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A MATHEMATICAL THEORY FOR DOUBLE-SLIT
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1. Introduction

Walborn et al (2002) performed remarkable experiments on Young’s double-
slit problem. In their experiments a pair of photons are employed. Photons
from an argon ion pump laser are used as a source. A source photon is
transformed by a special nonlinear crystal to a pair of photons, the polarizations
of which are orthogonal of each other. They use this pair of photons in their
experiments which consist of four different experimental setups.

To realize the four experiments they choose, in terms of statistics, four
different sub-populations from the total population which consists of all photons
from the source. This point has, however, never been clarified anywhere.

We will give a mathematical model for the double-slit problem, in particular
for the experiments of Walborn et al, based on a theory of stochastic processes
originated by Schrodinger (1931) and developed by Nagasawa (cf. e.g. (1993),
(2000), (2002), (2007)).

2. Experiments of Walborn et al

We first explain briefly the experiment performed by Walborn et al (2002).

A photon (351.1 nm) from an argon ion pump laser is used as a source. A
special nonlinear crystal called BBO (beta-barium borate) transforms the source
photon to a couple of photons of 702.2 nm, the polarizations of which are
orthogonal of each other. One photon will be called p-photon and the other one
s-photon. They will play different roles in the experiments.

In the figure below explaining their experimental setup, p-photons will go
along the upper path, and s-photons will go along the lower path on which the
double slit is placed.

If the detector D, catches a p-photon, it sends a click to the coincidence
counter. If the detector D; then catches a s-photon, it sends a click to the
coincidence counter. Once both clicks are detected, we resister “count 1”°.  Such
counts will be done 400 seconds. Then detector D, is moved a millimeter and
the number of counts in a 400 second interval is recorded for the new detector
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position. This is repeated until D has scanned across a region equivalent to the
figure below.
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In the first experiment, the linear polarizer POL1 in front of detector D, and
the quarter wave plates QWP1 and QWP2 in front of double slit are not
placed. Then a stripe-like distribution pattern was observed, as shown at the
left-hand side of the following figure.

M 58

Colncidence counts in 400 s
8
Coincidence counts in 400 s
3

TR RO 0 R 1 ST SRS YR N
4 3 2 1 0 1 2 3 4 4 8 2 -1 0 1 2 3 4

Detector D, position (mm) Detector D, position (mm)

In the second experiment, the quarter-wave plates QWP1 and QWP2 are
placed in front of double slit in the above experimental setup, but the linear
polarizer POL1 in front of detector D, is not placed. Then no stripe-like pattern
was observed, as shown at the right-hand side in the above figure.

In the third experiment, the quarter-wave plates QWP1 and QWP2 are
placed in front of double slit in the above experimental setup as in the second
experiment, and in addition the linear polarizer POL1 in front of detector D, is
inserted. Then stripe-like pattern was observed similar to the figure shown at the
left-hand side in the above figure.
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In the forth experiment, the experimental setup is the same as in the third
experiment, but the polarizer POL1 and detector D, are placed farther away from
BBO crystal so that the path of the p-photon is lengthened. In this experiment if
the detector D, catches an s-photon first and the detector D, catches a p-photon,
we resister “‘count 1. Then stripe-like pattern was observed as in the third
experiment.

3. A theory of stochastic processes

We will give a mathematical model for the double-slit problem, in particular
for the experiments of Walborn et al, based on a theory of stochastic processes
of Schrodinger (1931) and Nagasawa (1993), (2000), (2002), (2007). We will
explain main ideas of the theory quickly.

Let S be d-dimendional Euclidian space. We assume

PostuLATE. There is a non-negative function called a transit function
p(s7'x7t’y)? s7te[a7b]’ x’yES7

which satisfies Chapman-Kolmogorov equation, but in general

Jp(a,x7b7y) dy # 1.

Therefore, the transit function p(s,x, ¢, y) is not a transition probability
density.

As will be explained in Appendix, a transit function is the fundamental
solution of the equation of motion of stochastic processes, which consists of a
pair of evolution equations.

DermNITION 3.1. We take a pair of nonnegative functions

$(x), xe S and ¢,(y), y €S,

normalized as

(3.1) j dxd () pla, %, b, )y(y) dy = 1.

We call (3.1) the normality condition of a triplet {p(s,x,t,y),4,(x),d,(»)}, in
which ¢,(x) is an entrance function and ¢,(y) is an exit function.

As will be shown, a triplet {p(s,x,t, ), $.(x),¢,(»)} determines a stochastic
process. We remark that ¢,(x) is not the initial distribution density of the
stochastic process. The initial distribution density g,(x) is given by

Ha(X) = $(X)¢(a, x),
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where
dla.x) = [ plax.b. () do
is determined by the exit function ¢,(y).

_ Tueorem 3.1.  Under the normality condition (3.1) of a triplet {p(s,x,t,y),
b,(x), ()}, there exists a stochastic process {X,(w);t € [a,b],Q}, which has the
finite dimensional distribution given below:

For a<tij<thb <---<t,<b and for subsets T'|,I5,..., T,

(32)  QUw:w(n) el o) els,... o) e T
= J dxop,(x0) p(a, xo, 11, x1)1r, (x1) dx1 p(t1, X1, 12, x2) I, (x2) dx

o 'p(tnflaxnfla tmxn)lrn(xn) dxﬂp(tnvxmbv y)¢b(y) dy,

where ¢,(x) is an entrance function and $,(y) is an exit function.

Proof. Under the normality condition (3.1), equation (3.2) defines a prob-
ability measure Q on the product space S”. Therefore, by the extension theorem
(cf. e.g. Parthasarathy (1967)), we get a probability measure Q on the sample
space Q = {w(?),t€[a,b]}. We set X,(w)=w(t). Then we get a stochastic
process {X;(w);t € [a,b],Q} satisfying (3.2). This completes the proof.

We remark that the normality condition in (3.1) and the finite dimensional
distribution in (3.2) are intrinsic properties of the dynamic theory of random
motion of Schrédinger (1931) and Nagasawa (1993), (2000), (2002), (2007), and
different from those in the conventional theory of Kolmogoroff (1931).

DEerFmNITION 3.2. We set

d1.x) = j dz,(2) p(a, 2,1, ),

¢(va) = Jp(t7 vavy)¢b(y) dy,

where ¢,(x) is an entrance function and ¢,(y) is an exit function, and we will call
&(t,x) evolution function and ¢(t,x) backward evolution function.

THEOREM 3.2. Let {§(t,x),¢(1,x)} be the pair of evolution functions de-
fined above. Then the distribution density p,(x) of the stochastic process {X;(w);
t€la,b],Q} is given by

(3-3) tu(x) = (1, x) (1, x).
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Proof. From equation (3.2) of the finite dimensional distribution, we get
QUI(0) T = | dod (x0)pla 30,1, 015 (x) dpt, 3. ) () i

— | dte. 010 et ).
which implies (3.3). This completes the proof.

DEFINITION 3.3.  With the evolution functions ¢(z,x) and ¢(z,x) we define

(3.4 R1,) = 3 log (1, )g(1,),
R
(3.5) S(t,x) = 3 log i)

We call the pair {R(¢,x),S(z,x)} the generating function of random motion.

THEOREM 3.3. The pair of evolution functions can be written as
(36) ¢([’ X) _ eR(tAx)Jr.S'(t,,x‘)7 ¢A(t’ x) _ eR(hx)fS(t,x)7
with the generating function {R(t,x),S(t,x)} defined by (3.4) and (3.5).

We will call (3.6) the “exponential form™ of the evolution functions. We
then define a complex-valued function in an exponential form.

DrerFINITION 3.4. We define
(3.7) W(t,x) = eREXTiSE),

with the generating function {R(z,x),S(¢,x)} given in Definition 3.3, and call it
the complex evolution function corresponding to the evolution functions in (3.6).

We remark that the same generating function {R(z,x),S(#,x)} determines
both of the pair of evolution functions {¢(z,x),¢#(¢,x)} in (3.6) and the complex
evolution function y(¢,x) in (3.7). Hence they are equivalent. (See Theorem
7.3 in Appendix.)

There is, however, a decisive difference of ability between the complex
evolution function ¥(z,x) and the pair of evolution functions {¢(¢,x), d(¢, x)}.
Namely, if a complex evolution function (¢, x) is given, one get a generating
function {R(¢,x),S(¢,x)} from its exponent, but one can’t construct stochastic
process from the complex evolution function. To get a stochastic process we
need a pair of evolution functions {¢(z,x),4(z,x)}, in particular, the transit
function p(s, x,t, y) as shown in Theorem 3.1.
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THEOREM 3.4. Let {§(t,x), (1, x)} be the pair of evolution functions in (3.6)
and Y(t,x) be the complex evolution function in (3.7). Then the distribution
density p,(x) of the stochastic process {X,(w);t € [a,b],Q} is given by

(3-8) 1 (x) = B, )9 (1, x) = (6, ) (1, x),

where Y(t,x) is the complex conjugate of Y(t,x).

Proof. This is clear because @(z,x)d(t,x) = (1, X)(z, x) = 2R,

4. Entangled random motion

The entangled random motion will be applied to the double-slit problem in
the next section. We define an “entangled random motion™ as follows. We take
a pair of stochastic processes, and call them ““stochastic process 17 and “stochastic
process 27, respectively.

Let
(41) ¢l(lv X) — eRl(r,x)JrSl(t,x)7 qgl(t, X) _ eRl(t,x)fSl (t,x)’
be the evolution functions of the “stochastic process 1.

Let
(42) ¢2(l, X) _ eRz(I,x)+S2(l,x>7 ¢A2([’ X) _ eRz(t,x)—Sz(t,x)’

be the evolution functions of the “stochastic process 2.
Corresponding to the pairs of evolution functions in (4.1) and (4.2), we
introduce a ‘“complex evolution function 17 defined with {R;,S;}

lpl (1‘7 x) — eRl(l‘,)C)‘Fl'Sl(l\x)7
and also a “Complex evolution funcliOn 2’ with {Rz,Sz}
‘pz(l‘, x) — eRz(t,x)JriSz(t,x)'

We then define a linear combination:

(4.3) Y1, x) = B (4, x) + ¥ (2, ),

where f is a normalizing constant so that [ [y (s, x)|*dx =1, and represent
Y*(t,x) in an exponential form

(4.4) (1, x) = R0+ (00,
To write " (¢,x) in the exponential form is of fundamental importance in our

discussion of the entanglement.

DeFINITION 4.1. (i) We will call y*(1,x) = RS (0Y) in (4.4) entangled
complex evolution function, and the pair {R (t,x),S8*(t,x)} in the exponent of
VU (t,x) in (4.4) entangled generating function.
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(i) With the entangled generating function {R*(¢,x),S*(f,x)} we define a
pair of functions by

(45) ¢*([’ x) _ eR*(t,x)JrS*(t,x)’ ¢A*([’ X) _ eR*(t,x)fs*(t,x)

which will be called entangled evolution functions.

b

The entangled evolution functions in (4.5) determine an entangled random
motion {X,(w);t€ [a,b],Q*}. For this we apply Theorem 7.4 to the entangled
generating function {R*(¢,x),S*(¢,x)}. Then we get a transit function
p*(s,x,t,y), and a stochastic process {X;(w);? € [a,b],Q"} satisfying

F(1.x) = j Az ()" (a,2,1,%),

¢7(t,x) = Jp*(t, x,b, )¢y (y) dy,

where (ﬁ:(z) is an entrance function and ¢,(y) is an exit function for the
entangled motion.

DermniTioN 4.2, We will call the random motion {X;(w);?€ [a,b],Q"}
obtained above which has the transit function p*(s,x,¢, y), the entrance function
¢,(x) and the exit function ¢,(y) entangled stochastic process.

In applications later on, various entangled motion will appear. This means
that we will adopt various pairs of stochastic processes for the entanglement, or
equivalently different pairs of complex evolution functions {y,(z, x), ¥, (¢, x)}.

We note that these entangled stochastic processes can be distinguished by
indicating the difference of their exit functions.

) by
4.5).

TurOREM 4.1.  Define an entangled complex evolution function \*(t, x
(4.4) and a pair of entangled evolution functions ¢*(t,x) and §*(t,x) by (
Then

(4.6) 7 (1,X)$" (6, %) = ¥ (1, )~ (1, %),
where ™ (1,x) is the complex conjugate of ™ (t,x).

Proof. This is clear because both sides of (4.6) equal to a distribution
density 2R (1),

5. Entanglement by the double-slit

We now regard the “stochastic process 1 and the ‘“‘stochastic process 2” as
the motion of a particle (s-photon) going through slit 1 and slit 2, respectively.

At the double slit, a particle chooses slit 1 or slit 2 at random, and hence the
entanglement occurs.
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Then the motion of a particle after the double slit is described by the
entangled stochastic process {X;(w);? € [a,b],Q"} defined by Definition 4.2.

We apply the formula in (3.2) of the finite dimensional distribution to the
entangled stochastic process {X;(w);t € [a,b],Q*}. We then get

THEOREM 5.1. The distribution density of the stochastic process {X,(w);
t€la,b],Q"} entangled by the double slit is

(5.1) 1 (x) = ¢7(1,X)¢" (¢, x).

Proof. This is nothing but Theorem 3.2 applied to the entangled stochastic
process.

Since ¢*(b,x) = ¢, (x), the distribution density of a particle at t =15 (in
applications, an s-photon counted at the detector Dj) is

(52) #y(x) = ¢7(b, X) ¢y (x)-

As will be explained in Section 6, different exit functions will appear in
discussing the experiments of Walborn et al.

THEOREM 5.2. Let {X,(w);t € |a,b],Q*} be the stochastic process entangled
by double slit. Then the distribution density p(x) is given by

(5.3) (1 (x) = B (2R 4 2Rl
+ 27 R UITRY) cos () (1, x) — Sa(t, x)).

Proof: By (5.1), (4.3) and (4.6) the distribution density of the entangled
motion is

1 () = (606 (1) = (1,0
= ﬂ2|l//1(l> x) + '//2(t7 x)}‘z
= B (601" + B (1, 0)1°
F 22 (326 0) + T (6 ()},

where ¥, (t,x) = eRi (LX) +iSi(1,x) W, (t,x) = e Rt X)+iS:(1,X) and

()P = R0, (a2 = 2R,

S0 + T (e, 30} = R (4205 )
= MR cog(S) (1, x) — Sa(t, X))

This completes the proof.
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We remark that the distribution density g (x) in (5.3) of the entangled
stochastic process {X;(w); € [a,b],Q"} has a distribution with stripe-like pattern
induced by the cross-term, if S;(¢,x) — S2(¢,x) varies as a function of x.

6. Application of the mathematical theory to the double slit experiments
of Walborn et al

As explained in Section 2, a photon (351.1 nm) from an argon ion pump
laser is transformed by a special nonlinear crystal called BBO to a couple of
photons of 702.2 nm, the polarizations of which are orthogonal of each other.
These photons will be employed in the experiments, but they will play different
roles. The one named s-photon will be detected by the detector D, after going
through double slit. The other named p-photon will be detected by the detector
D, and play a special role. Namely, for each of four experiments we will pick
up an appropriate ‘“sub-population” from the ‘“‘total population” which consists
of all photons from the source. The sub-population consisting of s-photons
which should be counted by the detector D, will be chosen with the help of the
p-photon and the coincidence counter in each of four experiments, as will be
explained.

We remark that the use of the notion “population” and “‘sub-population” was
not made in Walborn et al (2002).

Experiment 1.

In this experiment, POLI in front of detector D, and QWP1 and QWP2 in
front of double slit are not placed in the experimental setup shown in Section
2. This is a standard double spit experiment in which we use all photons from
the source.

DerFINITION 6.1. We define the “total population™ by
{TP} = {all p-photons from the source}.

In the experiment 1 the total population {TP} is adopted, and a distribution
with a stripe-like pattern was observed.

_ Applying our mathematical theory, we take the pair of evolution functions
{¢7(t,z;7,), ¢*(t,z;7,)} entangled by double slit, where 7, denotes the polariza-
tion of the p-photon, and z is the space variable of the s-photon. We ignore
the space variable of the p-photon, since it plays no role. We will ignore the
polarization of the s-photon, when it will play no role. (To avoid confusion with
the polarization parameters, we use z for the space variable.)

Then the distribution density of an s-photon is

lut*(z) = ¢*(t7 Z; ‘L'];)¢*([,Z; Tp)v
by Theorem 5.1. The exit function is

$(2) = 97 (0,5 7p)
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which is determined by the entanglement by the double slit and does not depend
on the polarization 7, of the p-photon. In this experiment the p-photon plays
no significant role, and the distribution density of an s-photon counted by the
detector D, is given by

(6.1) 1y(2) = 47 (b, 7)) 95 (2),

where z is the space variable of the s-photon. Here we can ignore 7,, since it
plays no role.

We have used the total population {TP} without selection in this experiment.
Therefore, we can apply Theorem 5.2 and conclude that the cross-term of the
evolution functions through slit 1 and slit 2 induce a stripe-like pattern in the
distribution by the entanglement.

This experiment is a photon version of Young’s experiment. It should be
emphasized, however, that we treat no “wave”, but a “particle (photon)”.

Experiment 2.

In the second experiment, QWP1 and QWP2 are placed in front of double
slit, but POLI is not placed in front of detector D,.

If an s-photon is x-polarized, then QWPI1 in front of slit 1 transforms it to
a left circularly polarized photon, and QWP2 in front of slit 2 transforms the
s-photon to a right circularly polarized photon.

And if an s-photon is y-polarized, then QWPI in front of slit 1 transforms
it to a right circularly polarized photon, and QWP2 in front of slit 2 transforms
the s-photon to a left circularly polarized photon.

WORKING SETUP. To clarify things, in front of detector D, we place a linear
polarizer oriented so that only y-polarized p-photons go through. (This was not
done in the experiment of Walborn et al.) Then s-photons which are x-polarized
in front of QWPI and QWP2 will be counted by the detector D;.

DerFINITION 6.2. We define “sub-population 2 by
{SP}, = {p-photons which are y-polarized}.

We adopt the sub-population {SP}, in the experiment 2. In this experiment
the stripe-like pattern was not observed. (See Remark 1 below.)

Suppose an s-photon is caught by the detector D;. If the polarization of the
corresponding p-photon is not y-polarized, then it will not go through the linear
polarizer, hence will not be detected by the detector D,. Therefore, we won’t
count such an s-photon, even though the detector D, caught it.

Therefore, the s-photon which is counted was x-polarized in front of QWP1
and QWP2, since the polarization of the s-photon is orthogonal to that of the
corresponding p-photon in {SP},. Hence the s-photon was transformed by
QWP1 and QWP2 to a left circularly polarized photon and a right circularly
polarized photon, respectively.
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Walborn et al (2002) wrote that since a photon through slit 1 and a photon
through slit 2 have orthogonal polarizations, there is no probability of inducing
a stripe-like distribution. (However, we remark that “the left circular polari-
zation and the right circular polarization of photons are orthogonal” is not
obvious. No proof for this statement was given in Walborn et al (2002).)

Moreover, we can see which slit an s-photon went through, if we measure
the polarization of the s-photon at the detector D;. Suppose the s-photon is
x-polarized. If it is left circularly polarized at the detector D;, then the s-photon
came through slit 1. If it is right circularly polarized at the detector Dy, then the
s-photon came through slit 2.

We now apply our mathematical model. For the experiment 2 we must
have

Lispy, (7)) 85 (2)

as the exit function, where ¢,(z) is the exit function of an s-photon at the
detector Dy, which depends on the polarization of s-photon, and 1;sp},(7,) is the
indicator function of the sub-population {SP},, that is, if 7, is y-polarized, then
lispy,(1,) = 1, and lygpy, (7)) = 0, otherwise. Namely, an s-photon detected by
the detector Dy is counted if and only if the corresponding p-photon is in the
sub-population {SP},. We remark that the exit function and the entrance func-
tion must be normalized as in (3.1) by multiplying a constant.

Therefore, the distribution density of an s-photon counted at the detector Dy
is

(6.2) 1;(2) = 6" (b, z;7,) Lispy, (7,) 5 (2).-

Since the exit function is lyspy,(7,)¢,(z), the s-photon which is counted at
the detector Dy was x-polarized in front of QWP1 and QWP2. Then QWPI and
QWP2 transform the s-photon into a left circularly polarized photon and a right
circularly polarized photon, respectively.

Then the complex evolution functions y_(¢,7,7) and y_,(¢,r,) of “sto-
chastic process 17 and “‘stochastic process 2”’, which describe the s-photon going
through slit 1 and slit 2, have factors e” and e~ respectively, where (r,7)
denotes two dimensional polar coordinate. The factors e” and e~ induce the
left circular motion and the right circular motion, respectively, see Section 8. In
particular, we look at the dependence on the variable 7, since the polarization
of photons plays an essential role in this experiment.

Let

lp(t> r, 77) = ﬁ(¢+l(z7 7777) + l//—1([7 r, 77))

be the entangled complex evolution function, where f§ is a normalizing constant.
Then it is easy to see that the distribution density y(z, r,7)y(z,r,57) has a factor
(I —cos 27), which vanishes at # =0 and 5 =x. Therefore, the distribution

density is separated into two, namely 0 < # < 7w and n < # < 2z. Hence paths of
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an s-photon through slit 1 and slit 2 are separated, and no stripe-like pattern
appears.

Remark 1. In the experiment of Walborn et al “a linear polarizer oriented
so that only y-polarized p-photons go through” is actually not placed in front of
detector D,. Therefore, their source is not the sub-population {SP}, but the
total population {TP} which is mixed, hence the observed distribution shown in
Section 2 as a figure (on the right-hand side) was somewhat blurred, but their
experiment is essentially the same as explained above.

Experiment 3.

In the third experiment, QWP1 and QWP2 are placed in front of double-slit,
namely, the experimental setup for s-photons is the same as in the experiment 2.

In the experiment 3, however, a linear polarizer POL1 is placed in front of
detector D, in addition, and the POL1 is oriented (suitably for QWP1 or QWP2)
so that it will pass p-photons which are linearly polarized of a combination of x
and y.

Because of the linear polarizer POL1 placed in front of detector D,, the
polarization of the p-photon that will be counted is a combination of x and y.

DerFmNITION 6.3. We define “sub-population 3 by
{SP}; = {p-photons whose polarizations are a combination of x and y}.

In the experiment 3 the sub-population {SP}, is adopted. In this exper-
iment a stripe-like pattern was observed.

Suppose an s-photon is caught by the detector D,. If the polarization of the
corresponding p-photon is not a combination of x and y, then it will not go
through POLI1, hence will not be detected by the detector D,. Therefore, we
won’t count such an s-photon, even though the detector D; caught it.

We note that the polarization of an s-photon which will be counted is also a
combination of x and y in front of QWP1 and QWP2, since it is orthogonal to
that of the corresponding p-photon in {SP};.

We now apply our mathematical model. For the experiment 3 we must
have

Lisey, (1), ()

as the exit function. Then the distribution density of an s-photon at the detector
Dy is
(63) /1;(2) = ¢§*<bvz; Tp)l{SP}3(Tp)¢;(Z)'

As noted above, the polarization of the s-photon which will be counted is a
combination of x and y. Hence QWP1 and QWP2 placed in front of double slit

won’t transform the s-photon to a circularly polarized photon. Accordingly, the
“stochastic process 1 and “‘stochastic process 2” have polarizations 7, and 7y
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which are not orthogonal. Therefore, the cross term of the evolution functions
through slit 1 and slit 2 induce stripe-like pattern by the entanglement.

Remark 2. The experiment 2 and experiment 3 are not standard double-slit
experiments. They are further detailed experiments. In other words, they are a
sort of paired experiments. As a matter of fact, the experimental setup of the
experiment 2 and experiment 3 for s-photons are exactly the same. Moreover,
we do not touch s-photons in the experiment 2 neither in the experiment 3.

Nevertheless, the observed distributions are completely different.

This is caused as a result that, by placing POLI, the sub-population is
changed from

{SP}, = {p-photons which are y-polarized},
to the other sub-population
{SP}; = {p-photons whose polarizations are a combination of x and y},

that is, different statistics are used in the experiment 2 and experiment 3. This
point about different statistics was, however, not mentioned in Walborn et al
(2002).

In our mathematical model, equation (6.2) which has the exit function
lyspy, (1p)¢, (2) is changed to equation (6.3) which has the other exit function
lspy,(75)9, (z), namely, we use different entangled stochastic processes for the
experiment 2 and experiment 3, respectively.

Remark 3. In Walborn et al (2002), QWP1 and QWP2 placed in front of
double slit are called “marker”, and POLI placed in front of detector D,
“eraser”’. However, QWP1 and QWP2 alone can’t mark “which way”. “To tell
which way” we need to know the polarization of the s-photon in front of QWPI
and QWP2, that is, x-polarized or y-polarized, which we can fix by changing the
orientation of the linear polarizer POL1. As a matter of fact, POLI1 in front of
detector D, plays both roles of “marker” and “eraser’” by suitably adjusting its
orientation. Hence it is probably better to call QWP1 and QWP2 with {SP},
“marker”, and with {SP}, “eraser” in experiments 2 and 3.

Experiment 4.

The experimental setup is the same as in the third experiment, but the
polarizer POL1 and detector D, are placed farther away from BBO crystal so
that the path of the p-photon is lengthened.

In this experiment if the detector D, catches an s-photon first and the
detector D, then catches a p-photon, we resister “count 1”. Such counts are
repeated as in other experiments.

Since only the order of detection of s-photons and p-photons is exchanged,
the sub-population of this experiment is exactly the same as in the experiment 3.



602 MASAO NAGASAWA

DEerINITION 6.4. We define ““sub-population 4 by
{SP}, = { p-photons whose polarizations are a combination of x and y}.

In the experiment 4 the sub-population {SP}, is adopted. In this exper-
iment a stripe-like pattern was observed.

Suppose an s-photon is caught by the detector D;. If the polarization of the
corresponding p-photon is not a combination of x and y, then it will not go
through POLI, hence will not be detected by the detector D,. Therefore, we
won’t count such an s-photon, even though the detector D; caught it. To count
or not to count is decided by the sub-population {SP},. Namely, exchanging
the order of detection of s-photons and p-photons plays no role.

We now apply our mathematical model. Since {SP}, = {SP};, the distri-
bution density of an s-photon which we count at the detector Dy is

(64)  wy(2) = 9" (b, 77) Lisey, (5) 05 (2) = 67 (b, 735) Lisey, ()5 (2).
We get naturally a stripe-like distribution pattern as in the experiment 3.

Remark 4. There exists a sort of explanation on the experiments of
Walborn et al by using “uncertainty principle” (Heisenberg (1927)) and “‘non-
locality” (Bell (1964)), (or “Bohr’s complementarity’’). But this is an erroneous
explanation.

In fact, we have clarified in the present paper that ‘“uncertainty principle”
and “‘non-locality” play no role in the double-slit problem, and that “Bohr’s
complementarity” has no place in our discussion.

We remark, moreover, that Heisenberg’s uncertainty principle and Bell’s
non-locality claim are both incorrect (cf. Nagasawa (1997), (2009), (2012)).

For the double-slit experiment in another experimental setup different from
that of Walborn et al, we refer to Scully-Driihl (1982) and Kim, Scully et al.
(2000).

Appendix
7. Equation of motion and equation of paths

Main theorems of the dynamic theory of random motion of a particle that
have been applied in the preceding sections will be explained, details for which we
refer to Nagasawa (1993), (2000), (2003), (2007), (2012%*).

In the dynamic theory of random motion, the equation of motion is given by

5¢

- + 202A¢ +c(t,x)¢ =0,

— %¢ + 202Aq§+ cl(t, x)qg =

(7.1)
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where a <t<b, ¢ is a constant and c(,x) is a scaler potential. (Cf. e.g.
Nagasawa (1993), (2000), (2002), (2007), (2012*).)

Let p(s, x,t, y) be the fundamental solution of (7.1). The function p(s, x, ¢, y)
is a transit function in Postulate made in Section 3. .

Then under the normality condition of a triplet {p(s,x,1, y),d,(x), d,(»)}
there exists a stochastic process {X;(w);? € [a,b],Q} by Theorem 3.1.

THEOREM 7.1. (i) Let p(s,x,t,y) be the transit function determined by the
equation of motion (1.1), and take an evolution function $(s,x) = eRHV)+SEY),

Then

1
q(s,x,t,y) = mp(s, x,1, y)(t, y)

is the transition probability density of the random motion {X,(w);t € [a,b], Q}.
(i) The function q(s,x,t,y) is the fundamental solution of an evolution
equation

(7.2) % + %azAu +a(s,x)-Vu=0,
where
(7.3) a(t,x) = YY) 2gR( v + VS ()

¢(1,x)
is the evolution drift determined by the evolution function ¢(s,x) = eR(:X)+S(x),

Equation (7.2) is called the equation of kinematics of random motion.
Proof. 1t is clear that g(s,x,t,y) is a transition probability density. On

the right-hand side of (3.2), multiply ¢(#;, x;) and divide by ¢(z;, x;) at each dx;.
Then the right-hand side of the formula (3.2) can be written as

= J dxogia(xo)¢(a,xo) ¢(aTx0)p(a, X0, 11, x1)P(t1, x1) dx;

1
P11, x1)
1

”¢(Zn7xn)

= J dxod,(x0)(a, X0)q(a, xo, 11, x1) dx1q(t1, X1, 12, X2) dx>

X p(t1,x1, 2, X2)P(t2, x2) dx»

P(tn, Xn, b, )y (¥) dyf (x1,..., %)

o 'dxnle(tnflvxnfla tmxn) dan(tnaxnab» J/) dyf(X1, cee ,Xn),

denoting 11,(x) = ¢,(x0)¢(a, xo), we have therefore
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Qlf (X;,.... X)) = J dxopt,(X0)q(a, xo, t1, x1) dx1q(t1,x1, 12, X2) dxz

e dxnflq(tnflaxnflvtnv xn) dxnf<x17 ey xn)»

which proves the assertion (i).

LemMa 7.1 (Nagasawa (1989)). Let p(s,x,t,y) be the fundamental solution
of (1.1) and ¢(s,x) be an evolution function. Then

u(s, x) = p(;;(? ;,)y)
satisfies
(04 Lutd GV Vu= S (Lp+clsx)p) — 5 (L + 5009,
where
L= % + %Jzﬁ.

Since the right hand side of (7.4) vanishes, the assertion (ii) follows from
Lemma 7.1. This completes the proof of Theorem 7.1.

TuaeoreM 7.2. (i) Let {X,(w);1€[a,b],Q} be the stochastic process deter-
mined by a triplet {p(s,x,t,¥),¢,(x), ¢, ()}, where p(s,x,t,y) is the transit func-
tion determined by the equation of motion (71.1). Then the paths (trajectories) of

the random motion of a particle are given by a stochastic differential equation

t
(7.5) X, = X, + 0By o+ j o2V log §(s, X;) ds,

a

Vo

where >V log ¢ = 02? is the evolution drift determined by the evolution function

é(t,x), B, is a d-dimensional Brownian motion, and X, is a random variable
independent of the Brownian motion B,
(i) The distribution density u,(x) of the stochastic process X, is given by

1 (x) = (1, 2)h(1,5) = KONt e [a,b].
Equation (7.5) is called the equation of paths of random motion.

THEOREM 7.3. The following two assertions are equivalent
(i) evolution functions
¢(l, .X) _ eR(t,x)+S(t,x), ¢A(l, .X) — eR(t‘x)fS(t,x)

satisfy the equation of motion (7.1);
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(i) a complex evolution function
lﬁ(l, X) — eR(t,x)+iS(t,x)

satisfies the complex evolution equation
oy (1,
. i ZePA = — 0
(7.6) 3 1(20 Vi, X))l// 0;
under a condition

V(t,x) + c(t,x) + V(t,x) = 0,

where

_ 0
V(t,x) = 2a—f +a*(VS)*~.

Remark 5. Schrodinger interpreted equation (7.6) as a complex-valued wave
equation (the “Schrodinger equation™) in his wave mechanics, cf. Schrédinger
(1926). His “wave-interpretation’ was, however, a mistake. The equation (7.6)
is not a wave equation but an evolution equation in our dynamic theory of random
motion. It is the equation which generates semi-groups. In (7.6) the generator
is complex-valued. For the theory of semi-groups of operators, see Yosida
(1948). We note in this context that Feynman (1948) regarded the Schrodinger
equation as a complex-valued evolution equation and developed a complex
stochastic theory, which has no relation to our dynamic theory of random
motion.

THEOREM 7.4. Let {R(1,x),S(t,x)} be given and set
¢(l, X) — eR(t,x)+S(r‘x)7 ¢A(l(7 X) — eR(t,x)fs(r‘x).
Then there exist a transit function p(s,x,t,y), and a stochastic process

{Xi(w);1€a,b],Q}
such that the probability measure Q satisfies (3.2) and

d(t.x) = j dz,(2) pla, .1, ),

¢(va) = Jp(t7 vavy)¢b(y) dy,
where §,(z) = §(a,z) and $y(y) = (b, y).

Proof. Let {X;(w);tela,b],Q} be a solution of a stochastic differential
equation

t
X, =X,+0B_,+ J o’V log ¢(s, X;) ds,

a
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where the distribution density of X, is ¢,(x)¢(a,x). Let q(s,x, ¢, ) be the tran-
sition probability density of {X;(w),Q}, and set

p(s,x,1,y) = $(t,x)q(s, x, 1, y) qzﬁ(t1 ¥)

Then p(s, x,, y) is a transit function and it is easy to see that {X;(w), Q} satisfies
equation (3.2) with the transit function p(s,x,t, y) defined above. This com-
pletes the proof.

8. Theory of a photon

One can’t apply Maxwell’s theory to the motion of “a single photon”. This
is clear. Nevertheless, so far as my knowledge, there is no theory of motion of
a single photon.

“A theory of motion of a photon” based on the dynamic theory of random
motion will be given.

In the dynamic theory of random motion, the equation of motion

op 1
D 3P0+ =0,

o 1 R R
determines the motion of a particle, where ¢ <7<b, and c(x) is a scalar
function.

The coefficient ¢ in the above equations is determined by the mass m of a

. 1 7/ .
particle, namely, o> = — 2—1, where /& is the Planck constant.
m Zm

Since a photon has no mass, we postulate that the coefficient ¢ is deter-
mined by the energy of a photon.

We note that if the frequency of an electro-magnetic field is v, a photon in it
has no frequency but the energy /iv. Therefore, we set o> = hv, which is the
intensity of random motion.

We consider a photon moving along the z-axis with the speed ¢, and assume
that it makes random motion with the Hooke potential on the xy-plane orthogo-
nal to z. The random motion on the xy-plane carries photon’s energy.

The lowest energy: For linearly polarized motion of a photon in the xy-
plane we consider first of all the equation of motion

op 1 ,0% 1 5,
a3 g =0,
o9

1 2525 1 2.27
TR A it LR Al
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and the stationary motion. Then we have the evolution functions
P(t,x) = /ge<tmr/2>—(xx2/2o)’ ¢§(f, x) = ﬁe—(JKI/Z)—(KxZ/ZJ)7

of the lowest energy. By (7.3) the evolution drift a(x) is given by

1 0¢(t,x)
_ 2 X)) _
alx)=a ) ox OKX.
Hence the equation of kinematics is
ou 1 ,0%u ou
(81) E-’—EG @—O’KXE—O,
by (7.2). Therefore, the equation of paths is
t
(8.2) X, =x, +0B;_, — O'KJ dsxy,

by (7.5). This is a random harmonic oscillation.
Then we have

THEOREM 8.1. (i) Let x; be given by (8.2). Then in the xy-plane there is a
random motion of the lowest energy X, = (x;,0x,), where o is a real constant.
This is a random harmonic oscillation on a linear line y = ax in the xy-plane. The
motion orthogonal to this is X, = (—ox;,x;), which is a random harmonic oscil-
lation on a linear line —oy = x.

(i) As a special case o =0, the x-polarized random harmonic oscillation is
given by X; = (x;,0). The motion orthogonal to this is X; = (0, x;), which is the
y-polarized random harmonic oscillation.

The first exited energy: More generally the equation of motion of a photon is

o 1 (0% PP\, 0 1 5 5. 5,
E+§U (ax2+ay2 +C& EK (x +y)¢—0,

6¢§ 12525 52& ,5‘/5 1 50 2\ b
6t+20 <ax2+6y2 +Cﬁz 2;c(x +y9)p=0.

By separating variables, the equation of motion along the z-axis is

6—¢+C(Z—¢:O,
ot 0z
b0 _

~ate =0

Therefore, it is a uniform motion with the speed c.
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The equation of motion in the xy-plane is

op 1 o2 62(75 62¢ 1 2, 2 b
E—i_—z (5 2+5y __ZK( +794=0,
_E P~ <W+W — =K (X +y)¢—_0

We then consider one more mode of motion of a photon of the first exited
energy.

We now use the polar coodinates (r,7) in two dimensions. Then the equa-
tion of motion given above is

op 1 , 0¢ 1 0°¢ 1 5
a2’ (rﬁr(@r)+r2(377 2;cr¢—0,

75¢ 1, ¢ 1 0°¢ 1 22
6l+20 <r§r<6r>+r26n2 $=0.

We consider the stationary motion. For the quantum numbers m = +1, n =0
we have the eigenvalue 1 = 20x, and a complex evolution function

Yo (trm) = Bre~ (/200 +i(= 2okt £n) |

(cf. e.g. Pauling-Wilson (1935)). We introduce notations
K 2
=logr——r°, Sy =-20Kt+7,
20 -

and write i, in the exponential form

lpil (ta r, 77) = ﬂeR+iSil'

We remark, however, that from the complex evolution function we can’t get
random motion.
To get random motion we need evolution functions

¢i1(l7r7']) :ﬁeR+Si17 ¢Aj1(l7r777> :ﬂeR_Silv

which are equivalent to the complex evolution function v (#,r,7). We note
that they are determined by the same pair {R,S4;}.
We consider the case m = +1, namely

1//+1 ([, r, ;7) — [)’7‘67(’(/2”>r2+i<72”m+’7) — ﬁeR+iS+17
and set
¢1(t,r,m) = Pe ReSir = Bre~ (/20)r*+(= 2oK140)

¢+l( ) ﬁ R=S4 *ﬂre (/20)r? (*20K1+;7)'
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Then it can be shown that they satisfy the equation of motion
op 1, op\ 1 0% e
atae (a( m)*?z% (g vn )e=o.
o 1 (10 [ ag\ 1% oo .
% T2° <7E<r5>+725_;72 —(grir i )=0

with an additional potential

1
V(r) =g’ a2 4ok,

and the distribution density is given by

wt,r,n) = gy (t,r, )y (t,r,m) = e /o

Moreover, by (7.3), the evolution drift determined by the evolution function
boy = feR5 is

2 1 09y, azaR 21

a(r,iy)—0'¢—+l or ar—O' ;—O'K

1104 108, L1
n — g2 - +1: 2__+: 2 -
a'(rn) =0 o1 On - on s

Hence the equation of kinematics is

ou 1 5(10( au +152u PO SRS B
a 27 \var\Uar r? on? 7T ) o rrog

by (7.2).
Therefore, the equation of paths in the polar coordinates (r,7) is

1
r,:ra—i—aBt1 J ds(za r——akm)

t
1
ﬂt:”“+J J7dB‘S27a+J Uzr—zds,
a N

a N
by (7.5), where B! and B? are independent one-dimensional Brownian motions.
. . . o 3 ol
Looking at the radial motion r,, we see that drift 50’2—— okr has a zero
r

3o e e .. .
= ,/5 —, and drift is positive, if r < 7, and negative if r > 7. Therefore, 7 is an
K

=i

attractive point.

The angular motion 7, has anti-clockwise drift o2 /r2.

Therefore, X, = (r;,s#,) makes anti-clockwise random circular motion as
illustrated at the left-hand side of the figure below.
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m=1

We consider the case m = —1, namely
Yoy (t,rm) = Bre(&/20)r* +i(=2ont—y) _ po RSy
and set
é_(t,r,n) = ﬁeR+S,1 _ ﬁre—(K/Zﬂ)r2+(—2am_,7)’
51(r) = RSt = =T (o)
The evolution drift determined by the evolution function ¢ ; = BeR+5-1 is

. 1 0, R 1
7 _ 2 - 1_ 27 2°
a (r,i’]) =0 ¢71 or g or ag ; oK,

1 104 165, I
n — 27—71: 2— — 2
allr.n) =0 ¢y r On 75 on r

Therefore, the equation of paths in the polar coordinates (r,7) is

! 3,1
re=7r,+ aBLa —&-J ds(zaz— - akrs),
a

Ts
L P
nz:”a+J g— stzfa_J 0-2_2d57
a Ts a }"X
where B! and B? are independent one-dimensional Brownian motions. The
angular motion 7, has clockwise drift —¢?/r? in this case.
Therefore, X, = (r,#,) makes clockwise random circular motion as illus-
trated at the right-hand side of the figure above.
Thus we have shown

THEOREM 8.2. There are three modes of random motion in the xy-plane. Let
x; be given by (8.2).

The first one is X; = (x,,0) and X, = (0,x,). These are the x-polarized and
y-polarized random harmonic oscillation, respectively.

The second one is X; = (x;,ax,), where o is a real constant.  This is a random
harmonic oscillation on a linear line y = ox in the xy-plane. The motion orthogo-
nal to this is X; = (—ax,,x,). This is a random harmonic oscillation on a linear
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line —ay = x. (These random motion are called sometimes “‘a combination of x
and y polarized motion™.)

The third one is X, = (r,n,) in the polar coordinates, which makes anti-
clockwise (and clockwise) random circular motion.

We regard these three modes of random motion on the xy-plane as the mode
of the polarization of a photon. For instance, if the motion is on the x-axis, a
photon is “x-polarized”. If the motion is on a linear line in the xy-plane, a
photon is “linearly polarized”” by a combination of x and y. If a photon makes
left circular random motion, the photon is “left circularly polarized”. If a
photon makes right circular random motion, the photon is “right circularly
polarized”.

We remark that the photon model given in this section is applicable to the
double-slit experiment of Walborn et al discussed in Section 6.
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