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Abstract

In this paper we generalize the classical finite dimensional selection theorem due to
Michael [12, theorem 1.2] to the case where the target space is only a Hausdorff uniform
space. This also generalizes the zero-dimensional selection theorem of Fakhoury-Gieler
[7, 8]. The proof of this generalization utilizes an elegant construction due to Ageev.

The purpose of this paper is to generalize Michael finite dimensional
selection theorem [12, theorem 1.2] to the case of a Hausdorff uniform target
space. The following notations and definitions will be fixed throughout this
paper.

If E is a uniform space, we let Z(E) be the basis of the filter of entourages
defining the uniformity of E that consists of the open symmetric entourages [4, 11.5]
and where each such entourage is of the form V ={(x,y) e EX E: f(x,y) < a}
for some pseudo-metric /' on E and for some a > 0 [5, IX.5, Theorem 1]. A< FE
is said to be V-small where Ve (E) if Ax A< V.

Let %(E) be the set of non-empty subsets of E. A family & < %y(E) is
said to be equiuniformly-LC" if YV € %(E), AW € %(E) such that for any
compact polyhedron K of dimension < n [14, p. 142] and for any 4 € & and
any continuous map ¢ : K — A4 such that ¢(K) is W-small, then ¢ extends to
a continuous map ¢’ : Con(K) — A4 such that ¢'(Con(K)) is V-small (where
Con(K) = K x [0,1]/K x {1} is the cone over K with the quotient topology and
where K is identified to K x {0} = Con(K) by the obvious map). Note that this
is the same concept as that of a uniformly equi-LC” family defined in [12], in
case of a metric E, but our terminology is more consistent with the theme of this
paper.

A € FE is said to be C” if any continuous map of a compact polyhedron of
dimension < n into A4 extends to a continuous map of Con(K) into 4. If 4 is
C" for all A€ ¥ < By(E), we say that ¥ is C". In the above n > —1, where
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any & < %(E) is equiuniformly-LC~! and C~!. & < %y(E) is said to be
equimetrizable [7, 8] if there exists a filter basis %y ={V, :n> 1} = %(E) for a
coarser uniformity on E such that VU € %(E), 3m > 1 such that A x ANV,, = U
for all 4 €% (the family % is then said to be %, equimetrizable).

If X, E are topological spaces, a map ¢ : X — %y(E) is said to be lower
semi-continuous (= l.s.c.) if for any U open S E, {xe€ X : p(x)N U # 0} is open
in X. If 4 <X, a selection of p on 4 is a map g : A — E such that g(a) € p(a)
for all a e A.

Our generalization of the Michael finite dimensional selection theorem [12,
theorem 1.2] is given by:

MAIN THEOREM. Let E be a Hausdorff uniform space and let X be a
paracompact space and A closed = X such that dim(X mod 4) <n+ 1 [13, p. 50]
and let ¢ : X — Bo(E) be a lLs.c. map such that {p(x):xe€ X} is an equime-
trizable, equiuniformly-LC" family of complete subsets of E, and let g: A — E be
a continuous selection of ¢ on A. Then g extends to a continuous selection of ¢
on some open U2 A. If p(x) is C" for all xe X, we may take U = X.

The proof of this theorem depends on the following three lemmas.

LemMMa 1 [see 12, Lemma 11.1]. Let E be a uniform space and let & be
an equiuniformly-LC" < %¢(E). Then YV € %(E), AW € %(E) such that for all
A e & and any compact polyhedron X of dimension < n+ 1 and for any continuous
map k: X — W(A), there exists a continuous map f: X — A such that f(x) e
V(k(x)) for all xe X.

Proof. Let Z e U(E) such that Z?> < V. By induction using the equiuni-
formly-LC" property of . IS e %(E), S < Z such that for all 4 € & and any
finite simplicial complex K of dimension <7+ 1 and for any map u: K° — 4
such that u(¢ N K?) is S-small for all o € K, then u extends to a continuous map
v: K — A such that v(g) is Z-small for all o€ K.

Let W eu(E) such that W3 < S and let X and k be as in the lemma.
Passing to a fine barycentric subdivision of X, we may assume that k(o) is
W-small Vo e X. For all ve X° let f(v) € 4 be such that k(v) € W(f(v)), then
f extends to a continuous map over X such that f(g) is Z-small for all o € X.
For xe X, we have xe<vy,...,vny and f(x)e Z(f(vo)), f(vo) € W(k(vp)),
k(vo) € W(k(x)) give f(x) e V(k(x)) as desired.

LeMMa 2 [see 12, Lemma 11.2]. Let E be a locally convex topological
vector space (= LCTVS) and let & be an equiuniformly-LC" = B(E). Then
VYR, T € U(E), IM € U(E) depending on R, T and 3S € U(E) depending only on R
such that if K is a compact polyhedron of dimension < n and if A€ & then any
continuous map k : K — M(A) such that k(K) is S-small extends to a continuous
map k' : Con(K) — T(A) such that k'(Con(K)) is R-small. If & is C", then for
R=EXE, we may take S=FE x E.
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Proof. Let Le(E) such that L*> = R. By the equiuniformly-LC” prop-
erty of &, there exists S € %(E) such that if K is a compact polyhedron of
dimension < n and if 4 € ¥ then any continuous map k : K — A such that k(K)
is S3-small extends to a continuous map k' : Con(K) — A4 such that k'(Con(K))
is L-small.

Let Ze#%(E) such that Z= TNSNL and Z={(x,y)eE: p(x—y) <1}
where p is a continuous pseudonorm on E [6]. Now Z determines M € %(E) by
lemma 1 so that if K is a compact polyhedron of dimension <# and if 4 €.¥
and if k : K — M(A) is any continuous map such that k(K) is S-small then there
exists a continuous map f : K — A4 such that f(x) e Z(k(x)) for all xe K. Note
that f(K) is ZSZ-small or f(K) is S3-small, hence f extends to a continuous
map f':Con(K) — A4 such that f'(Con(K)) is L-small.

Define k' : Con(K) — E by k'(x,1) =2t.f(x) + (1 = 20).k(x) for 0 <t <}
and k'(x,1) = f’(x,2t — 1) for § < <1 so that k’ is a continuous extension of k
and k'(Con(K)) = Z(A4) = T(A4) and k'(Con(K)) is ZLZ-small, hence it is R-
small as desired.

LemmA 3 [see 12, Lemma 11.3 and 1, Lemma 2.8]. Let E be a uniform
space, V € U(E), X be a topological space, ¢ : X — By(E) be a ls.c. map and let
C compact < E. Then {xe X : C = V(p(x))} is open < X.

Proof. Let xp € X such that C < V(p(x)).
Claim. 3S, W € %(E) such that SW = V and C = W(p(xo)).

Proof of Claim. Let V ={(x,y)e EX E: f(x,y) < a} where f is a pseudo-
metric on E. The map C — [0, a) defined by z — inf{f(z, y) : y € ¢(x0)} is upper
semi-continuous [4, TV.30, Theorem 4|. Hence 3zp € C such that inf{f(zo, y) :
y € p(xo)} =sup{inf{f(z,y): yep(xo)}:ze C} =ay < a [4, IV.30, Theorem 3].

Set W={(x,y)eExE: f(x,y) <%(a+a)}, S={(x,y) e EXE:
f(x,y) <%(a—ap)}. Clearly, these satisfy the requirements.

Let S, W € %(FE) be as given by the above claim. There exists F finite = C
such that C = S(F). Also xpe (), _{xeX :p(x)NW(z) #0} = O open = X.
Hence C = S(F) = SW(p(x)) < V(p(x)) Vxe O.

This paper is divided into two sections. Section 1 is devoted to generalizing
Ageev construction [1] culminating in theorem 1.4. In section 2 we establish our
generalization of Michael finite dimensional selection theorem in theorem 2.2.

1. Ageev construction

The following notations and definitions will be adopted in this section.
Let X and E be topological spaces and let ¢ : X — %,(E) be any map. The
graph of ¢(= Gr(p)) is defined by Gr(p) = {(x,y) e X x E: yep(x)}. A map
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F:X — %y(E) is called an (n-)step function from X to E if there exists
{A4,: 0 eI} locally finite open cover of X and K, compact polyhedron (of
dimension n) for all « € I such that Gr(F) = | J{4, x K, : « € I'} and we denote F
by {4,} ® {K,}. In particular, F is called a contractible (n-)step function if K,
is contractible for all o e /.

Let Fi = {4,} ® {K,}, F> ={B;} ® {L;} be two step functions from X to
E: F, refines F», denoted by F; < F,, if for any o, there exists i(a) such that
Ay S B,y and K, = Ly, and F; star refines Fy, denoted by Fy <" Fp, if
A,NB; #0 = K, = L; Vo, i. Note that if Fy, F>, F3 are step functions from
X to E, then

(1) Fi<F or FI <*F, = Fl(x) c Fz(x) Vxe X,

(i) I <*F,and <F, = F| <" F,

(111) FI<'F, and F, <*F; = F] <*F3.

Finally, we remark that if £ is any infinite dimensional Hausdorff LCTVS
and if K is a compact polyhedron and if f:K — E is a PL-embedding,
then PLEmb,(Con(K), E) = {g: g PL-embedding of Con(K) into E,g|x = f}
is uniformly dense in Cy(Con(K),E) = {g: g continuous map of Con(K) into
E gy =f}. Indeed PL;(Con(K),E)={g: g PL-map of Con(K) into E,g|g
= f} is uniformly dense in Cy(Con(K),E) by using barycentric subdivisions
[10, p. 91], and by a general position argument we get that PLEmb,(Con(K), E)
is uniformly dense in PL;(Con(K),E) [same argument as 10, p. 94].

The Ageev construction in [1] for the proof of the classical Michael finite
dimensional selection theorem is generalized in the following three lemmas.

LemMa 1.1 [see 1, Lemma 2.7 + Proposition 5.3]. Let E be a uniform space
and let W,S € WU(E). Then for any paracompact space X and any l.s.c. map
0: X — By(E) and for any continuous map k : X — E such that k(x) € W(p(x))
for all x € X, there exists a contractible O-step function F : X — %¢(E) such that
F(x) € S(p(x)), F(x) is Wsmall and k(x) e W?(F(x)) for all xe X.

Proof. Letb:X — E be a selection of ¢ such that k(x) € W(b(x)) for each
xe X. Forall xe X, let O(x) be an open neighborhood of x such that k(O(x))
is W-small and O(x) x {b(x)} = Gr(S(p)) by lemma 3 (where S(p) is the map
X3z— S(p(z)) € Bo(E)). Let {4,:a€el} be a locally finite open refinement
of {O(x):xe X} and let 50 — x(o) e X be a refining map and let K, =
{b(x(«))}. Then F = {4,} ® {K,} is a contractible O-step function from X to E
and F(x) = J{K,:x€4,} = S(p(x)). Note that

xe A, € O(x(a)) = k(x)e W(k(x(e)) and k(x(x)) e W(b(x(x))
= k(x) e W(F(x))

So that if xeA4,NAp then b(x(x)),b(x(B)) € W3(k(x)), hence b(x(x))e
W4 (b(x(B))) and F(x) is W4-small as desired.
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LEmMMa 1.2 [see 1, Proposition 3.1 4 Proposition 5.4]. Let E be an infinite
dimensional Hausdorff LCTVS and let & be an equiuniformly-LC" < By(E).
Then YR, T € U(E), AM € U(E) depending on R, T and 3S € U(E) depending
only on R such that if X is a paracompact space and if ¢ : X — & is a l.s.c. map
and if Fy : X — Bo(E) is a k-step function such that F.(x) = M(p(x)) and Fi(x)
is S-small for all x € X, where 0 <k <n, then there exists Fii1: X — %y(E),
a contractible k + 1-step function such that Fiy1(x) < T(p(x)) and Frpi(x) is
R?-small for all xe X, and Gy <*Fy., for some k-step function Gy where
Gy < F,. If & is C" then for R=FE x E we may take S =FE X E.

Proof. For R, Te¥U(E), let S, M € U(E) be as given by lemma 2. If
Fr ={4,} ® {K,}, then Fi(x)=(J{K,:x€ A4,} is a compact polyhedron [10,
p. 2] of dimension k < n. By lemma 2 and [4, 11.31] Fi(x) extends to an R-small
PL-embedding of Con(Fi(x)) in T(p(x)). We identify Con(Fi(x)) by its image
under this PL embedding.

By lemma 3 and the paracompactness of X [14, p. 70], there exists
{O(x): xe X} an open star refinement of {4,} such that xe O(x) and
O(x) x Con(F(x)) € Gr(T(p)) (where T(p) is the map X35z — T(p(z)) €
ABo(E)). Let {Bg} be a locally finite open refinement of {O(x)} and let
By = O(xp) and N(Bs,{O(x)}) = (J{O(x) : O(x) N Bg # 0} = A, p).

Define Gy = {Bg} ® {K,p)} < Fr and Fiy1 = {Bg} ® {Con(Fi(xp))}. Note
that

BsN By #0 = O(xs) N By 2 BsNB; # 0
= xp € O(xg) € N(B,{O(x)}) S Ay
= Con(Fk(xﬂ)) =) Fk(xﬁ) = U{K1 1Xp € Aa} =2 Kq(w

hence Gy <* Fiy1. Also, Fii1(x) = (J{Con(Fi(xp)) : x € Bg} = T(p(x)) and

xe By = VByax Con(Fi(xp)) 2 Kyy

= Fr1(x) is R*-small.

LemMa 1.3 [see 1, Proposition 3.4]. Let X be a normal topological space of
covering dimension <n+1 and let E be a topological space and let G;: X —
By (E) be a contractible i-step function for 0 < i <n+ 1 such that Gy <* G; <*---
<*G, <*Guy1. Then G,y admits a continuous selection.

Proof. Let G;i={A4,(i):0e A())} ®{K,(i): ae A(i)} for 0<i<n+l.
Then there exists w; = {W,(i) : ye J} a discrete family of closed sets such that
w; refines {A4,(i):0e A())} for0<i<n+land o= |J{w;:0<i<n+1}isa
locally finite closed covering of X [5, IX.107, Ex.27]. For each 0 <i<n+ 1,
take a(y) € A(i) such that W, (i) S Ay (i) and put X; = ( {W,(i) : ye J}.
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It suffices to construct by induction on 0 <k <n+ 1, continuous maps
sk s ({Xi:0<i<k}— E such that sx(W,(k)) = K,,)(k) for yeJ, 0<k <n
and s =51 on (J{X;:0<i<k—1} for 0<k <n.

Define sp : Xo — E such that so(#,(0)) is an arbitrary point in K, (0) for
yeJ. Assume that s; have been defined inductively satisfying hypotheses for
0<j<k<n+1. Note that for 0 < j<k and y,feJ

VV}’(k) N W/f(]) #0= Ka(ﬁ) (]) = Kot(y) (k)
= sk-1 (W, (k) N Wy())) S Kugy) (k)

so that s (W, (k) N X;) < Ky, (k). Define s : | J{X;:0<i <k} — E such that
Sk = Sk_1 on U{X,» :0<i<k-—1} and Sk|Wy(k) to be any continuous extension
Of‘sgg]l|Wy(k)ﬂ(U{X,v:05i£k71}) W) N (ULXG 0 < i<k —1}) = Kup) (k) [9, p. 43,
p. )

As indicated in [1, p. 4374], a direct extension of these lemmas yields another
proof of the following Uspenskij’s theorem [15] for paracompact spaces with
property C.

[15, Theorem 1.3]: Let X be a paracompact space with property C.
Then any map ¢: X — %¢(E) where E is a Hausdorff LCTVS space, Gr(p)
open € X x E and ¢(x) contractible for all x € X admits a continuous selection.

Indeed, we may assume that E is infinite dimensional by replacing ¢, if
necessary, by the map X — %o(E x L) defined by X 3 x — ¢(x) x L, where b
is the Hilbert space. Using the facts that Gr(p) open € X x E and ¢(x)
contractible for all x € X, we can construct inductively by the same methods
of lemma 1.1 and lemma 1.2, with no approximations required, a sequence
Gy <Gy <*---<*G, <*--- where G; is a contactible i-step function with
Gi(x) < ¢(x) for all x e X [1, lemma 2.7, Proposition 3.1, Proposition 4.1]. Us-
ing the property C, a continuous selection of ¢ is established by the same method
of lemma 1.3 [1, Proposition 3.4].

Now we get the following theorem.

THEOREM 1.4 [see 1, Theorem 5.1]. Let E be an infinite dimensional
Hausdorff LCTVS and let & be an equiuniformly-LC" < %,(E). Then VR e
WU(E), AW € U(E) such that if X is a paracompact space of covering dimension
<n+land if p: X — & is a Ls.c. map and if k: X — E is a continuous map
with k(x) e W(p(x)) for all xe X, it follows that YV € U(E) there exists a
continuous map f : X — E such that f(x)e€ V(p(x))NR(k(x)) for all xe X. If
S is C" then for R=E x E we may take W = E x E.

Proof. Let K e %(E) such that K* < R. By induction using lemma 1.2,
IM € % (E) depending on K, V and 3S € %(E) depending only on K such that if
Fy: X — %0(E) is a contractible 0-step function such that Fy(x) = M(¢(x)) and
Fy(x) is S-small for all x € X, then there exists Gj contractible k-step function
and Fj,; contractible k + l-step function such that Gy <* Fy.1, G < F). for
0<k<n, Fi(x) < V(p(x)) and F,. (x) is K>-small for all xe X.
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Let We(E) such that W3 <K and W*<S and let k: X — E be
a continuous map with k(x) e W(p(x)) for all xe X. Lemma 1.1 provides
Fy: X — %(E) a contractible O-step function such that Fy(x) = M(p(x)) and
Fy(x) is W#small (hence S-small) and with k(x)e W?(Fy(x)) for all xe X.
Applying the above mentioned induction it follows that there exists G;: X —
%y (E) a contractible i-step function for 0 <i <n+ 1 such that Gy <* G} <*---
<* Gy <* Gpi1, Guii(x) € V(p(x)) and Gpyi(x) is K%-small and with k(x)e
WO(Gy(x)) for all xe X. Now lemma 1.3 shows that there exists a continuous
map f: X — E such that f(x) € G,y1(x) = V(p(x)) for all xe X. Note that
k(x) e W8(Gy(x)), Gy <* G,y1 and G,y (x) is K?-small give k(x) e K*(f(x)) =
R(f(x)) as desired.

2. Main theorem

The following convergence theorem is all what we need to establish our main
theorem.

THEOREM 2.1. Let E be a Hausdorff uniform space and let & be an
equimetrizable, equiuniformly-LC" family of complete subsets of E. Then VR e
U(E), AW € U(E) such that if X is a paracompact space of covering dimension
<n+1landif p: X — S is a lLs.c. map and if k: X — E is a continuous map
with k(x) € W(p(x)) for all x € X, it follows that there exists a continuous selection
f:X = E of ¢ such that f(x)e€ R(k(x)) for all xe X. If & is C" then for
R=EXFE we may take W =FE x E.

Proof. By [3] we may assume that E is an infinite dimensional Hausdorff
LCTVS. Let %) = {V n>1} < %(E) be a filter basis such that (V,,1)> < V,
forall n>1 and . is % equ1metr1zable Let K € %(E) such that K3 = R and
let k>0 such that 4 x AN (V)" = K for all 4. where V= E.

By theorem 1.4, for all n>0 V,,x NK € %(E) defines W, e %(E), W, =
VikNK. Set W = W,. Again theorem 1.4 defines inductively for all n >0
continuous maps f,: X — E such that fy=4k and f,.1(x)e W,1(p(x))N
(Vs NK(fu(x))) for all n > 0.

Note that 0 # p(x) N (Vik(far1(x))) < ¢
and since ¢(x) is complete, we get 0 # ()
and since . is %, equimetrizable, we get ()
={f(x)} for all xeX. We have f(x)e
(Vi)*(fi(x)) [4, 114, Proposition 2]. Also, fi(
shows that there exists z(x) € p(x), (z(x ) 1(x)) € K such that (z(x), f(x)) e
(p(x) x 0(x)) N (Vo)* S K so that f(x) & K*(k(x)) € R(k(x)).

To establish the continuity of f, let xo € X and let U, M € %(E) such that
M? < U and let m > 1 such that (p(x) x (p(x))ﬂ(VmH()6 c M for all xeX.
Note that xpe O={xe X : (p(x) N (Visk (frnr1(x)))) " N M(f(x0)) # 0} open
[11, proposition 2.3 + proposition 2.5] so that

o
\”:
éh
m
=
S
Ka?
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x€ 0= 3ae (p(x)N(Visk(fnr1(x))))” N M(f(x0)), therefore
(a, f(x)) € (p(x) X 9(x) N (Vyusx)® = M
= f(x) e M*(f(x0)) = U(f (x0))-

Now we can establish our main theorem.

THEOREM 2.2. Let E be a Hausdorff uniform space, X a paracompact space,
A closed = X with dim(X mod 4) <n+1, ¢: X — By(E) Ls.c. map such that
{p(x) : xe X\A} is an equimetrizable, equiuniformly-LC" family of complete
subsets of E and let g: A — E be a continuous selection of ¢. Then there exists
U open 2 A and a continuous selection of ¢ on U extending g. If {p(x):xe X}
is C" then we may take U = X.

Proof. By [3] we may assume that E is an infinite dimensional Hausdorff
LCTVS which is the product of Banach spaces [6]. Let G:X — E be any
continuous extension of g [2, theorem 4.1]. Note that & = {p(x) : x € X\4} U
{{z} : z € E} is an equimetrizable, equiuniformly-LC” family of complete subsets
of E. Let Uy ={V,:n>1} < %(E) be a filter basis such that (V,,)* < V, for
all n > 1 and & is %, equimetrizable. Define y : X — %y(E) by y(x) = g(x) for
x€ A and Y(x) = ¢p(x) for x ¢ A4, then y is Ls.c. [11, example 1.3%].

By theorem 2.1, for all i > 0, V; defines W; e #(E), W; = Vi, (Wir1)” < W;
where Vy=FE x E. Again by theorem 2.1, for all i >0, W; defines Z; e
UE), Zi= Wi, (Ziy1) =Z;. We have A< U;={xeX:Gx)eZ{{Y(x)} =
{xe X :Y(x)NZ:(G(x)) # 0} open [11, proposition 2.5]. Observe that if xe
(V{Ui:i>1} then ({y(x)NZi(G(x)):i>1} ={a(x)} for some a(x) € E and
a(x) =g(x) for all xe A. Define, for all i>0, 4 < O; open < (0;)” < U,
(0i11)” € 0;. If {p(x):xe X} is C" then we may take Uy = Oy = E.

Theorem 2.1 defines, for all i >0, &; : (O;)"\O; — E a continuous selection
of ¢ such that h;(x) € W;(G(x)). Again, theorem 2.1 defines, for all i > 0 using
[11, example 1.3*], g;: (0;)"\O;;1 — E a continuous selection of ¢ such that
gi=h; on (0;)"\Oi, gi = hiy1 on (0;11) \Oiy1 and gi(x) € Vi(G(x)).

Set U=0,, then (0p) = J{(0:) \Owu1:i=0}U({(0;) :i=0}).
Define f: U — E by f(x)=gi(x) if xe UN((O0;)"\O;11) for some i >0 and
f(x) =a(x) where {a(x)} = ({Y(x)NZ(G(x)):i =1} if xe ({(0;) :i=0}.
Clearly f is a selection of  and f is continuous on U N ({ J{(0;) \Oi1 : i > 0}).
If xoe(){(0;)” :i=0})=(V{0;:i=0} and if Re%(E), then there exists
m>1 such that (p(x) x ¢(x))N(V,)* €K for all xe X\A where K € %(E),
K?>< R. Note that xpeO={xeX:p(x)N(KNVyu(a(x))) #0}N{xeX:
G(x) € Viy(G(x))} N O, open. If xe O, let cep(x)N(KNV,(a(xp))). Then
(c,a(x0)) e KNV, (f(x),G(x)) € Vi, (G(x), G(x0)) € Vin, (G(x0),a(x0)) € Zpn.
Therefore, (¢, f(x)) € (p(x) x p(x))N (V) € K. Hence, f(x)e K2(a(xy)) =
R(f (x0)).
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We have the following generalization of Fahkoury-Gieler theorem [7, §].

COROLLARY 2.3. Let E be a Hausdorff uniform space, X a paracompact
space, A closed = X with dim(X mod 4) =0, ¢ : X — By(E) Ls.c. map such that
{p(x) : x e X\A} is an equimetrizable family of complete subsets of E and let
g: A — E be a continuous selection of ¢. Then g extends to a continuous selec-
tion of ¢ over X.

Proof. Put n=—1 in theorem 2.2.
The following corollary generalizes [12, Corollary 1.3].

COROLLARY 2.4. Let G be a Hausdorff topological group and let H be
a complete metrizable LC" subgroup of G such that G/H is paracompact and
dim G/H <n+1. Then the canonical map p: G — G/H is a locally trivial
fibration.

Proof.  We consider the left uniform structure on G, then & = {gyH : g € G}
is an equimetrizable, equiuniformly-LC”" [12, Example 2.6] family of complete
subsets of G and ¢ : G/H — %,(G) defined by ¢(x) = p~'(x) for all xe G/H is
Ls.c. [11, Example 1.1*], hence p admits a local cross section by theorem 2.2 and
therefore it is a locally trivial fibration.

Similarly we can establish the following corollary.

COROLLARY 2.5. Let G be a Hausdorff topological group and let H be
a complete metrizable LC* and C* subgroup of G. Then the canonical map
p:G— G/H is a Serre fibration.
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