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LIFTINGS OF HOLOMORPHIC MAPS
INTO TEICHMULLER SPACES

YUNPING JIANG, SUDEB MITRA AND ZHE WANG

Abstract

We study liftings of holomorphic maps into some Teichmiiller spaces. We also
study the relationship between universal holomorphic motions and holomorphic lifts into
Teichmiiller spaces of closed sets in the Riemann sphere.

1. Introduction

Throughout this paper, we will use the following notations: C for the
complex plane, C for the Riemann sphere CU {0}, and A for the open unit disk
{zeC:|z| < 1}.

1.1. Teichmiiller space of a plane region. We begin with the usual def-
inition of the Teichmiiller space of a plane region. For standard facts about
classical Teichmiiller spaces, the reader may see any of the following texts: [10],
[11], [14], [15], [21].

DeriNITION 1.1, Let Q be a plane region whose complement C\Q contains
at least two points. By definition, two quasiconformal mappings f and g with
domain Q belong to the same Teichmiiller class if and only if there is a
conformal map 4 from f(Q) onto g(Q) such that the self-mapping g~' o ho f of
Q is isotopic to the identity rel the boundary of Q. This means that g~' o ho f
extends to a homeomorphism of the closure of Q onto itself which is isotopic to
the identity by an isotopy that fixes the boundary pointwise. The Teichmiiller
space Teich(Q) is the set of Teichmiiller classes of quasiconformal mappings with
domain Q.

Let M(Q) be the open unit ball of the complex Banach space L*(Q). The
standard projection ® of M(Q) onto Teich(Q) maps u € M(Q) to the Teichmiiller
class of any quasiconformal map whose domain is Q and whose Beltrami

2000 Mathematics Subject Classification. Primary 32G15, Secondary 37F30, 37F45.

Key words and phrases. Teichmiiller spaces, Holomorphic maps, Universal holomorphic motions.
The first two authors want to thank PSC-CUNY awards for partially supporting this research.
Received April 3, 2009; revised April 21, 2009.

547



548 YUNPING JIANG, SUDEB MITRA AND ZHE WANG

coefficient is u. The basepoints of M(Q) and Teich(Q) are 0 and ®(0),
respectively. It is a standard fact in Teichmiiller theory that Teich(Q) is a
complex Banach manifold such that ® is a holomorphic split submersion; see, for
example, [21].

1.2. Teichmiiller space of a closed set in the sphere. Let E be a closed
subset in C; we will always assume that E contains the points 0, 1, and co. A
homeomorphism of C onto itself is called normalized if it fixes the points 0, 1,
and oo.

_DeriNiTiON 1.2, Two normalized quasiconformal self-mappings f and ¢
of C are said to be E- equivalent iff /~'og is isotopic to the identity rel E.
The Teichmiiller space 7T'(E) is the set of E-equivalence classes of normalized
quasiconformal self-mappings of C. The basepoint of T(E) is the E-equivalence
class of the identity map.

The following analytic description of T(E) will be more useful for our
purposes.

Let M(C) denote the open unit ball of the complex Banach space L*(C).
Each x4 in M(C) is the Beltrami coefficient of a unique normalized quasicon-
formal homeomorphism w* of C onto itself. The basepoint of M(C) is the zero
function.

We define the quotient map Pg: M(C) — T(E) by setting Pg(u) equal to
the E-equivalence class of w#, written as [w”],. Clearly, Py maps the basepoint
of M(C) to the basepoint of T(E). In [18] Lieb proved that T(E) is a complex
Banach manifold such that the map Pgr from M(C) to T(E) is a holomorphic
split submersion; see also [9] for a complete proof. The space T'(E) is intimately
related with holomorphic motions of the closed set E; see §2 for more details.

1.3. Two special cases. Let E be a finite set (0, 1, and o belong to E).
Its complement Q = C\E is a sphere with punctures at the points of E, and there
is a natural identification of T'(E) with the classical Teichmiiller space Teich(Q).
It is defined by setting O(Pg(u)) equal to the Teichmiiller class of the restriction
of w# to Q. Tt is clear that 0: T(E) — Teich(Q) is a well-defined map. It is
easy to see that the map 6 is biholomorphic; see Example 3.1 in [19] for the
details.

When E = C, the space T(C) consists of all the normalized quasiconformal
self-mappings of C, and the map P¢ from M(C) to T (C) is bijective. We use it
to identify 7(C) blholomorphlcally with M(C).

1.4. Contractibility of 7(E). The following fact was proved in §7.13 of [9].

ProposITION 1.3.  There is a continuous basepoint preserving map s from
T(E) to M(C) such that Pgos is the identity map on T(E).
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Since M(C) is contractible, it follows that the space T(E) is also con-
tractible.

1.5. Forgetful maps. If £ is a subset of the closed set Eand pisin M (C),
then the E-equivalence class of w/ is contained in the E-equivalence class of
wh. Therefore, there is a well-defined ‘forgetful map’ py , from 7'(E) to T(E)
such that Pg = pg po Pg. It is easy to see that this forgetful map is a basepoint

preserving holomorphic split submersion.

1.6. Changing the basepoint. Let w be a normalized quasiconformal self-
mapping of C, and let E = w(E). By definition, the allowable map g from T(E)
to T(E) maps the E-equivalence class of f to the E-equivalence class of f ow for

every normalized quasiconformal self-mapping f of C.

Lemma 1.4, The allowable map g : T(E) — T(E) is biholomorphic. If u is
the Beltrami coefficient of w, then g maps the basepoint of T(E) to the point Pg(u)
in T(E).

See §7.12 in [9] or §6.4 in [19] for a complete proof.

1.7. Statement of the main theorem. The main purpose of this paper is to
give a self-contained proof of the following theorem.

THE MAIN THEOREM. Let E ={0,1,0,(;,...,{,} where {; # (; for i +# ],
and {; #0,1,00 for all i=1,...,n. Let E=EU{{,.\} where {,, is any point
in C\{0,1, 0} distinct from {; for all i=1,...,n. Then, given any holomorphic

map f from A into T(E), there exists a holomorphic map f from A into T(E),
such that pg po f=f.

Remark. This “lifting problem” was mentioned in §7 of the classic paper
[5], and the authors called it “a difficult open problem.” With the publication
of [22], it became possible to give a quick solution of this problem, using
Slodkowski’s theorem. We shall discuss this in more details in §4. More
recently, Chirka (in [4]) published a new proof of Slodkowski’s theorem. See
also [3], [6], [12], and [14]. The novelty of our present paper is that we use some
ideas of Chirka and a theorem of Nag ([20]) to give a direct proof of the above
theorem. Our approach, therefore, also gives a new interpretation of Chirka’s
methods.

Acknowledgement. We are extremely grateful to the referee for his very
careful reading and valuable remarks. His important suggestions helped us to
improve the earlier version of our paper.
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2. Holomorphic lifts and universal holomorphic motions

In this section we study the interesting relationship between ‘“holomorphic
lifts” and ‘““universal holomorphic motions.” The main purpose in this section is
to prove a result of Bers-Royden (Proposition 4 in [5]) in its fullest generality.

2.1. Holomorphic motions.

DermiTiON 2.1. Let V' be a connected complex manifold with a basepomt
Xo and let E be any subset of C. A holomorphic motion of E over V is a map
¢:V x E— C that has the following three properties:

(i) ¢(xo,z) =z for all z in E,

(ii) the map ¢(x,-): E — C is injective for each x in V/, and

(iii) the map ¢(-,z): ¥ — C is holomorphic for each z in E.

We say that V' is a parameter space of the holomorphic motion ¢. We will
assume that ¢ is a normalized holomorphic motion; i.e. 0, 1, and oo belong to E
and are fixed points of the map ¢(x,-) for every x in V.

DerFINiTION 2.2, Let ¥V and W be connected complex manifolds with
basepoints, and f be a basepoint preserving holomorphic map of W into V.
If ¢ is a holomorphic motion of E over V, its pullback by f is the holomorphic
motion

F1#)(x,2) = $(f(x),2) for all (x.z) e W x E
of E over W.
If E is a proper subset of E and ¢: V><E—>C ¢:V xE—C are two

holomorphic motions, we say that ¢ extends ¢ if ¢(x, z) #(x,z) for all (x,z) in
V x E.

2.2. Universal holomorphic motion of E. Henceforth, we shall always
assume that E is a closed subset of C and that 0, 1, and oo belong to E.

DErFINITION 2.3, The universal holomorphic motion Wg of E over T(E) is
defined as follows:

Ye(Pe(p),z) =wh(z) for pe M(C) and z€ E.

The definition of Pgr in §1 guarantees that Wg is well-defined. It is a
holomorphic motion since Pg is a holomorphic split submersion and u — w#(z)
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is a holomorphic map from M(C) to C for every fixed z in C (by Theorem 11
in [2]).

This holomorphic motion is “universal”’ in the following sense:

THEOREM 2.4. Let ¢: V X E — Cbhea holomorphic motion. If V' is simply
connected, then there exists a unique basepoint preserving holomorphic map
f:V = T(E) such that f*(Wg)=¢.

For a proof see §14 in [19]. .

In what follows, B is a path-connected topological space. Let #(C) denote
the group of homeomorphisms of C onto itself, with the topology of uniform
convergence in the spherical metric. As usual, E is a closed set in C, and 0, 1,
and oo are in E. The following two lemmas were proved in [19]. For the
reader’s convenience, and to make our paper self-contained, we are including the
proofs.

LEMMA 2.5. Let h: B— #(C) be a continuous map such that h(x)(e) = e
for all x in B and for all e in E. If h(xy) is isotopic to the identity rel E for some
fixed xo in B, then h(x) is isotopic to the identity rel E for all x in B.

Proof. Let x be any point in B. Choose a path y:[0,1] — B such that
7(0) =x0 and y(1)=x. It is clear that the map (z,z)+ h(y(¢))(z) from
[0,1] x C to C is an isotopy rel E between /i(xo) and A(x). O

LEMMA 2.6. Let f and g be two continuous maps from B to T(E), satisfying:
(i) Ye(f(x),z) =YEe(g(x),z) for all ze E and x € B, and

(i) f(xo0) = g(xo) for some xy in B.

Then, f(x)=g(x) for all x in B.

Proof. By Proposition 1.3, there exists a basepoint preserving continuous
map s: T(E) — M(C) such that Pg o s is the identity map on T(E). For each x
in B, define u(x)=s(f(x)) and v(x) = s(g(x)). We will show that the quasi-
conformal map /(x) = (w“*))™" o w*™ is isotopic to the identity rel E. That
will prove our lemma. R

Since x# and v are continuous maps of B into M(C) and #(C) is a
topological group, Lemma 17 of [2] implies that / is a continuous map of B into
H(C).

By condition (i) and Definition 2.3, we have

Wi (2) = We(f (x),2) = WE(9(x),2) = w0 (2)
for all x in B and z in E. Therefore, /(x) fixes the set E pointwise for each x in

B. By condition (ii), /(x¢) is isotopic to the identity rel E. It follows by
Lemma 2.5, that i(x) is isotopic to the identity rel E for all x in B. O
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Let E and E be any two closed subsets of C such that £ = E (as in §1, we
assume that 0, 1, and oo belong to both E and E). Recall from §1.5, the
forgetful map pp . from T(E) to T(E) such that Py = P g o Pg. The following
is a consequence of Lemma 2.6. Here, W[ is the universal holomorphic motion
of E and ¥ is the universal holomorphic motion of E.

Lemma 2.7. Let V be a connected complex Banach manifold with basepoint,
and let f and g be basepoint preserving holomorphic maps from V into T(E) and
T(E) respectively. Then pp pog=f if and only if g*(Wg) extends f*(W¥g).

See §13 in [19] for the proof.

2.3. A proposition. We prove the following generalization of Proposition 4
in [S]. This is an easy consequence of Theorem 2.4 and Lemma 2.7, and shows
the importance of universal holomorphic motions.

ProrosITION 2.8. Let V be a simply connected complex Banach manifold
with a basepoint. The following statements are equivalent:
(1) Every holomorphic motion ¢ : V x E— C extends to a holomorphic
motion ¢:V x E — C.
(2) For every basepoint preserving holomorphic map f:V — T(E), there
exists a basepoint preserving holomorphic map g:V — T(E) such that

f:PE‘Eog-

Proof. (1)= (2): Let f: V — T(E) be a basepoint preserving holomorphic
map. Then, f*(Wg) := ¢ is a holomorphic motion of E over V. By (1) there
exists a holomorphic motion ¢ : V' x E — C such that ¢ extends ¢. By Theorem
2.4, there exists a basepoint preserving holomorphic map g : V' — T(E) such that
g*(¥p) = $. Since ¢ extends ¢, it follows by Lemma 2.7 that p; pog=f.

(2) = (1): Let ¢: V x E — C be a holomorphic motion. By Theorem 2.4,
there exists a basepoint preserving holomorphic map f: V — T(E) such that
f*(¥eg)=¢. By (2) there exists a basepoint preserving holomorphic map
g:V — T(E) such that /' = p; pog. Letg*(¥z):= é: then, ¢ is a holomorphic
motion of E over V. It follows by Lemma 2.7 that ¢ extends ¢. O

Recall from §1.3, that when E = C, we can identify T(é) biholomorphically
with M(C). The pullback ¥¢ of W¢ to M(C) by Pg¢ satisfies
el 2) = Pe(Pe(p),2) = w(z)
for all (u,z) e M(C) x C. So, when we use P to identify T(C) with M(C), the

universal holomorphic motion of C becomes the map

Yo (1,2) = wh(2)

for (u,z) e M(C) x C.
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COROLLARY 2.9. Let V be a simply connected complex Banach manifold with
a basepoint.  The following statements are equivalent:
(1) Every holomorphic motion ¢:V x E — C extends to a holomorphic
motion ¢V x C — C.
(2) For every basepoint preserving holomorphic map f:V — T(E), there
exists a basepoint preserving holomorphic map ¢ :V — M(C) such that
f=Pgog.

3. Proof of the main theorem

Recall that E = {0,1,0,(;,...,{,} where {; # {; for i # j, and {; # 0,1, 00
for all i=1,...,n. By Lemma 1.4, we may assume that f: A — T(E) is a
basepoint preserving holomorphic map.

For a fixed 0 <r <1, let fi(z) = f(rz) = [W"]z. Then we define n holo-
morphic functions f;,(z) = w#({;) for i=1,...,n. Let D = C\A be the exterior
of A. We define » maps on D, which are holomorphic in a neighborhood of

D, as i
)= 1is(2)

for |z > 1 and for all 1 <i <n. Furthermore, we extend g; to C as follows:

for |z <1 and for all 1 <i<n. We have the following:

(@) gi(0) =¢gi(0) =¢; for i=1,...,m;

(b) for any fixed zeC, g;(z) # gj(z) for 1 <i# j<n and g;(z) #0,1, 0
for all i=1,...,n; .

(c) gi(z) is a bounded function on C.

So, there is a constant Cy > 0 such that

lgi(z)] < Co

forall ze C and for all 1 <i<n. Moreover, there is a number ¢ > 0 such that
(3.1) 19i(2) — g;(2)| >0

for all 1 <i# j<n and for all ze C. Furthermore, (3g;/dz)(z) =0 for ze D
and there is a constant C; > 0 such that

ag;

(3.2) e (2)| <G

for all ze C and for all 1 <i<n.
Choose a C* function 0 < A(x) <1 on R* = {x > 0} such that 1(0) = 1 and
A(x) =0 for x >0/2. Define

n

(3.3) Oz, w) =Y i(jw-— g,-(z)|)a—gz"(z), (z,w) e C x C.
i=1
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LemmA 3.1.  The function O(z,w) has the following properties:

(i) only one term in the sum (3.3) defining ©(z,w) can be nonzero,

(i) O(z,w) is uniformly bounded by C, on C x C,
~(iil) O(z,w) =0 for (z,w) e (D x C)U(C x (Ag)‘) where R = Cy+6/2, and
AR denotes the closure of AR ={ze€C:|z| < R},

(iv) ©(z,w) is a Lipschitz function in the w-variable with a Lipschitz constant
L independent of z e C.

Proof. Ttem (i) follows, since, if a point w is within distance ¢/2 of one of
the values g;(z), it must be at a distance greater that 6/2 from any of the other
values g;(z) (see (3.1)).

Item (ii) follows from (i) because there can be only one term in (3.3) which is
nonzero and that term is bounded by the bound on (dg;/02)(z) by (3.2).

Item (iii) follows because if z e D, then (dg;/0Z)(z) =0, and if we C\Ag,
then |w—g;(z)]=0/2 for all zeC and for all i=1,...,n. Therefore,
A(lw—=gi(2)]) =0 for all i=1,...,n. Thus, O(z,w) =0 for (z,w)e (D xC)U
(C x (Ag)).

To prove (iv), we note that there is a constant C, >0, such that
[A(x) — A(x")| < Cax — x'|.  Since |(dgi/0Z)(z)| < C), we have

(3-4) ©(z,w) = Oz, W) < CIC Y | |w = gi(2)| = W' = gi(2)] |-

=1
Since only one of the terms in the sum (3.3) for ®(z,w) is nonzero and
possibly some different term is nonzero in the sum for ®(z,w’), we obtain
|O(z,w) — O(z,w")| <2C,Cylw — w'|.

Thus L =2C;C, is a Lipschitz constant independent of z € C. O

Let %(C) denote the complex Banach space of bounded, continuous
functions ¢ on C with the norm

4]l = sup |¢(z)].
zeC

As usual, L*(C) denotes the complex Banach space of L* functions on C with
the L*-norm denoted by |¢]... B

Since O(z, f(z)) is an L* function with a compact support in A for any
f € %(C), we can define an operator 2 mapping functions in %(C) to functions in
L*(C) with compact support by

2f(2) =0z f(2), f(z) e€(C).

Since @(z,w) is Lipschitz in the w variable with a Lipschitz constant L
independent of z e C, we have

12/ (2) = 29(2)| = 10(z, /(2)) = O(2,9(2))| < L|f(2) = 9(2)]:
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Thus,

12f — 29

w < LIf =4l

and 2:%(C) — L*(C) is a continuous operator.
In the theory of quasiconformal mappings, the Z-operator is defined by

Pf(z) = —lJL&a’fdn, t=<¢Hin

T t—z

where f € L*(C) and has a compact support in C. Then, Zf(z) — 0 as z — o0.
Furthermore, if f is continuous and has compact support, one can show that

(3.5) @(z) =f(z), zeC

and using the notion of generalized derivatives, equation (3.5) is still true almost
everywhere, if we only know that f has compact support and is in L?, for p > 1.

A classical result in the theory of quasiconformal mappings (see [1]) is that 2
transforms L* functions with compact support in C to Hoélder continuous
functions with Holder exponent 1—2/p for every p > 2. A stronger result
says that £ carries L™ functions with compact supports to functions with an
le log(e)] modulus of continuity (see [12]). More precisely, for any R > 0, there
exists a constant B(R) > 0, depending on R such that

12/ () = 2/ ()] < BR)|/|.,.|z — ='| log S

|z — 2|
for all z,z/ € Ag, |z —2'| <1.

This implies that for every 0 < o < 1, there exists a constant 4(R) > 0 such
that

(3.6) 121 (2) = 2/ (=) < AR)|| fl o |2 = ="

for all z,z' € Ag, |z—z/| <1, where A(R) depends only on R and o.
Now consider the operator

H =Po2.
Clearly, it is a continuous operator from %(C) into itself.
Lemma 3.2. There is a constant C3 > 0 such that

|Af || < Cs for all fe%(C).
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Proof.  Since @(z,w) =0 for z € D and since O(z,w) is bounded by Cj, we

have
o bl s
where 1 =&+ in. O

Lemma 3.3. Let p > 2 and
2
O<a=1—-—<1.
p

Then, for any [ € %(C), Af is a-Holder continuous with a Holder constant
H = max{A4(1)Cy,2'*C3}
where H is independent of f.

Proof.  From (3.6), we have
| (2) = AT ()] = 12(21)(2) = 2(2/) ()]
AN 2f |z = 1" < AN G|z = )" < H|z = 2"

where |z —z'| < 1.
When |z—z’| > % by Lemma 3.2, we have

(f(z) — Af ()] <2C3 <27 Cs|z — 2'|* < H|z — Z/|*.

This completes the proof. O

Af(2)| < & for

all f€%(C) and zeC with |2| > R.

_Proof. Since ||2f]|,, < C from (ii) of Lemma 3.1, and the support of 2f is
in A, by (iii) of the same lemma, when |z| > 2, we have

o= 1) (2 50

where t = ¢ +iy. Hence we are done. O

Remark. We know that |#f(z)|] -0 if |z] — oco. However, to check
compactness of the operator .#, we need a kind of uniformity around
z = oo, like the existence of R > 0 independent of f € ¥(C) in the above lemma.

In fact, from Lemma 3.2, we know that the family {#f}, 4, is uniformly
bounded, and from Lemma 3.3, it follows that the family is equlcontmuous
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Therefore, from these lemmas, we merely conclude from the Ascoli-Arzela
theorem that the family is relatively compact with respect to the topology of
the uniform convergence on any compact sets of C, which is weaker than the
topology of €(C). For example, let

n(2) = min{max{ 1,%'}7 ze—:|+2n}

for ze C. Then, each f, is 2-Lipschitz and satisfies || f,;]| <2 and f,(z) — 0 as
|z] — oo (and hence it is an a-Ho6lder function for all o € (0,1] whose Holder
norm depends only on o). However, the family {f,},.n is not compact in €(C).

Acknowledgement. We thank the referee for pointing to us the above
remark and also the example.

The above lemmas imply that # : ¥(C) — %(C) is a continuous compact
operator. Recall from the statement of the main theorem that {,,, is any point
in C\{0,1, 00} distinct from {;,...,{,. For {,q, let

B = {f € (K(C) : ”f” = |£n+l| + C3}

It is a bounded convex subset in %(C). The continuous compact operator
(o1 + A maps £ into itself. By Schauder fixed point theorem (see Theorem 2A
on page 56 of [24]) {,,1 + A has a fixed point in 4. That is, there is a g, € #
such that

g,1+1(Z) = Cn+1 + '%{ql’l-ﬁ-l(z) for all zeC.
Since 2f(z) has a compact support in A for any ge %(C), #g,,1(z) — 0 as

z— 00. So, gy+1 can be extended continuously to co such that g, 1(o0) = (1.

LemMmA 3.5. The solution g,y1(z) is the unique fixed point of the operator
£n+1 + A

Proof. Suppose ¢g(z) and g(z) are two solutions. Let
#(2) = g(z) — g(2) = Ag(z) = #'g(2).
Then ¢(z) — 0 as z — 0. Now,
.\ _ 0% 9, _ o -
L) =2 - L) = 0. 9() - 0(,4(2))
By Lemma 3.1, we get

0

6—?(2) =0 for all ze D.
Since ©(z,w) is Lipschitz in w-variable with a Lipschitz constant L, we have, for
all zeC,
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%(2) =10(z,9(2)) = 0(z,4(2))| < Llg(z) — g(2)| = LI(2)|.
Assuming that ¢(z) is not equal to zero, define
o
—(2)
o) = _ 0

and otherwise, define ¥/(z) to be equal to zero. Note that, if ¢(z) =0, then,

A

0 . : .
o < L(¢(z)), we have a—(é =0. Then y(z) is a L* function with compact

since P
support in A. So we have 2 in %(C) such that
0P
P )= v,
Consider e”V - ¢. Then
o™ 9)

This means that e”” - ¢ is holomorphic on C.

When z — o0, 2 — 0 and ¢(z) — 0. This implies that e”” - ¢ is bounded
on C. Thus, e”¥ - ¢ is a constant function. But ¢(c0) =0, and so e”? - ¢ = 0.
Hence, ¢(z) =0 and g(z) = g(z) for all ze C. O

Since

% (Z) = @(Z, In+1 (Z))

and since ®(z,w) =0 for all ze D, we have

0gn11 B
?(z) =0 for all ze D.

Therefore, g,;1(z) is holomorphic on D.
For {;, 1 <i <n, consider

) = [ 2 deay

where ¢t = & +in. From the definition of O(z,w), we have

2gi
O(t,9i(1) = E(l)
Therefore, o9,
1 -
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This implies that

OAYi , . 0gi
5z =5 )
and that
gi — Hgi) ,_\ _
P (z) =0.

So, ¢i(z) — #yi(z) is holomorphic on C. When z— oo, ¢;(z) —{; and
Hyi(z) — 0. So, ¢i(z) — #yi(z) is bounded. Therefore it is a constant func-
tion. We get

9i(z) = & + Agi(z).

Thus, g;(z) is the unique solution of the operator {; + % .

We claim that g,,41(z) # ¢i(z) for all ze Cand 1 <i <n. To prove this, we
assume that there is a point ¢ € C such that g,.i(a) =g;(a). It is clear that
a # . Then, we have

gnr1(a) — gi(a) = (Lur1 — &) + AGni1(a) — Hgi(a).
Note that g,41(z) = {1 + #gnr1(z) and gi(z) = {; + Hyi(z). We have
$(z) = gn+1(2) — 9i(2) = L1 + AGni1(2) — & — #gi(2).

Therefore,
6¢ agn z agl 4
D5 =01 W) _ gz, gy, (2)) - O(,61(2).
For ze D, we have, by (iii) of Lemma 3.1,
o

For all z € C, we have

9

2)| <100z, 9041(2)) = Oz, g1(2))] < Ligne1(2) = 9i(2)] < LIg(2)].
Assuming that ¢(z) is not equal to zero, define
0
N -G
(Z) - ¢(Z> )

and if ¢(z) =0, let ¥(z) to be equal to zero. Then, ¥(z) is a L* function with

compact support in A. So, we have 2y in (C) such that

Py
L) =),
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Consider e”V - ¢. Then
Ae™-¢) .\ _
When z— oo, 2y —0 and ¢(z) — {1 — . This implies that e”V . ¢ is
bounded on C. Thus, ¢”¥-¢ is a constant function. But ¢(0) = ¢, — ¢
and so
e‘%// ¢ = Cn+l - é:i #0.

By our assumption, ¢(a) = 0, which is impossible.
Now, let

1
fn+1‘r(z) = In+1 <Z> for |Z| < 1.

Let
M, ={weC"! #w; for i # jand w; #0,1 for all i=1,...,n+1}.
We can define a holomorphic function

FV(Z) = (fl,r(z)» cee 7fn,r(z)aﬁt+1,r(z)) A — My

Recall that E = EU{({,.}.
By a theorem of Nag (see [20]), there exists a holomorphic universal covering

map n: T(E) — M,;; such that = maps the basepoint in 7T(E) to the point
(¢1,---,Cur1). Since A is simply connected, there exists a holomorphic map

f.:A— T(E)
such that 7o f, = F,, and we can choose f, to be basepoint preserving.

Recall from the beginning of §3, that f.(z) = [w#];. Suppose f.(z) = [w"]g.
Then, by §1.5, we have

pe (W) = W'lg

Consider the two maps f,: A — T(E) and pg , of :A— T(E). They are both
basepoint preserving. Furthermore, at each (;, for i =1,...,n, we have w”((;) =
w"({;). Therefore, by Lemma 2.6, we conclude that py ;o f, = f, on A. This
proves the lifting of the holomorphic map f, on A,.

Since fy11,, misses the points 0, 1, and oo, the family {f,11,,}¢.,., forms a
normal family. Therefore, there exists a convergent subsequence fui1,r — fut1i
when r, — 1. It is clear that f;, — f; when r, — 1. We claim that

LemMmA 3.6. For all ze A, f,11(z) # fi(2).

See the proof at the end of this section.
For z in A, define

F(z) = (fi(2), - Jur1 (2)-
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By §1.3, T(E) is identified with the classical Teichmiiller space Teich(C\E), which
is finite dimensional. Since each £.(0) = [id] e T(E) for all 0 < r < 1, the family
{ f Yocrer 18 relatlvely compact, because of the completeness of the Kobayashi
distance (which is the same as Teichmiiller distance) on T'(E) (see Proposition 3
n [16], and also [23]). The holomorphy of the limit function f then follows
from Weierstrass’ theorem, since 7' (E) is a bounded domain in C™! via Bers
embedding. Since mo f, = F,, we have no f = F, by continuity.
Finally, suppose f(z) = [w#]; and f(z) = [w"];. By §1.5, we have

Pee(Wp) = W]
Consider two maps f:A— T(E) and pEEof A — T(E). They are both

basepoint preserving. Furthermore, at each {;, we have wH(L;) = w"({;) (because
nof F). It follows by Lemma 2.6 that I’E,Eof 1.

Proof of Lemma 3.6. Consider a set of four points S = {z,z,z3,z4} in C.
These points are distinct if and only if the cross ratio

Z] —Z3 Zp — I3 Z] —Z3 Zp — Z4

Cr(S) = : =
() Z1 —Z4 Zp — Z4 Z] —Z4 293 — Z3

is not equal to 0, 1, or oo.
Consider S(z )— {fi(2), fi(2), fus1(z), 0}. The cross ratio

fi(z) = fur1(2)
5i(2) = fa1(2)
We only need to show that for any fixed 0 < ro < 1, Cr(S(z)) is not equal to
0, 1, or oo for any z € A,, where A, is the disk centered at zero with radius ry.
For any 0 <r <1, let S,(z) = {/i-(2), f;,r(2), fur1./(2),00}. Then
fi,r( ) _fn-‘rl,r( )
f/\r(z) - fn+1‘r(2)
Since C\{0, 1} is complete hyperbolic and
Z:) Cn+1
e C\{0,1
G =l MO 1)

for all 0 <r < 1, again by Proposition 3 in [16], the family {C.(S;(2))}oc,<; 18
relatively compact in the space of holomorphic mappings from A to C\{0,1}.
Thus, for any |z| < ry and for any 0 < r < I, we obtain

|Cr(S:(2))| < K

Cr(S(2)) =

Cr(s,(2)) =

G (5:(0)) =

for some K > 0.

This implies that the cross ratio Cr(S(z)) is bounded away from co by K, by
letting »r — 17. Following a similar argument, we can show that the cross ratio
Cr(S(z)) is also bounded away from 0 and 1 for any |z| < ry. So fir1(z) # fi(z)
forany 1 <i<mnonA,. Since 0 <ry <1 is an arbitrary number, we conclude
that f,,1(z) # fi(z) on A, for any 1 <i <n. This completes the proof. O
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4. Some concluding remarks

In their paper [5], Bers and Royden showed the intimate relationship
between Teichmiiller spaces and holomorphic motions. They noted that the
lifting problem in §1.7 is nicely connected with the question of extending
holomorphic motions. In fact, in Proposition 2.8 of our paper, let V' =A
and E and E be the two finite sets given in the statement of our main theorem.
Then, by our main theorem and Proposition 2.8, it follows that every holomor-
phic motion of E over A extends to a holomorphic motion of E (over A). By
Proposition 1 in [5], it then follows that given any holomorphic motion
¢:Ax K — C, where K is any set in C (not necessarily closed), there exists
a holomorphlc motion ¢ : A x C — C such that ¢ extends ¢.

It is important to note that the lifting problem that we discuss in our main
theorem does not work if A is replaced by a domain in C" (n >2). In fact, let
E and E be the two given finite sets in our main theorem, and n > 2. Then, by
our discussion in §1.3, T(E) and T(E) are the classical Teichmiiller spaces of
the sphere with punctures at £ and E respectively. ansider the identity map
i:T(E)— T(E); if it has a holomorphic lift into T(E), i.e. if there exists a
holomorphic map g : T(E) — T(E) such that pz 9 =1, then the map g will be
a holomorphic section of the map pg x This is 1mposs1ble by a theorem of
Earle and Kra; see [7] (also proved by Hubbard in [13]). By Proposition 2.8,
that also means that the universal holomorphic motion Wg:T(E) x E — C
cannot be extended to a holomorphic motion of the set E.
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