynamic theory of random
motion. It is the equation which generates semi-groups. In (7.6) the generator
is complex-valued. For the theory of semi-groups of operators, see Yosida
(1948). We note in this context that Feynman (1948) regarded the Schrödinger
equation as a complex-valued evolution equation and developed a complex
stochastic theory, which has no relation to our dynamic theory of random
motion.

Theorem 7.4. Let fRðt; xÞ;Sðt; xÞg be given and set

fðt; xÞ ¼ eRðt;xÞþSðt;xÞ; f̂fðt; xÞ ¼ eRðt;xÞ�Sðt;xÞ:

Then there exist a transit function pðs; x; t; yÞ, and a stochastic process

fXtðoÞ; t A ½a; b�;Qg
such that the probability measure Q satisfies (3.2) and

f̂fðt; xÞ ¼
ð
dzf̂faðzÞpða; z; t; xÞ;

fðt; xÞ ¼
ð
pðt; x; b; yÞfbðyÞ dy;

where f̂faðzÞ ¼ f̂fða; zÞ and fbðyÞ ¼ fðb; yÞ.

Proof. Let fXtðoÞ; t A ½a; b�;Qg be a solution of a stochastic di¤erential
equation

Xt ¼ Xa þ sBt�a þ
ð t
a

s2‘ log fðs;XsÞ ds;
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where the distribution density of Xa is f̂faðxÞfða; xÞ. Let qðs; x; t; yÞ be the tran-
sition probability density of fXtðoÞ;Qg, and set

pðs; x; t; yÞ ¼ fðt; xÞqðs; x; t; yÞ 1

fðt; yÞ
Then pðs; x; t; yÞ is a transit function and it is easy to see that fXtðoÞ;Qg satisfies
equation (3.2) with the transit function pðs; x; t; yÞ defined above. This com-
pletes the proof.

8. Theory of a photon

One can’t apply Maxwell’s theory to the motion of ‘‘a single photon’’. This
is clear. Nevertheless, so far as my knowledge, there is no theory of motion of
a single photon.

‘‘A theory of motion of a photon’’ based on the dynamic theory of random
motion will be given.

In the dynamic theory of random motion, the equation of motion

qf

qt
þ 1

2
s2sfþ cðxÞf ¼ 0;

� qf̂f

qt
þ 1

2
s2sf̂fþ cðxÞf̂f ¼ 0;

determines the motion of a particle, where aa ta b, and cðxÞ is a scalar
function.

The coe‰cient s2 in the above equations is determined by the mass m of a

particle, namely, s2 ¼ 1

m

h

2p
, where h is the Planck constant.

Since a photon has no mass, we postulate that the coe‰cient s2 is deter-
mined by the energy of a photon.

We note that if the frequency of an electro-magnetic field is n, a photon in it
has no frequency but the energy hn. Therefore, we set s2 ¼ hn, which is the
intensity of random motion.

We consider a photon moving along the z-axis with the speed c, and assume
that it makes random motion with the Hooke potential on the xy-plane orthogo-
nal to z. The random motion on the xy-plane carries photon’s energy.

The lowest energy: For linearly polarized motion of a photon in the xy-
plane we consider first of all the equation of motion

qf

qt
þ 1

2
s2 q

2f

qx2
� 1

2
k2x2f ¼ 0;

� qf̂f

qt
þ 1

2
s2 q

2f̂f

qx2
� 1

2
k2x2f̂f ¼ 0;
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and the stationary motion. Then we have the evolution functions

fðt; xÞ ¼ beðskt=2Þ�ðkx2=2sÞ; f̂fðt; xÞ ¼ be�ðskt=2Þ�ðkx2=2sÞ;

of the lowest energy. By (7.3) the evolution drift aðxÞ is given by

aðxÞ ¼ s2 1

fðt; xÞ
qfðt; xÞ

qx
¼ �skx:

Hence the equation of kinematics is

qu

qt
þ 1

2
s2 q

2u

qx2
� skx

qu

qx
¼ 0;ð8:1Þ

by (7.2). Therefore, the equation of paths is

xt ¼ xa þ sBt�a � sk

ð t
a

dsxs;ð8:2Þ

by (7.5). This is a random harmonic oscillation.
Then we have

Theorem 8.1. (i) Let xt be given by (8.2). Then in the xy-plane there is a
random motion of the lowest energy Xt ¼ ðxt; axtÞ, where a is a real constant.
This is a random harmonic oscillation on a linear line y ¼ ax in the xy-plane. The
motion orthogonal to this is Xt ¼ ð�axt; xtÞ, which is a random harmonic oscil-
lation on a linear line �ay ¼ x.

(ii) As a special case a ¼ 0, the x-polarized random harmonic oscillation is
given by Xt ¼ ðxt; 0Þ. The motion orthogonal to this is Xt ¼ ð0; xtÞ, which is the
y-polarized random harmonic oscillation.

The first exited energy: More generally the equation of motion of a photon is

qf

qt
þ 1

2
s2 q2f

qx2
þ q2f

qy2

 !
þ c

qf

qz
� 1

2
k2ðx2 þ y2Þf ¼ 0;

� qf̂f

qt
þ 1

2
s2 q2f̂f

qx2
þ q2f̂f

qy2

 !
þ c

qf

qz
� 1

2
k2ðx2 þ y2Þf̂f ¼ 0:

By separating variables, the equation of motion along the z-axis is

qf

qt
þ c

qf

qz
¼ 0;

� qf̂f

qt
þ c

qf

qz
¼ 0:

Therefore, it is a uniform motion with the speed c.
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The equation of motion in the xy-plane is

qf

qt
þ 1

2
s2 q2f

qx2
þ q2f

qy2

 !
� 1

2
k2ðx2 þ y2Þf ¼ 0;

� qf̂f

qt
þ 1

2
s2 q2f̂f

qx2
þ q2f̂f

qy2

 !
� 1

2
k2ðx2 þ y2Þf̂f ¼ 0:

We then consider one more mode of motion of a photon of the first exited
energy.

We now use the polar coodinates ðr; hÞ in two dimensions. Then the equa-
tion of motion given above is

qf

qt
þ 1

2
s2 1

r

q

qr
r
qf

qr

� �
þ 1

r2
q2f

qh2

 !
� 1

2
k2r2f ¼ 0;

� qf̂f

qt
þ 1

2
s2 1

r

q

qr
r
qf̂f

qr

 !
þ 1

r2
q2f̂f

qh2

 !
� 1

2
k2r2f̂f ¼ 0:

We consider the stationary motion. For the quantum numbers m ¼G1, n ¼ 0
we have the eigenvalue l ¼ 2sk, and a complex evolution function

cG1ðt; r; hÞ ¼ bre�ðk=2sÞr2þið�2sktGhÞ;

(cf. e.g. Pauling-Wilson (1935)). We introduce notations

R ¼ log r� k

2s
r2; SG1 ¼ �2sktG h;

and write cG1 in the exponential form

cG1ðt; r; hÞ ¼ beRþiSG1 :

We remark, however, that from the complex evolution function we can’t get
random motion.

To get random motion we need evolution functions

fG1ðt; r; hÞ ¼ beRþSG1 ; f̂fG1ðt; r; hÞ ¼ beR�SG1 ;

which are equivalent to the complex evolution function cG1ðt; r; hÞ. We note
that they are determined by the same pair fR;SG1g.

We consider the case m ¼ þ1, namely

cþ1ðt; r; hÞ ¼ bre�ðk=2sÞr2þið�2sktþhÞ ¼ beRþiSþ1 ;

and set

fþ1ðt; r; hÞ ¼ beRþSþ1 ¼ bre�ðk=2sÞr2þð�2sktþhÞ;

f̂fþ1ðt; r; hÞ ¼ beR�Sþ1 ¼ bre�ðk=2sÞr2�ð�2sktþhÞ:
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Then it can be shown that they satisfy the equation of motion

qf

qt
þ 1

2
s2 1

r

q

qr
r
qf

qr

� �
þ 1

r2
q2f

qh2

 !
� 1

2
k2r2 þ ~VVðrÞ

� �
f ¼ 0;

� qf̂f

qt
þ 1

2
s2 1

r

q

qr
r
qf̂f

qr

 !
þ 1

r2
q2f̂f

qh2

 !
� 1

2
k2r2 þ ~VVðrÞ

� �
f̂f ¼ 0;

with an additional potential

~VVðrÞ ¼ s2 1

r2
� 4sk;

and the distribution density is given by

mðt; r; hÞ ¼ fþ1ðt; r; hÞf̂fþ1ðt; r; hÞ ¼ b2r2e�ðk=sÞr2 :

Moreover, by (7.3), the evolution drift determined by the evolution function
fþ1 ¼ beRþSþ1 is

arðr; hÞ ¼ s2 1

fþ1

qfþ1

qr
¼ s2 qR

qr
¼ s2 1

r
� sk;

ahðr; hÞ ¼ s2 1

fþ1

1

r

qfþ1

qh
¼ s2 1

r

qSþ1

qh
¼ s2 1

r
:

Hence the equation of kinematics is

qu

qt
þ 1

2
s2 1

r

q

qr
r
qu

qr

� �
þ 1

r2
q2u

qh2

 !
þ s2 1

r
� skr

� �
qu

qr
þ s2 1

r

1

r

qu

qh
¼ 0;

by (7.2).
Therefore, the equation of paths in the polar coordinates ðr; hÞ is

rt ¼ ra þ sB1
t�a þ

ð t
a

ds
3

2
s2 1

rs
� skrs

� �
;

ht ¼ ha þ
ð t
a

s
1

rs
dB2

s�a þ
ð t
a

s2 1

r2s
ds;

by (7.5), where B1
t and B2

t are independent one-dimensional Brownian motions.

Looking at the radial motion rt, we see that drift
3

2
s2 1

r
� skr has a zero

r ¼
ffiffiffiffiffiffiffi
3

2

s

k

r
, and drift is positive, if r < r, and negative if r > r. Therefore, r is an

attractive point.
The angular motion ht has anti-clockwise drift s2=r2s :
Therefore, Xt ¼ ðrt; htÞ makes anti-clockwise random circular motion as

illustrated at the left-hand side of the figure below.
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We consider the case m ¼ �1, namely

c�1ðt; r; hÞ ¼ bre�ðk=2sÞr2þið�2skt�hÞ ¼ beRþiS�1 ;

and set

f�1ðt; r; hÞ ¼ beRþS�1 ¼ bre�ðk=2sÞr2þð�2skt�hÞ;

f̂f�1ðt; r; hÞ ¼ beR�S�1 ¼ bre�ðk=2sÞr2�ð�2skt�hÞ:

The evolution drift determined by the evolution function f�1 ¼ beRþS�1 is

arðr; hÞ ¼ s2 1

f�1

qf�1

qr
¼ s2 qR

qr
¼ s2 1

r
� sk;

ahðr; hÞ ¼ s2 1

f�1

1

r

qf�1

qh
¼ s2 1

r

qS�1

qh
¼ �s2 1

r
:

Therefore, the equation of paths in the polar coordinates ðr; hÞ is

rt ¼ ra þ sB1
t�a þ

ð t
a

ds
3

2
s2 1

rs
� skrs

� �
;

ht ¼ ha þ
ð t
a

s
1

rs
dB2

s�a �
ð t
a

s2 1

r2s
ds;

where B1
t and B2

t are independent one-dimensional Brownian motions. The
angular motion ht has clockwise drift �s2=r2s in this case.

Therefore, Xt ¼ ðrt; htÞ makes clockwise random circular motion as illus-
trated at the right-hand side of the figure above.

Thus we have shown

Theorem 8.2. There are three modes of random motion in the xy-plane. Let
xt be given by (8.2).

The first one is Xt ¼ ðxt; 0Þ and Xt ¼ ð0; xtÞ. These are the x-polarized and
y-polarized random harmonic oscillation, respectively.

The second one is Xt ¼ ðxt; axtÞ, where a is a real constant. This is a random
harmonic oscillation on a linear line y ¼ ax in the xy-plane. The motion orthogo-
nal to this is Xt ¼ ð�axt; xtÞ. This is a random harmonic oscillation on a linear
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line �ay ¼ x. (These random motion are called sometimes ‘‘a combination of x
and y polarized motion’’.)

The third one is Xt ¼ ðrt; htÞ in the polar coordinates, which makes anti-
clockwise (and clockwise) random circular motion.

We regard these three modes of random motion on the xy-plane as the mode
of the polarization of a photon. For instance, if the motion is on the x-axis, a
photon is ‘‘x-polarized’’. If the motion is on a linear line in the xy-plane, a
photon is ‘‘linearly polarized’’ by a combination of x and y. If a photon makes
left circular random motion, the photon is ‘‘left circularly polarized’’. If a
photon makes right circular random motion, the photon is ‘‘right circularly
polarized’’.

We remark that the photon model given in this section is applicable to the
double-slit experiment of Walborn et al discussed in Section 6.
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[18] E. Schrödinger, Über die Umkehrung der Naturgesetze. Sitzungsberichte der preussischen

Akad, der Wissenschaften Physikalisch-Mathematische Klasse, 1931, 144–153.
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Switzerland

612 masao nagasawa


