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LIFTINGS OF HOLOMORPHIC MAPS

INTO TEICHMÜLLER SPACES

Yunping Jiang, Sudeb Mitra and Zhe Wang

Abstract

We study liftings of holomorphic maps into some Teichmüller spaces. We also

study the relationship between universal holomorphic motions and holomorphic lifts into

Teichmüller spaces of closed sets in the Riemann sphere.

1. Introduction

Throughout this paper, we will use the following notations: C for the
complex plane, ĈC for the Riemann sphere CU fyg, and D for the open unit disk
fz A C : jzj < 1g.

1.1. Teichmüller space of a plane region. We begin with the usual def-
inition of the Teichmüller space of a plane region. For standard facts about
classical Teichmüller spaces, the reader may see any of the following texts: [10],
[11], [14], [15], [21].

Definition 1.1. Let W be a plane region whose complement CnW contains
at least two points. By definition, two quasiconformal mappings f and g with
domain W belong to the same Teichmüller class if and only if there is a
conformal map h from f ðWÞ onto gðWÞ such that the self-mapping g�1 � h � f of
W is isotopic to the identity rel the boundary of W. This means that g�1 � h � f
extends to a homeomorphism of the closure of W onto itself which is isotopic to
the identity by an isotopy that fixes the boundary pointwise. The Teichmüller
space TeichðWÞ is the set of Teichmüller classes of quasiconformal mappings with
domain W.

Let MðWÞ be the open unit ball of the complex Banach space LyðWÞ. The
standard projection F of MðWÞ onto TeichðWÞ maps m A MðWÞ to the Teichmüller
class of any quasiconformal map whose domain is W and whose Beltrami
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coe‰cient is m. The basepoints of MðWÞ and TeichðWÞ are 0 and Fð0Þ,
respectively. It is a standard fact in Teichmüller theory that TeichðWÞ is a
complex Banach manifold such that F is a holomorphic split submersion; see, for
example, [21].

1.2. Teichmüller space of a closed set in the sphere. Let E be a closed
subset in ĈC; we will always assume that E contains the points 0, 1, and y. A
homeomorphism of ĈC onto itself is called normalized if it fixes the points 0, 1,
and y.

Definition 1.2. Two normalized quasiconformal self-mappings f and g
of ĈC are said to be E-equivalent i¤ f �1 � g is isotopic to the identity rel E.
The Teichmüller space TðEÞ is the set of E-equivalence classes of normalized
quasiconformal self-mappings of ĈC. The basepoint of TðEÞ is the E-equivalence
class of the identity map.

The following analytic description of TðEÞ will be more useful for our
purposes.

Let MðCÞ denote the open unit ball of the complex Banach space LyðCÞ.
Each m in MðCÞ is the Beltrami coe‰cient of a unique normalized quasicon-
formal homeomorphism wm of ĈC onto itself. The basepoint of MðCÞ is the zero
function.

We define the quotient map PE : MðCÞ ! TðEÞ by setting PEðmÞ equal to
the E-equivalence class of wm, written as ½wm�E . Clearly, PE maps the basepoint
of MðCÞ to the basepoint of TðEÞ. In [18] Lieb proved that TðEÞ is a complex
Banach manifold such that the map PE from MðCÞ to TðEÞ is a holomorphic
split submersion; see also [9] for a complete proof. The space TðEÞ is intimately
related with holomorphic motions of the closed set E; see §2 for more details.

1.3. Two special cases. Let E be a finite set (0, 1, and y belong to E).
Its complement W ¼ ĈCnE is a sphere with punctures at the points of E, and there
is a natural identification of TðEÞ with the classical Teichmüller space TeichðWÞ.
It is defined by setting yðPEðmÞÞ equal to the Teichmüller class of the restriction
of wm to W. It is clear that y : TðEÞ ! TeichðWÞ is a well-defined map. It is
easy to see that the map y is biholomorphic; see Example 3.1 in [19] for the
details.

When E ¼ ĈC, the space TðĈCÞ consists of all the normalized quasiconformal

self-mappings of ĈC, and the map PĈC from MðCÞ to TðĈCÞ is bijective. We use it
to identify TðĈCÞ biholomorphically with MðCÞ.

1.4. Contractibility of TðEÞ. The following fact was proved in §7.13 of [9].

Proposition 1.3. There is a continuous basepoint preserving map s from
TðEÞ to MðCÞ such that PE � s is the identity map on TðEÞ.
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Since MðCÞ is contractible, it follows that the space TðEÞ is also con-
tractible.

1.5. Forgetful maps. If E is a subset of the closed set ÊE and m is in MðCÞ,
then the ÊE-equivalence class of wm is contained in the E-equivalence class of
wm. Therefore, there is a well-defined ‘forgetful map’ pÊE;E from TðÊEÞ to TðEÞ
such that PE ¼ pÊE;E � PÊE . It is easy to see that this forgetful map is a basepoint
preserving holomorphic split submersion.

1.6. Changing the basepoint. Let w be a normalized quasiconformal self-
mapping of ĈC, and let ~EE ¼ wðEÞ. By definition, the allowable map g from Tð ~EEÞ
to TðEÞ maps the ~EE-equivalence class of f to the E-equivalence class of f � w for
every normalized quasiconformal self-mapping f of ĈC.

Lemma 1.4. The allowable map g : Tð ~EEÞ ! TðEÞ is biholomorphic. If m is
the Beltrami coe‰cient of w, then g maps the basepoint of Tð ~EEÞ to the point PEðmÞ
in TðEÞ.

See §7.12 in [9] or §6.4 in [19] for a complete proof.

1.7. Statement of the main theorem. The main purpose of this paper is to
give a self-contained proof of the following theorem.

The Main Theorem. Let E ¼ f0; 1;y; z1; . . . ; zng where zi 0 zj for i0 j,
and zi 0 0; 1;y for all i ¼ 1; . . . ; n. Let ÊE ¼ E U fznþ1g where znþ1 is any point
in ĈCnf0; 1;yg distinct from zi for all i ¼ 1; . . . ; n. Then, given any holomorphic
map f from D into TðEÞ, there exists a holomorphic map f̂f from D into TðÊEÞ,
such that pÊE;E � f̂f ¼ f .

Remark. This ‘‘lifting problem’’ was mentioned in §7 of the classic paper
[5], and the authors called it ‘‘a di‰cult open problem.’’ With the publication
of [22], it became possible to give a quick solution of this problem, using
Slodkowski’s theorem. We shall discuss this in more details in §4. More
recently, Chirka (in [4]) published a new proof of Slodkowski’s theorem. See
also [3], [6], [12], and [14]. The novelty of our present paper is that we use some
ideas of Chirka and a theorem of Nag ([20]) to give a direct proof of the above
theorem. Our approach, therefore, also gives a new interpretation of Chirka’s
methods.

Acknowledgement. We are extremely grateful to the referee for his very
careful reading and valuable remarks. His important suggestions helped us to
improve the earlier version of our paper.
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2. Holomorphic lifts and universal holomorphic motions

In this section we study the interesting relationship between ‘‘holomorphic
lifts’’ and ‘‘universal holomorphic motions.’’ The main purpose in this section is
to prove a result of Bers-Royden (Proposition 4 in [5]) in its fullest generality.

2.1. Holomorphic motions.

Definition 2.1. Let V be a connected complex manifold with a basepoint
x0 and let E be any subset of ĈC. A holomorphic motion of E over V is a map
f : V � E ! ĈC that has the following three properties:

(i) fðx0; zÞ ¼ z for all z in E,
(ii) the map fðx; �Þ : E ! ĈC is injective for each x in V , and
(iii) the map fð�; zÞ : V ! ĈC is holomorphic for each z in E.

We say that V is a parameter space of the holomorphic motion f. We will
assume that f is a normalized holomorphic motion; i.e. 0, 1, and y belong to E
and are fixed points of the map fðx; �Þ for every x in V .

Definition 2.2. Let V and W be connected complex manifolds with
basepoints, and f be a basepoint preserving holomorphic map of W into V .
If f is a holomorphic motion of E over V , its pullback by f is the holomorphic
motion

f �ðfÞðx; zÞ ¼ fð f ðxÞ; zÞ for all ðx; zÞ A W � E

of E over W .

If E is a proper subset of ÊE and f : V � E ! ĈC, f̂f : V � ÊE ! ĈC are two
holomorphic motions, we say that f̂f extends f if f̂fðx; zÞ ¼ fðx; zÞ for all ðx; zÞ in
V � E.

2.2. Universal holomorphic motion of E. Henceforth, we shall always
assume that E is a closed subset of ĈC and that 0, 1, and y belong to E.

Definition 2.3. The universal holomorphic motion CE of E over TðEÞ is
defined as follows:

CEðPEðmÞ; zÞ ¼ wmðzÞ for m A MðCÞ and z A E:

The definition of PE in §1 guarantees that CE is well-defined. It is a
holomorphic motion since PE is a holomorphic split submersion and m 7! wmðzÞ
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is a holomorphic map from MðCÞ to ĈC for every fixed z in ĈC (by Theorem 11
in [2]).

This holomorphic motion is ‘‘universal’’ in the following sense:

Theorem 2.4. Let f : V � E ! ĈC be a holomorphic motion. If V is simply
connected, then there exists a unique basepoint preserving holomorphic map
f : V ! TðEÞ such that f �ðCEÞ ¼ f.

For a proof see §14 in [19].
In what follows, B is a path-connected topological space. Let HðĈCÞ denote

the group of homeomorphisms of ĈC onto itself, with the topology of uniform
convergence in the spherical metric. As usual, E is a closed set in ĈC, and 0, 1,
and y are in E. The following two lemmas were proved in [19]. For the
reader’s convenience, and to make our paper self-contained, we are including the
proofs.

Lemma 2.5. Let h : B ! HðĈCÞ be a continuous map such that hðxÞðeÞ ¼ e
for all x in B and for all e in E. If hðx0Þ is isotopic to the identity rel E for some
fixed x0 in B, then hðxÞ is isotopic to the identity rel E for all x in B.

Proof. Let x be any point in B. Choose a path g : ½0; 1� ! B such that
gð0Þ ¼ x0 and gð1Þ ¼ x. It is clear that the map ðt; zÞ 7! hðgðtÞÞðzÞ from
½0; 1� � ĈC to ĈC is an isotopy rel E between hðx0Þ and hðxÞ. r

Lemma 2.6. Let f and g be two continuous maps from B to TðEÞ, satisfying:
(i) CEð f ðxÞ; zÞ ¼ CEðgðxÞ; zÞ for all z A E and x A B, and
(ii) f ðx0Þ ¼ gðx0Þ for some x0 in B.
Then, f ðxÞ ¼ gðxÞ for all x in B.

Proof. By Proposition 1.3, there exists a basepoint preserving continuous
map s : TðEÞ ! MðCÞ such that PE � s is the identity map on TðEÞ. For each x
in B, define mðxÞ ¼ sð f ðxÞÞ and nðxÞ ¼ sðgðxÞÞ. We will show that the quasi-
conformal map hðxÞ ¼ ðwmðxÞÞ�1 � wnðxÞ is isotopic to the identity rel E. That
will prove our lemma.

Since m and n are continuous maps of B into MðCÞ and HðĈCÞ is a
topological group, Lemma 17 of [2] implies that h is a continuous map of B into
HðĈCÞ.

By condition (i) and Definition 2.3, we have

wmðxÞðzÞ ¼ CEð f ðxÞ; zÞ ¼ CEðgðxÞ; zÞ ¼ wnðxÞðzÞ

for all x in B and z in E. Therefore, hðxÞ fixes the set E pointwise for each x in
B. By condition (ii), hðx0Þ is isotopic to the identity rel E. It follows by
Lemma 2.5, that hðxÞ is isotopic to the identity rel E for all x in B. r
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Let E and ÊE be any two closed subsets of ĈC such that EH ÊE (as in §1, we
assume that 0, 1, and y belong to both E and ÊE). Recall from §1.5, the
forgetful map pÊE;E from TðÊEÞ to TðEÞ such that PE ¼ pÊE;E � PÊE . The following
is a consequence of Lemma 2.6. Here, CE is the universal holomorphic motion
of E and CÊE is the universal holomorphic motion of ÊE.

Lemma 2.7. Let V be a connected complex Banach manifold with basepoint,
and let f and g be basepoint preserving holomorphic maps from V into TðEÞ and
TðÊEÞ respectively. Then pÊE;E � g ¼ f if and only if g�ðCÊEÞ extends f �ðCEÞ.

See §13 in [19] for the proof.

2.3. A proposition. We prove the following generalization of Proposition 4
in [5]. This is an easy consequence of Theorem 2.4 and Lemma 2.7, and shows
the importance of universal holomorphic motions.

Proposition 2.8. Let V be a simply connected complex Banach manifold
with a basepoint. The following statements are equivalent:

(1) Every holomorphic motion f : V � E ! ĈC extends to a holomorphic
motion f̂f : V � ÊE ! ĈC.

(2) For every basepoint preserving holomorphic map f : V ! TðEÞ, there
exists a basepoint preserving holomorphic map g : V ! TðÊEÞ such that
f ¼ pÊE;E � g.

Proof. (1) ) (2): Let f : V ! TðEÞ be a basepoint preserving holomorphic
map. Then, f �ðCEÞ :¼ f is a holomorphic motion of E over V . By (1) there
exists a holomorphic motion f̂f : V � ÊE ! ĈC such that f̂f extends f. By Theorem
2.4, there exists a basepoint preserving holomorphic map g : V ! TðÊEÞ such that
g�ðCÊEÞ ¼ f̂f. Since f̂f extends f, it follows by Lemma 2.7 that pÊE;E � g ¼ f .

(2) ) (1): Let f : V � E ! ĈC be a holomorphic motion. By Theorem 2.4,
there exists a basepoint preserving holomorphic map f : V ! TðEÞ such that
f �ðCEÞ ¼ f. By (2) there exists a basepoint preserving holomorphic map
g : V ! TðÊEÞ such that f ¼ pÊE;E � g. Let g�ðCÊEÞ :¼ f̂f; then, f̂f is a holomorphic
motion of ÊE over V . It follows by Lemma 2.7 that f̂f extends f. r

Recall from §1.3, that when E ¼ ĈC, we can identify TðĈCÞ biholomorphically
with MðCÞ. The pullback ~CCĈC of CĈC to MðCÞ by PĈC satisfies

~CCĈCðm; zÞ ¼ CĈCðPĈCðmÞ; zÞ ¼ wmðzÞ

for all ðm; zÞ A MðCÞ � ĈC. So, when we use PĈC to identify TðĈCÞ with MðCÞ, the
universal holomorphic motion of ĈC becomes the map

CĈCðm; zÞ ¼ wmðzÞ

for ðm; zÞ A MðCÞ � ĈC.
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Corollary 2.9. Let V be a simply connected complex Banach manifold with
a basepoint. The following statements are equivalent:

(1) Every holomorphic motion f : V � E ! ĈC extends to a holomorphic
motion f̂f : V � ĈC ! ĈC.

(2) For every basepoint preserving holomorphic map f : V ! TðEÞ, there
exists a basepoint preserving holomorphic map g : V ! MðCÞ such that
f ¼ PE � g.

3. Proof of the main theorem

Recall that E ¼ f0; 1;y; z1; . . . ; zng where zi 0 zj for i0 j, and zi 0 0; 1;y
for all i ¼ 1; . . . ; n. By Lemma 1.4, we may assume that f : D ! TðEÞ is a
basepoint preserving holomorphic map.

For a fixed 0 < r < 1, let frðzÞ ¼ f ðrzÞ ¼ ½wm�E . Then we define n holo-
morphic functions fi; rðzÞ ¼ wmðziÞ for i ¼ 1; . . . ; n. Let D ¼ ĈCnD be the exterior
of D. We define n maps on D, which are holomorphic in a neighborhood of
D, as

giðzÞ ¼ fi; r
1

z

� �

for jzjb 1 and for all 1a ia n. Furthermore, we extend gi to ĈC as follows:

giðzÞ ¼ gi
1

z

� �

for jzja 1 and for all 1a ia n. We have the following:
(a) giðyÞ ¼ gið0Þ ¼ zi for i ¼ 1; . . . ; n;
(b) for any fixed z A ĈC, giðzÞ0 gjðzÞ for 1a i0 ja n and giðzÞ0 0; 1;y

for all i ¼ 1; . . . ; n;
(c) giðzÞ is a bounded function on ĈC.
So, there is a constant C0 > 0 such that

jgiðzÞjaC0

for all z A ĈC and for all 1a ia n. Moreover, there is a number d > 0 such that

jgiðzÞ � gjðzÞj > dð3:1Þ
for all 1a i0 ja n and for all z A ĈC. Furthermore, ðqgi=qzÞðzÞ ¼ 0 for z A D
and there is a constant C1 > 0 such that

qgi

qz
ðzÞ

����
����aC1ð3:2Þ

for all z A ĈC and for all 1a ia n.
Choose a Cy function 0a lðxÞa 1 on Rþ ¼ fxb 0g such that lð0Þ ¼ 1 and

lðxÞ ¼ 0 for xb d=2. Define

Yðz;wÞ ¼
Xn

i¼1

lðjw� giðzÞjÞ
qgi

qz
ðzÞ; ðz;wÞ A ĈC� C:ð3:3Þ
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Lemma 3.1. The function Yðz;wÞ has the following properties:
(i) only one term in the sum (3.3) defining Yðz;wÞ can be nonzero,
(ii) Yðz;wÞ is uniformly bounded by C1 on ĈC� C,
(iii) Yðz;wÞ ¼ 0 for ðz;wÞ A ðD� CÞU ðĈC� ðDRÞcÞ where R ¼ C0 þ d=2, and

DR denotes the closure of DR ¼ fz A C : jzj < Rg,
(iv) Yðz;wÞ is a Lipschitz function in the w-variable with a Lipschitz constant

L independent of z A ĈC.

Proof. Item (i) follows, since, if a point w is within distance d=2 of one of
the values giðzÞ, it must be at a distance greater that d=2 from any of the other
values gjðzÞ (see (3.1)).

Item (ii) follows from (i) because there can be only one term in (3.3) which is
nonzero and that term is bounded by the bound on ðqgj=qzÞðzÞ by (3.2).

Item (iii) follows because if z A D, then ðqgi=qzÞðzÞ ¼ 0, and if w A ĈCnDR,
then jw� giðzÞjb d=2 for all z A ĈC and for all i ¼ 1; . . . ; n. Therefore,
lðjw� giðzÞjÞ ¼ 0 for all i ¼ 1; . . . ; n. Thus, Yðz;wÞ ¼ 0 for ðz;wÞ A ðD� CÞU
ðĈC� ðDRÞcÞ.

To prove (iv), we note that there is a constant C2 > 0, such that
jlðxÞ � lðx 0ÞjaC2jx� x 0j. Since jðqgi=qzÞðzÞjaC1, we have

jYðz;wÞ �Yðz;w 0ÞjaC1C2

Xn

i¼1

j jw� giðzÞj � jw 0 � giðzÞj j:ð3:4Þ

Since only one of the terms in the sum (3.3) for Yðz;wÞ is nonzero and
possibly some di¤erent term is nonzero in the sum for Yðz;w 0Þ, we obtain

jYðz;wÞ �Yðz;w 0Þja 2C1C2jw� w 0j:

Thus L ¼ 2C1C2 is a Lipschitz constant independent of z A ĈC. r

Let CðCÞ denote the complex Banach space of bounded, continuous
functions f on C with the norm

kfk ¼ sup
z AC

jfðzÞj:

As usual, LyðCÞ denotes the complex Banach space of Ly functions on C with
the Ly-norm denoted by kfky.

Since Yðz; f ðzÞÞ is an Ly function with a compact support in D for any
f A CðCÞ, we can define an operator Q mapping functions in CðCÞ to functions in
LyðCÞ with compact support by

Qf ðzÞ ¼ Yðz; f ðzÞÞ; f ðzÞ A CðCÞ:

Since Yðz;wÞ is Lipschitz in the w variable with a Lipschitz constant L
independent of z A ĈC, we have

jQf ðzÞ � QgðzÞj ¼ jYðz; f ðzÞÞ �Yðz; gðzÞÞjaLj f ðzÞ � gðzÞj:
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Thus,

kQf � Qgky aLk f � gk

and Q : CðCÞ ! LyðCÞ is a continuous operator.
In the theory of quasiconformal mappings, the P-operator is defined by

Pf ðzÞ ¼ � 1

p

ðð
C

f ðtÞ
t� z

dxdh; t ¼ xþ ih

where f A LyðCÞ and has a compact support in C. Then, Pf ðzÞ ! 0 as z ! y.
Furthermore, if f is continuous and has compact support, one can show that

qðP f Þ
qz

ðzÞ ¼ f ðzÞ; z A Cð3:5Þ

and using the notion of generalized derivatives, equation (3.5) is still true almost
everywhere, if we only know that f has compact support and is in Lp, for pb 1.

A classical result in the theory of quasiconformal mappings (see [1]) is that P
transforms Ly functions with compact support in C to Hölder continuous
functions with Hölder exponent 1� 2=p for every p > 2. A stronger result
says that P carries Ly functions with compact supports to functions with an
je logðeÞj modulus of continuity (see [12]). More precisely, for any R > 0, there
exists a constant BðRÞ > 0, depending on R such that

jPf ðzÞ �Pf ðz 0ÞjaBðRÞk f kyjz� z 0j log 1

jz� z 0j

for all z; z 0 A DR, jz� z 0j < 1
2 .

This implies that for every 0 < a < 1, there exists a constant AðRÞ > 0 such
that

jPf ðzÞ �Pf ðz 0ÞjaAðRÞk f kyjz� z 0jað3:6Þ

for all z; z 0 A DR, jz� z 0j < 1
2 , where AðRÞ depends only on R and a.

Now consider the operator

K ¼ P � Q:

Clearly, it is a continuous operator from CðCÞ into itself.

Lemma 3.2. There is a constant C3 > 0 such that

kKf kaC3 for all f A CðCÞ:
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Proof. Since Yðz;wÞ ¼ 0 for z A D and since Yðz;wÞ is bounded by C1, we
have

jKf ðzÞj ¼ 1

p

ðð
ĈC

Yðt; f ðtÞÞ
t� z

dxdh

����
���� ¼ 1

p

ðð
D

Yðt; f ðtÞÞ
t� z

dxdh

����
����

a
1

p

ðð
D

jYðt; f ðtÞÞj
jt� zj dxdha

C1

p

ðð
D

1

jt� zj dxdha 2C1 ¼ C3

where t ¼ xþ ih. r

Lemma 3.3. Let p > 2 and

0 < a ¼ 1� 2

p
< 1:

Then, for any f A CðCÞ, Kf is a-Hölder continuous with a Hölder constant

H ¼ maxfAð1ÞC1; 2
1þaC3g

where H is independent of f .

Proof. From (3.6), we have

jKf ðzÞ �Kf ðz 0Þj ¼ jPðQ f ÞðzÞ �PðQ f Þðz 0Þj
aAð1ÞkQf kyjz� z 0ja aAð1ÞC1jz� z 0ja aHjz� z 0ja

where jz� z 0j < 1
2 .

When jz� z 0jb 1
2 , by Lemma 3.2, we have

jKf ðzÞ �Kf ðz 0Þja 2C3 a 21þaC3jz� z 0ja aHjz� z 0ja:
This completes the proof. r

Lemma 3.4. For any e > 0, there exists an R > 0, such that jKf ðzÞj < e for
all f A CðCÞ and z A C with jzjbR.

Proof. Since kQf ky aC1 from (ii) of Lemma 3.1, and the support of Qf is
in D, by (iii) of the same lemma, when jzjb 2, we have

jKf ðzÞja C1

p

ðð
D

dxdh

jt� zj a
2C1

p

ðð
D

dxdh

jtj

� �
1

jzj
where t ¼ xþ ih. Hence we are done. r

Remark. We know that jKf ðzÞj ! 0 if jzj ! y. However, to check
compactness of the operator K, we need a kind of uniformity around
z ¼ y, like the existence of R > 0 independent of f A CðCÞ in the above lemma.

In fact, from Lemma 3.2, we know that the family fKf gf ACðCÞ is uniformly
bounded, and from Lemma 3.3, it follows that the family is equicontinuous.
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Therefore, from these lemmas, we merely conclude from the Ascoli-Arzela
theorem that the family is relatively compact with respect to the topology of
the uniform convergence on any compact sets of C, which is weaker than the
topology of CðCÞ. For example, let

fnðzÞ ¼ min max 1;
jzj
n

� �
; 2e�jzjþ2n

� �

for z A C. Then, each fn is 2-Lipschitz and satisfies k fnka 2 and fnðzÞ ! 0 as
jzj ! y (and hence it is an a-Hölder function for all a A ð0; 1� whose Hölder
norm depends only on a). However, the family f fngn AN is not compact in CðCÞ.

Acknowledgement. We thank the referee for pointing to us the above
remark and also the example.

The above lemmas imply that K : CðCÞ ! CðCÞ is a continuous compact
operator. Recall from the statement of the main theorem that znþ1 is any point
in ĈCnf0; 1;yg distinct from z1; . . . ; zn. For znþ1, let

B ¼ f f A CðCÞ : k f ka jznþ1j þ C3g:

It is a bounded convex subset in CðCÞ. The continuous compact operator
znþ1 þK maps B into itself. By Schauder fixed point theorem (see Theorem 2A
on page 56 of [24]) znþ1 þK has a fixed point in B. That is, there is a gnþ1 A B
such that

gnþ1ðzÞ ¼ znþ1 þKgnþ1ðzÞ for all z A C:

Since Qf ðzÞ has a compact support in D for any g A CðCÞ, Kgnþ1ðzÞ ! 0 as
z ! y. So, gnþ1 can be extended continuously to y such that gnþ1ðyÞ ¼ znþ1.

Lemma 3.5. The solution gnþ1ðzÞ is the unique fixed point of the operator
znþ1 þK.

Proof. Suppose gðzÞ and ~ggðzÞ are two solutions. Let

fðzÞ ¼ gðzÞ � ~ggðzÞ ¼ KgðzÞ �K~ggðzÞ:

Then fðzÞ ! 0 as z ! y. Now,

qf

qz
ðzÞ ¼ qg

qz
ðzÞ � q~gg

qz
ðzÞ ¼ Yðz; gðzÞÞ �Yðz; ~ggðzÞÞ:

By Lemma 3.1, we get

qf

qz
ðzÞ ¼ 0 for all z A D:

Since Yðz;wÞ is Lipschitz in w-variable with a Lipschitz constant L, we have, for
all z A ĈC,
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qf

qz
ðzÞ

����
���� ¼ jYðz; gðzÞÞ �Yðz; ~ggðzÞÞjaLjgðzÞ � ~ggðzÞj ¼ LjfðzÞj:

Assuming that fðzÞ is not equal to zero, define

cðzÞ ¼ �
qf

qz
ðzÞ

fðzÞ ;

and otherwise, define cðzÞ to be equal to zero. Note that, if fðzÞ ¼ 0, then,

since
qf

qz

����
����aLðfðzÞÞ, we have

qf

qz
¼ 0. Then cðzÞ is a Ly function with compact

support in D. So we have Pc in CðCÞ such that

qPc

qz
ðzÞ ¼ cðzÞ:

Consider ePc � f. Then

qðePc � fÞ
qz

ðzÞ1 0:

This means that ePc � f is holomorphic on C.
When z ! y, Pc ! 0 and fðzÞ ! 0. This implies that ePc � f is bounded

on C. Thus, ePc � f is a constant function. But fðyÞ ¼ 0, and so ePc � f1 0.
Hence, fðzÞ1 0 and gðzÞ ¼ ~ggðzÞ for all z A C. r

Since
qgnþ1

qz
ðzÞ ¼ Yðz; gnþ1ðzÞÞ

and since Yðz;wÞ ¼ 0 for all z A D, we have

qgnþ1

qz
ðzÞ ¼ 0 for all z A D:

Therefore, gnþ1ðzÞ is holomorphic on D.
For zi, 1a ia n, consider

KgiðzÞ ¼ � 1

p

ðð
C

Yðt; giðtÞÞ
t� z

dxdh

where t ¼ xþ ih. From the definition of Yðz;wÞ, we have

Yðt; giðtÞÞ ¼
qgi

qt
ðtÞ:

Therefore,

KgiðzÞ ¼ � 1

p

ðð
C

qgi

qt
ðtÞ

t� z
dxdh:
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This implies that

qKgi

qz
ðzÞ ¼ qgi

qz
ðzÞ

and that

qðgi �KgiÞ
qz

ðzÞ1 0:

So, giðzÞ �KgiðzÞ is holomorphic on C. When z ! y, giðzÞ ! zi and
KgiðzÞ ! 0. So, giðzÞ �KgiðzÞ is bounded. Therefore it is a constant func-
tion. We get

giðzÞ ¼ zi þKgiðzÞ:
Thus, giðzÞ is the unique solution of the operator zi þK.

We claim that gnþ1ðzÞ0 giðzÞ for all z A C and 1a ia n. To prove this, we
assume that there is a point a A ĈC such that gnþ1ðaÞ ¼ giðaÞ. It is clear that
a0y. Then, we have

gnþ1ðaÞ � giðaÞ ¼ ðznþ1 � ziÞ þKgnþ1ðaÞ �KgiðaÞ:
Note that gnþ1ðzÞ ¼ znþ1 þKgnþ1ðzÞ and giðzÞ ¼ zi þKgiðzÞ. We have

fðzÞ ¼ gnþ1ðzÞ � giðzÞ ¼ znþ1 þKgnþ1ðzÞ � zi �KgiðzÞ:
Therefore,

qf

qz
ðzÞ ¼ qgnþ1ðzÞ

qz
� qgiðzÞ

qz
¼ Yðz; gnþ1ðzÞÞ �Yðz; giðzÞÞ:

For z A D, we have, by (iii) of Lemma 3.1,

qf

qz
ðzÞ ¼ 0:

For all z A ĈC, we have

qf

qz
ðzÞ

����
����a jYðz; gnþ1ðzÞÞ �Yðz; giðzÞÞjaLjgnþ1ðzÞ � giðzÞjaLjfðzÞj:

Assuming that fðzÞ is not equal to zero, define

cðzÞ ¼ �
qf

qz
ðzÞ

fðzÞ ;

and if fðzÞ ¼ 0, let cðzÞ to be equal to zero. Then, cðzÞ is a Ly function with

compact support in D. So, we have Pc in CðCÞ such that

qPc

qz
ðzÞ ¼ cðzÞ:
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Consider ePc � f. Then

qðePc � fÞ
qz

ðzÞ1 0:

When z ! y, Pc ! 0 and fðzÞ ! znþ1 � zi. This implies that ePc � f is
bounded on C. Thus, ePc � f is a constant function. But fðyÞ ¼ znþ1 � zi
and so

ePc � f1 znþ1 � zi 0 0:

By our assumption, fðaÞ ¼ 0, which is impossible.
Now, let

fnþ1; rðzÞ ¼ gnþ1
1

z

� �
for jzj < 1:

Let

Mnþ1 ¼ fw A Cnþ1 : wi 0wj for i0 j and wi 0 0; 1 for all i ¼ 1; . . . ; nþ 1g:
We can define a holomorphic function

FrðzÞ ¼ ð f1; rðzÞ; . . . ; fn; rðzÞ; fnþ1; rðzÞÞ : D ! Mnþ1:

Recall that ÊE ¼ E U fznþ1g.
By a theorem of Nag (see [20]), there exists a holomorphic universal covering

map p : TðÊEÞ ! Mnþ1 such that p maps the basepoint in TðÊEÞ to the point
ðz1; . . . ; znþ1Þ. Since D is simply connected, there exists a holomorphic map

f̂fr : D ! TðÊEÞ
such that p � f̂fr ¼ Fr, and we can choose f̂fr to be basepoint preserving.

Recall from the beginning of §3, that frðzÞ ¼ ½wm�E . Suppose f̂frðzÞ ¼ ½wn�ÊE .
Then, by §1.5, we have

pÊE;Eð½w
n�ÊEÞ ¼ ½wn�E :

Consider the two maps fr : D ! TðEÞ and pÊE;E � f̂fr : D ! TðEÞ. They are both
basepoint preserving. Furthermore, at each zi, for i ¼ 1; . . . ; n, we have wmðziÞ ¼
wnðziÞ. Therefore, by Lemma 2.6, we conclude that pÊE;E � f̂fr ¼ fr on D. This
proves the lifting of the holomorphic map fr on Dr.

Since fnþ1; r misses the points 0, 1, and y, the family f fnþ1; rg0<r<1 forms a
normal family. Therefore, there exists a convergent subsequence fnþ1; rk ! fnþ1

when rk ! 1. It is clear that fi; rk ! fi when rk ! 1. We claim that

Lemma 3.6. For all z A D, fnþ1ðzÞ0 fiðzÞ.

See the proof at the end of this section.
For z in D, define

FðzÞ ¼ ð f1ðzÞ; . . . ; fnþ1ðzÞÞ:
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By §1.3, TðÊEÞ is identified with the classical Teichmüller space TeichðĈCnÊEÞ, which
is finite dimensional. Since each f̂frð0Þ ¼ ½id� A TðÊEÞ for all 0 < r < 1, the family
f f̂frg0<r<1 is relatively compact, because of the completeness of the Kobayashi
distance (which is the same as Teichmüller distance) on TðÊEÞ (see Proposition 3
in [16], and also [23]). The holomorphy of the limit function f̂f then follows
from Weierstrass’ theorem, since TðÊEÞ is a bounded domain in Cnþ1 via Bers
embedding. Since p � f̂fr ¼ Fr, we have p � f̂f ¼ F , by continuity.

Finally, suppose f ðzÞ ¼ ½w ~mm�E and f̂f ðzÞ ¼ ½w~nn�ÊE . By §1.5, we have

pÊE;Eð½w
~nn�ÊEÞ ¼ ½w ~nn�E :

Consider two maps f : D ! TðEÞ and pÊE;E � f̂f : D ! TðEÞ. They are both
basepoint preserving. Furthermore, at each zi, we have w ~mmðziÞ ¼ w~nnðziÞ (because

p � f̂f ¼ F ). It follows by Lemma 2.6 that pÊE;E � f̂f ¼ f .

Proof of Lemma 3.6. Consider a set of four points S ¼ fz1; z2; z3; z4g in C.
These points are distinct if and only if the cross ratio

CrðSÞ ¼ z1 � z3

z1 � z4
:
z2 � z3

z2 � z4
¼ z1 � z3

z1 � z4

z2 � z4

z2 � z3

is not equal to 0, 1, or y.
Consider SðzÞ ¼ f fiðzÞ; fjðzÞ; fnþ1ðzÞ;yg. The cross ratio

CrðSðzÞÞ ¼ fiðzÞ � fnþ1ðzÞ
fjðzÞ � fnþ1ðzÞ

:

We only need to show that for any fixed 0 < r0 < 1, CrðSðzÞÞ is not equal to
0, 1, or y for any z A Dr0 where Dr0 is the disk centered at zero with radius r0.

For any 0 < r < 1, let SrðzÞ ¼ f fi; rðzÞ; fj; rðzÞ; fnþ1; rðzÞ;yg. Then

CrðSrðzÞÞ ¼
fi; rðzÞ � fnþ1; rðzÞ
fj; rðzÞ � fnþ1; rðzÞ

:

Since Cnf0; 1g is complete hyperbolic and

CrðSrð0ÞÞ ¼
zi � znþ1

zj � znþ1

A Cnf0; 1g

for all 0 < r < 1, again by Proposition 3 in [16], the family fCrðSrðzÞÞg0<r<1 is
relatively compact in the space of holomorphic mappings from D to Cnf0; 1g.
Thus, for any jzj < r0 and for any 0 < r < 1, we obtain

jCrðSrðzÞÞjaK

for some K > 0.
This implies that the cross ratio CrðSðzÞÞ is bounded away from y by K , by

letting r ! 1�. Following a similar argument, we can show that the cross ratio
CrðSðzÞÞ is also bounded away from 0 and 1 for any jzj < r0. So fnþ1ðzÞ0 fiðzÞ
for any 1a ia n on Dr0 . Since 0 < r0 < 1 is an arbitrary number, we conclude
that fnþ1ðzÞ0 fiðzÞ on D, for any 1a ia n. This completes the proof. r
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4. Some concluding remarks

In their paper [5], Bers and Royden showed the intimate relationship
between Teichmüller spaces and holomorphic motions. They noted that the
lifting problem in §1.7 is nicely connected with the question of extending
holomorphic motions. In fact, in Proposition 2.8 of our paper, let V ¼ D
and E and ÊE be the two finite sets given in the statement of our main theorem.
Then, by our main theorem and Proposition 2.8, it follows that every holomor-
phic motion of E over D extends to a holomorphic motion of ÊE (over D). By
Proposition 1 in [5], it then follows that given any holomorphic motion
f : D� K ! ĈC, where K is any set in ĈC (not necessarily closed), there exists
a holomorphic motion f̂f : D� ĈC ! ĈC such that f̂f extends f.

It is important to note that the lifting problem that we discuss in our main
theorem does not work if D is replaced by a domain in Cn ðnb 2Þ. In fact, let
E and ÊE be the two given finite sets in our main theorem, and nb 2. Then, by
our discussion in §1.3, TðEÞ and TðÊEÞ are the classical Teichmüller spaces of
the sphere with punctures at E and ÊE respectively. Consider the identity map
i : TðEÞ ! TðEÞ; if it has a holomorphic lift into TðÊEÞ, i.e. if there exists a
holomorphic map g : TðEÞ ! TðÊEÞ such that pÊE;E � g ¼ i, then the map g will be
a holomorphic section of the map pÊE;E . This is impossible by a theorem of
Earle and Kra; see [7] (also proved by Hubbard in [13]). By Proposition 2.8,
that also means that the universal holomorphic motion CE : TðEÞ � E ! ĈC
cannot be extended to a holomorphic motion of the set ÊE.
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