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HOMOTOPY GROUPS OF THE SPACES OF SELF-MAPS
OF LIE GROUPS II

Katsumi OsHiMA AND HIDEAKT OsHIMA

Abstract
We compute the homotopy groups of the spaces of self-maps of SU(3) and Sp(2).

1. Introduction

The present paper is a continuation of [3] and is devoted to the computation
of 7, map,(G, G), the n-th homotopy group of the space of pointed self-maps of
G, for G =SU(3),Sp(2) and 9 <n < 11. We computed 7, map, (G, G) for G =
SU(3),Sp(2) and 0 <n <8 in [3, 5]. Our main result is given by the following
theorem.

THEOREM 1.1.

n m, map, (SU(3),SU(3)) m, map, (Sp(2), Sp(2))

9| meZeroeriez A

10| ZiOZ@®LZDLDLs Zs DL DLs

1| Zs®Z, L@ L ®IDL; | L DL DL, DLy DL D L3

Here 7, denotes the direct sum of r copies of L, =Z/nL.

In §2, we state our main theorem (Theorem 2.1), explain how to deduce
Theorem 1.1 from the main theorem, and give a diagram being useful for
computations. We prove Theorem 2.1 in §3 and §4.

2. Methods

We use notations of [3, 9] freely. Also we use results in [9] about 7,4 (S")
for k <19 without particular comments. We denote by #a the order of an
element a of a group, and by Indet{c, 5, 7} the indeterminacy of the Toda bracket
{ou. B, 7} 9],
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Our main theorem is

Treorem 2.1 (1) [Cy,,,SU(3)] o) = Zs{[o”]} ® Zo{(Z°g3) [2)vn} and
457 = (g3 i.u

(2) [Cyyy> SUB) o) = Za{(Z"q3)" [215]V508}
[C:m»SU(3)](z = Z{ip'} ® Zo{[v31Zvic} @ Za{(Z"q3) " [vss]} and

2 = (B q3) [2s]ls, peiid = £(ZMq3)" s

4 [C SN Sp(2)] = 73 {( Q) [0’ ’714}’7157(Z Q3) [v7]v10,1*/,¢3,i*773.§1}.
(5) [Cs194, SP(2)] 2.3) = Zg{[v1]v10 71V10}®Z2£M]V10— (Z! q3) [viloo, ixsTia}-
6) [ z“w,sp(z)] = ZH{("q3)"[(7],220"]} @ Zo{ (2" g3) "3} @

Zy7{i.03(3)}

We prove (1), (2), (3), (4), (5), (6) of Theorem 2.1 in §3.1, §3.2, §3.3, §4.1,
§4.2, §4.3, respectively.

Theorem 1.1 follows from Theorem 2.1, [6] ([3, Table 1, Table 4] and Table
6 below), [9] (nm(S ) for m <21 and n=3,5,7) and the following four facts.

(i) There is the canonical isomorphism 7, map,(G, G) = [£"G, G].

(ii) Tt follows from [1] that £* SU(3) ~ C,, vS'' and X2 Sp(2) ~ Cy»,, v S™?
and hence

2" SU@3),SU3)] = [C,,..,SU(3)] ® m,15(SU(3)) for n>3 ([3, Lemma 3.2]),
M3
[Z" Sp(2),Sp(2)] = [Csrew, SP(2)] @ 7ut10(Sp(2)) for n>2 ([3, Lemma 4.1]).
(iii) If p is an odd prime, then SU(3), =~ (S’ x §°),
[Zn SU(3)7 SU(3)](1;) = nn+3(s3)(p) (‘B 7[11+3(S )(p) (‘B 77:}1+5(S )(p) (‘B nn+5(SS)(p)
(‘B ﬂn+8(s3)(p) (‘B ﬂn+8(ss)(p> for n > 1.
(iv) If p is a prime >5, then Sp(2), ~ (S* x S7)(p> and so
(X" Sp(2), SP(Z)](,;) = 7Tn+3(s3)(p) @ 7Tn+3(s7)(p) @ T[Vl+7(s3)(p) ® 7Tn+7(s7)(p)
&) nn+10(S3)(p> &) 7'[,,+10(S7)(p) for n>1.

and so

n 19 | 20 21

m(Sp(2) | 23 | Z3 | Zn @ Zs

Table 6

Let F —l>E . B be a fibration and
sz sylelzly
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a cofibre sequence. In order to compute the homotopy set [X"Cy, E] = [Cyny, E,
we will use some part of the following commutative diagram with exact rows and
columns.

(2.1)

J S

P+ P+ D+« P+ D+

-9 sz8 Y =y, - (¢.B L z,B L [v,B

3. SuU@M)
The purpose of this section is to prove (1), (2) and (3) of Theorem 2.1. We
use the following exact sequence:
e )"
(3.1) 704(SU3)) o) —= 701 5(SU3)) ) 2 [
(Eﬂi/)*

U
- ”n+3(SU(3))(2) - ”n+4(SU(3))(2)

3.1. Proof of Theorem 2.1 (1). By (3.1) and [6] ([3, Table 1]), we have the
following exact sequence:

. iy’ . )"
Zofie'} — Zo{ v} @ Zo{ip'} =" [C,,,,SUB3)] )

9y * *
Sz}

Lemma 3.1. (1) ([3, Lemma 3.4(1)]). #},[¢”] =0.

(2) iv'eg = ive'nyy = 2[V2|vin = ie3vin. L

(3) ([2, Proposition 3.7(4))). [Cy,,, S0 = Za{p.[0"]} ® Zo{(£°q3)"v3} and
2-pfo" = (Fq3) s (mod (£g3)v3)).

(4) (|2, Proposition 3.7(5)]). [C,,B,SG]Q):Z4{Zp*[a”’}} and 2-3p.[o"] =
210 *
(Z7q3) "t
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Before the proof of this lemma, we prove Theorem 2.1 (1) from the lemma.

C0n51der (2.1) for the fibration SU(3) = G, % S° and the cofibration
st hgd C,,, that is, the following commutative diagram with exact rows and
columns, where G, is the exceptional Lie group of rank 2.

7 (210‘7)* (210~/)* ,7
14(G) — ws(G) S [Cr Gl o as(Gh) —E (G

(
P’ lﬁ* lﬁ‘ lﬁ* lﬁ*
( ( (S

(
6 6 (£1943)* (211" p 6
ma(S%)  —=  ms(S%) % [G,,SY] ——= (S ——  mu(SY)

N A

13(SUG) —2 7a(SUG) 225 (6, 8UG)] 2 2n(SUG)) —22 715(SUG3))

Since 713(G2) =0 and the first #{, of the diagram is surjective by [4], we have
[Cy,,G2] = 0. Hence the third and the fourth 0 of the diagram are injective.
Moreover, by [9, Lemma 6.3, p. 64] and Lemma 3.1(1),(2),(4), the above diagram
induces the following commutative diagram with exact rows, where three 0’s are
injective.

0o—— Z{(2¢3)" 1} sz B Z026m —— 0

[ o

* * . >0
0 —— Z2{() P2, (2s) it} —— [Cps SUB) ) ol Za{[o"]} —— 0

We have 2[¢”] — 0Xp.[0"] € Image((2°¢3)") = Z3 and so
4[c"] = 20%p.[0"] = 0(2Zp.[c"]) = A(Z"q3) ug

Since d(2'¢3) 14 is of order 2, the order of [¢”] is 8. Recall from [6] ([3, Table
1)) that m4(SU(3)) Z4{[V5}V11} ®Zz{l*ﬂ} and 2[V5]V11 = i.&3v11. Hence
we can write Jdug —Za Wi +b i =a-ie'ns+b-ig (a,bef{0,1}). If
b=0, then a=1 and Jus = 2[v3]v;; and hence E(Zloqg) Us = (Z2q3) Oug = 0,
and this is a contradiction. Hence b — 1, that is, dug=2a-[v2]vi + i

Therefore o
40" = 0(Z"g3) 1s = (2043) "0 = (X0q3) it
Thus we obtain Theorem 2.1 (1).

Proof of Lemma 3.1. We refer (1) to [3].

(2) The first equality follows from the equality &'n;; = v'es [9, (7.12)]. The
last equality is in [6, (4.1)]. In order to prove the second equality, we consider
the following homotopy exact sequence of the fibration S* 5 SU(3) 285,

(32)  Za{[2is]vsos} L Zs{vsos} ® Zof{nsug) — Zafu'} ® Z2{esvnr, 'y}

L Zy{ v} @ Zofinnd'}
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The boundary homomorphism @ satisfies 0(1s) = 773 and so d(yspg) = n3ps = 24’
By [6, (4.4)], we have 2is50 (vsas) =2(vsog) and so p.[2is]vsas = 2(vsas) and
hence the order of d(vsag) is 2. Thus if we write d(vsog) = x-u' + y-evi +
z-&'ny; for 0 < x <3 and y,ze{0,1}, then x=0 or 2. Since i.e3v11 = 2[v3]vy,
we have 0 = i.0(vsag) = 2y[vi]vi1 +z - ie'ny;. If z=0, then y =0 and so 0 #
0(vsog) = x-u' and hence x =2, and therefore d(vsog + #sus) =0. This is
impossible. Thus z=1 and

(33) ie'ns = 2yl
On the other hand, it follows from [9, Proposition 1.4, Lemma 5.4, (5.4)] that

{[vg],n11,2112} oMz = —([Vg] o {m,2u2,m12}) = 2["?]"11 #0

and hence i,&'n;; = 2[vZ]vy1, since 713(SU(3)) o 7,5 is generated by i.e',;. Hence
y=1 by (3.3) and so i.&'n 3 = 2[v]vi1.

We refer (3) to [2].

While (4) was announced in [2, Proposition 3.7], we will prove it because our
notations are different from theirs. We have the following commutative diagram
with exact rows.

s (=%")" 15
Z,{es} — Z3{v3, s, nsé6} L, Zz{q v} @ Za{p.fo"]} ——— Zofo"} —2— 0

JZ ;JE lE ;JE
2436} @ afios) — 23t} T (G s Zaf2e)
We have 7714v6 =] and 57{,e6 = nge7 by [9, Lemma 6.3, (7.5)]. Hence 2Zp,[c"]
= (Z'%;3)*u by (2) and the second exact row of the above diagram. Therefore

#2p.[0"] =4 and [C,,,,S%] ) = Za{2p.[0"]} and 25p.[0"] = (E"q3)"ns. O

3.2. Proof of Theorem 2.1 (2). By (3.1) and [6] ([3, Table 1]), we obtain
the following exact sequence:

Zu{ 21} @ Zofian'y 2 Za{ [205]vs5) =2 [Cnm SU3)]

T Zr{i.e'} v Zo{[3lvn} @ Zo{ip'y
13
We have #7,[v3Jvi; =0. Since p,: ms(SU(3)) 2~ ms5(S° ) Zg{V50‘g} @
Zr{nsue} is injective and p.yiyicp’ = p.ip'n, =0, it follows that Nigdpt’ =0
and hence that the above (ZIOqg)* is injective. By Lemma 3.1 (1), yjsi.e’ =
2[v5]v11 Hence the above (£!3)" is surjective. Thus (Z'%3)" : Z4{[215}V568}
= [Cy,;,SU(3)] ) is an isomorphism.

3.3. Proof of Theorem 2.1 (3). Consider (2.1) for the fibration S —

SU(3) — S° and the cofibration S* AN S C,,, that is, the following commu-
tative diagram with exact rows and columns.
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(3.4)

i ="gs)"
Z3{v' 1, v'n6e7} = Zr{v'neus} — [Crir SN
s zlgs)*

Z{[2slvsos})  — Za{[2s)s) @ Za{[vs]} b [Cias SUB)] )

X B I
| _ (
Zs{vsos} @ Zo{nsus} —— Zs{ls} ® Z5{vsvs, vses} — [Crir Sl

(2]] /)*
= Z{1'} @ L3{esvin,viesy ——  Z3{v'g, v'nger}

| !

(211»/)* . ,7*
= 2y} @ Zofipy - Z4{[215)vs05}

N A
(Elli/)*

,
— Z3{v3, s, nsée} — Zs{vsos} ® Zo{nsp}

Lemma 3.2. (1) ([2, Proposition 3.3(6)])
2 (G 8" ) = Zs{vio} =[Gy, S -

(2) [Cnmsjhz) = Z4{(Z"43)"(5) @ Z3{(2" ¢3) "vs7s, v3ZVI0}-
(3) [C'?14’S>}(2) = Z%{zﬂ/am}
(4) The following sequence is exact:

0 —— Zy{[215)C5} @ Zo{lvsis]} S G, SUG)

Ma>

@i’ .
=5 Zy{Hvn} © Zofi'} —— 0

(5) The following sequence is exact:

0 — Z3{2 &} = Gy, SUB) ) = (G

Ma>

(6) Therlel e)*cists i such that 2-igl = (Z"q3)*[2s]ls and  p.igd =
(X q3)"Cs.

Before the proof of the lemma, we prove Theorem 2.1(3) from the lemma.
By (3.4) and Lemma 3.2 (2),(4),(5), we see that Z,{(Z''q3)*[vs¥s]} is a direct
summand of [C,,,SU(3)],, and that the order of [v2]Zvy; is 4, since the order of
[v3] is 4 by [6]. Then Theorem 2.1(3) is easily obtained from Lemma 3.2(4),(6).

O



536 KATSUMI OSHIMA AND HIDEAKI OSHIMA

Proof of Lemma 3.2. (1) Since [C,,,S"] is stable and 714(S") = 715(S'%) =
0, we obtain (1).

(2) In the third row of (3.4) we have vsasn,s = vses by [9, p. 152], nsugn s =
4(s by [7, Proposition (2.2)] and [9, (7.7), (7.14)], vin,, =0 by [9, Proposition
5.2], and #seen4 = 4(vsog) by [9, Lemma 6.6, (7.5), (7.10)]. Hence we have the
following exact sequence:

="
(3.5) 0= Za{(Z"4:) "G5} @ Zo{(Z"g3) vsis} — [, 8] ) B0 203 —0
Since (X'i")*v2E¥1; = v2, the order of vZX¥y; is 2. Hence (3.5) splits and (2) is
obtained.

(3) In the first row of (3.4) we have vugns = vy, 1'na =v'us by [7,
Proposmon (2.2)] and vy, =0, Vs, = v'neer by [9]. Hence (X!'!i')*
Gy, S lo) = Z3{2u',e3v11}. Thus we obtain (3).

(4) By the same proof of [6, (4.4)], we have 2is o (vsasn;5) = 2(vsasn,s) and
hence

panis([2is]vsag) = 2is o (vsagiyys) = 2(vsasnys) = 0.

Since 2150 (5 =2{s by [6, (4.4)], the second p. of (3.4) is injective, and hence
nis([2s]vsas) = 0. Also p.([2is]vsas) = 2(vsas) by [6, (4.4)], and i, ([vZ]vi1) = 0.
Thus we obtain (4).

(5) Since the orders of [C,,,S> l» [CyySU3)]p) and [C,YWS] are

respectively 4, 64 and 16 by (3), (4) and (2), we obtam (5).
(6) By (2) and (4), we can write

(3.6) peil = x- (M q3) L5+ y - (2 q3) sV + 2 viZvyg,
(3.7) 2 il = A (ZMq3) " [2i5]¢5 + B - (EMg3) " [vss),

where x,4 € {0,1,2,3} and y,z, Be {0,1}.

By applying (£''i")" to (3.6), we have 0 =z-v}. Hence z = 0.

We will show that x=1 or 3. If x=0, then i/ — y-(Z'q3)"[vs7s] €
Ker(p.) = Image(i,) and hence

i = @) (g = y(E 3) " vsvs]) € 1 (Z) (G, S ) = Zo{2[v3]vn}
by (3) and [6, (4.1)]. This is impossible. Hence x # 0. If x =2, then

peit = p.(E"q3) " ([215]Cs + ylvsvs]),

since 215 o {5 = 2{5 by [6: (44)]. Nowig — (Z"q3)"([215]¢s + yvsvs]) € Ker(p.) =
Image(i,). Hence z*,u — (M g3)*([215]¢5 + y[vsTg]) = 0 (mod .24, i,&3v77) by (3).
Then i.u' = (2'4)" (i — (Z"g3)"([215)s + y[vsvs])) = 0 (mod 2iu’, 2[v3]vny) by
(4) and [6, (4.1)]. This is impossible. Hence x # 2. Therefore x =1 or 3 as
desired.

By applying p. to (3.7), we have 2p.ip’ =242 q3) s + B(Z " ¢3) *vsis.
The left term of this equality is 2x - (X''¢3)*¢s by (3.6). Hence 4 = x (mod 2)
and B=0. Rewrite w-iu + y(E"q3) [vs9] as iu/, where w is 1 or —I
according as A4 is 1 or 3. Then 2-ix = (ZMg3)*[2s]¢s and p.iu =
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—wx(Z"¢3)*¢s = +(Z'"¢3)*¢s. Thus we obtain (6). This completes the proof
of Lemma 3.2. O

4. Sp2)

The purpose of this section is to prove (4), (5) and (6) of Theorem
2.1. Recall that @ =v' 4 o;(3) and so X"w = 2v,3 + oy (n+3) for n > 2.

4.1. Proof of Theorem 2.1 (4). By [6] ([3, Table 4]) and [9], we have the
following commutative diagram with exact rows.

(o)’

gl
w’s ] Z%{/,t37;7384} 0

[Coo

2 / 2 (2g5)" =%"* I ) (w)*
0 —— Z5{[a'n4lnis, v1lvip} —— [Css,,, SP(2)] —— Z5{isu3, ixnz3e4} —— 0
J» J» |-
0—— ZZ{O- 7714a V7nu7a 788} —q%)> [C29w, S7] —— 0

Commutativity of this diagram implies that the first (Z9q3)* has a left inverse.
Hence the second row splits and so (4) is obtained.

4.2. Proof of Theorem 2.1 (5). In the following exact sequence

717(5p(2)) S [Cynyy, SP(2)] E0 715(Sp(2))

we have 717(Sp(2)) 3, = m3(Sp(2))5) = 0 by [6] ([3, Table 4]). Hence
(4.1) [Cangys Sp(2)](2y3) = [Gen,,, Sp(2)](2)‘
Therefore it suffices to compute [Cgu,,, SP(2)] ).

Lemma 4.1. (1) We have the following commutative diagram with exact rows
and columns from (2.1).

(4.2)

7 ="in: , ="w)"
[Congs STy — Zs{o'} —

Z“U} * Zl() 3 * E]U-/ * Z“)LU *
o E iy L G, SYe TN Zde}eZefnw) T 0

J'ix:() J'l} J/I'x

, (RN (E q3) ( (2"0)

Zis{20"]} — Zg{[v1]o10} [szwsp( N E, Zufilvio} @ Zofimym} S5 0

} } ) }

DA (=;3)" 21051y *
ZS{OJ} (‘—>Z8{V7UIO}®Z2{’77/13} _}q [CEIO 57](2) —>( ) Zz{v%} = 7.0

?
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We have
4.3)  ("3)"(Zs{v1010} ® Zo{nus}) = Z3{(Z°q3) "vio10, (£'°43) no1ss},
(4.4) (BN [Cynyy, ST]) = Zaf{da'},
(4.5) (g3) Zs{[v7)a10} = Za{(Z%¢3)"[v7]o10},
(4.6) [Cy10,, 870y = Z5{(2"93) "vi010, (2'°03) 7125, v12775 ).

(2) The order of i.&' is 4.
(3) Zo{icusnya} is a direct summand of [Csw,,, Sp(2)],) and %Y i =
L3y

Before the proof of Lemma 4.1 we prove Theorem 2.1 (5) from Lemma 4.1.

By Lemma 4.1 (3), [Cyn,,Sp(2)]o) = Zo{issin} @ L, where L is the
subgroup generated by [v7]vio and (2'°¢3)*[v7]o19. Hence it suffices for Theorem
2.1 (5) to prove that L = Zg{[V7]V10} @ Z2{2 . [V7]V10 — (210q3)*[V7]0'10}.

By (4.5) and the third row of (4.2), we can write

(47) 4. [Vﬂvlo =X- (210(13)*[\/7]0’10 (X € {0, 1,2, 3})
Since i,e’ = 2[v7]vio by [6, (5.1)], it follows that i,e’ — 2 - [v7]vip € Ker(Z'%")* =

Image(2'%¢3)" and hence from (4.5) that i.& —2- [v7]vio € Za{(Z'g3) [v1]v10},
that is,

(4.8) ive’ =2 [vlvio = y- (£"%3) " [mlowe (¥ €{0,1,2,3}).
By Lemma 4.1 (2), (4.7) and (4.8), we have
0#2 i’ = (x+20)(Z":) [v]vio, 0=4-i.& =2(x+2p)(Z") [v7]vio.

Hence x +2y =2 (mod 4) and so 2 -i.e’ = 2(2¢;3)*[w]o10 and x =0 or 2. To
induce a contradiction, assume x =0. Then y =1 or 3 and #][v;|vio =4 by
(4.7). On the other hand, it follows from (4.8) that 0 = p.i.e’ =2 p.[v7]vio +
y(Zqug)*vmlo. Hence the order of p.[v]vio € [szw,S7](2> is 4. This contra-
dicts (4.6). Hence x =2 so that # [v7]vjo = 8 and 4[v]vip = 2(2'%¢3)“[v7]o10 by
(4.7). Therefore

L = Zg{[vi]vio} ® Zo{2 - [v1]v10 — (£"°¢3) " [w]o10}
as desired. O

Proof of Lemma 4.1. Since X"w =2v,,3 (modo(n+3)) for n>2 and
since n17(S3)<2) = n16(S3)<2) >~ m3(S7) = Z, and 716(Sp(2)) = Z3, it follows that
the homomorphisms (Z'%w)* : m3(X) ) — me(X)p) for X = S? S7,Sp(2) and
="w)* n14(S3)(2) Hn17(S3)(2) are trivial. Hence the second row of (4.2) is
exact and the second and the third (X'%')* are surjective. We have (Z''w)*¢’ =
2(o'vig) = 2k - v7a10 for some odd integer k& by [9, (7.19)]. Hence we obtain
(4.3), (44) and (4.5). To prove (4.6), consider the following commutative
diagram with exact rows.
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(4.9) (£190) ) g3 @i )’
E— Zr{v'neus} [Cz%v ](2) Z% — 0
6] a il
@' (=0 ("%0)"
Zlo'} B Zylwron} @ Zofmmus) T [(Cony87) ) Sk Z,{v3} =0
221\; z? 22| =
(= (=51 (=)’
0 E Zfvson} @ Zo{nsn) L (G, STl 2,{v}} = 0
Vs Vse
8; ) (28w)”
[Cesors 8](2) Zg{vs} — 0
33 2 =
5-/ * 5 *
Z:{o") I S S
/l\ z z
(Z (z4iy* (Stw)”
0 o) S [Crig STy — Zy{va} @ Za{Zv'} = Zs{}

Since (Z*w)*Tv =Zv' 02v; =0, we can take XV € [CE4w,S4}(2) such that
(4.10) #3V =4

Since X?v = 2vs by [9, Lemma 5.4], we have (X°/')"ZZv/ = 2vs = (23i')*(275) so
that there exists an integer x such that

Sy =27 4+ x - (25q3)*0'”/
and hence
(4.11) 0TV = 2375 + 8x(2'%¢3) oo,

since 240" = 84° by [9, Lemma 5.14]. Since (Z%)*(vsZ'Tv’) = vsZ>V' =202 =
0, we can write

‘)522427 =da- (ESQ3)*V568 +b- (28%)*’75#6 (d € va € {Oa 1})

We have 0 = 4(V524W) =4a- (28q3)*vsag, where the first equality follows from
(4.10). Hence a =0 (mod2) so that, by (4.3), we have

(4.12) WEOV = 22 (vsZ2v) = b - (2193) 17115

n (4.9), we have 0(n;u3) = v'eu; and 0v3 =0, since di; = +v' (mod o (3)).
Hence (£%i')*0v? = 0. Therefore

(4.13) A([Cy10,, 7)) = Za{(20q3) V1417 }-
Now, by (4.11) and (4.12), we have
b- (210q3)*’77ﬂ8 = V7E6W = V7(225% + 8x(210q3)*010) = 2(\)725\75).
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Also 0=002vZ°%) = (b - (%) n7ug) = b - (°q3) V'iert;, where the first
equality follows from (4.13). Hence b =0 so that 2(v»;Z°75) = 0. This proves
(4.6) and completes the proof of (1).

(2) We have 4¢’ = (2'%;3)"(«) for some o€ Zp{e;v?,}. Then i.(4e') =
i,(Z%3) (2) = (21%3) i (2) =0. Thus #i. is 1, 2 or 4. Set k= #i.z'.
To induce a contradiction, assume k is 1 or 2. Since i, (ke') =0, we have
ke’ = 0(B) for some B e [Cznw,S7](2). Then

0 # ke' = (%) (ke') = (£1°)*0(B) = )" B € d(Z2{45"}) = 0,

since (Zlii’)*[Cznw,Sq(z) = Ker(Z"w)* = Z,{4¢'}. This is a contradiction.
Thus #i.e’ =4 as desired.
(3) By the exact sequence

(le)i/)*

117(S"?) = 0 —— [Cyu,,, S| = 713(S"?) —— m6(S1?) = 0

104,

we have [Cyu,,S"] = Zo{75}. Since (Z'%")*(u3713) = p3i1, = 344 and since
# (i) =2, Zo{ s} is a direct summand of [szw,S3](2). Thus we obtain
(3), since (Z'°%)* i, 37713 = i (2'%") 37713 = ivitsyy,.  This completes the proof of
Lemma 4.1. U

4.3. Proof of Theorem 2.1 (6). Let
S TP DU Cuz) =2 87

be the usual cofibrations. If n > 2, then 9X"w = 2v,,3 and 4X"w = o;(n+ 3)
and so we have the following commutative diagram of cofibrations:

gnt6 2V gnt3

J/ Yt6

g6 o g3

oy (n+3
szn+3 Sn+6 ( ) Sn+3

J/f ) J{41n+6

Zfl
Sn+6 w Sn+3

- Coq(n+3)

|

— Gy

— G
Then for any n > 2 and for any pointed space X we have

I [Corey X o) = [Conpss X o)y 97 1 [Corens X3y = [Coyna3)s X 3)-
If n>35, then [Cgny,Sp(2)] is a finite group and so

[Cs, SP(2)] (2,3 = [Cs700, SP(2)] ) @ [Csrr, SP(2)] 3
= [Coy,55SP(2)] 2) @ [Coy (n+3), SP(2)] (3)-

Therefore it suffices to prove the following:
(4.14)  [Cou,, SP(2)] o) = Z3{ (2" 43.2) "53], 220"} @ Zo{(2 " g3.2) "i.231},
(4.15) [Cou14):SP(2)] 3y = Zor{iv3(3) }.
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Lemma 4.2. (1) [C2V147S ](z Z{uW'} @ Z2{83v11,8 T (2'932) 53}
(2) [Coni, STy = Zs{(Z" 43,2) "G} @ Z3{(2" 43,2) "Vrvis, o'}

3) (3, Proposmon 4.4(1)]) 315 0 m12(SY) = 3715(SY).

4) ([9]) ma(S )<3> = Z3{o1(3)az(6)} and 03(3)ou (10) = —o(3)a2(6).
(5) (1) m7(S%)3) = Zs{ou (3)23(6)} and a3(3)ou (14) =0<1( )3(6).

Before the proof of Lemma 4.2, we prove (4.14) and (4.15) from Lemma 4.2.

For n>2, to simplify notations, we denote X'gs,: Cy,., — S""' and
233 C11<n+3 — 8" by ¢, and X"4:S"7 — Gy, and X" :S" -
Cau n+3) by i’

To prove (4 14), we consider (2.1) for the fibration 8> 5 Sp( ) % S7 and the
cofibration S 2385 5 Cy,, that is, the following commutative diagram with
exact rows and columns, where > means a monomorphism.

(2ms)”

[sz,Sp(2)](2> —— Zo{[o"ma]} —_— 0
|» |-
0 — (G STy T’ Z3{oma ey 2L 0
| | |
Loz} L [Cones Sl L Z{ Wy @ 22 e, v'es) Lol 0
Ze{[7]} @ Zofins}) —— [Covy, SP(2)] ) L. Zs{[20']} L)’ Zs{[w]o10}
I I I |-
Z3{(7} ® Zr{v7vi5} N AN [Conas S7](2) LN Zs{o'} Gr)” — Zg{vi010} @ Zo{mp;115}

Here we have not used Lemma 4.2 but [6, 9]. Since p.(2vi4) [20'] = 4(c'v14) =
4(1)70'10) = p*(4[\17](710) by [9, (7.19)], we have (21/14)*[20'/} = 4[\17](710. Since
d(17) =v', we have 0(v7) = v'V6 = &3v11, 0(V7vis) = e3vi, and d(e7) = v'eg = &ny5.
It then follows from Lemma 4.2(1),(2) that the above diagram induces the
following commutative diagram with short exact rows and exact columns.

0 0 0

0 — Z>{z) L Lies)@Zdwy 5 Zau} — 0
i i iy

0 — Ze{[G]} ® Zofits} & [Cae- SP(2)] ) = Zs{220]} — 0
P+ P+ D+

i

0 — Zs{(7} ® Zr{v7v15} 7 Zs{q*(} @ Z3{gvvis, 40’ = Zo{de’} — 0
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Write  p.2[20'] =x-q*(;+ y-q*Vivis +z-40’ (x,y,z€Z). Then p.(2[26']—
x-q'[G]) = v g Fvis+2-40 and 2(2[20") — x- ¢*[G7]) € Ker(p.) = Image(i.).
Hence we can write 2 - 2[2¢'] —2x - q*[{;] = A - i,p/ + B - i.q*&; for some A, Be Z.
Multiplying by 4, we have 8 - 2[2¢6'] = 0. Hence the order of 2[2¢'] is 8. There-
fore the second row of the above diagram splits and we obtain (4.14).

We prove (4.15). By Lemma 4.2(4),(5) and equalities 3f,(5) = —a;1(5)a2(8),
36,(7) =0 (9, Lemma 13.8, Theorem 13.9]), we have oy(7)x;(14) =0 and
1(3)02(6)o1(13) =0 and oy (14)" : n17(S3)<3> ~ n14(S3)(3). Hence we have the
following commutative diagram with exact rows and columns from (2.1).

0 0 0
q 3 0 o (14)° '
0 — Z{uB)} —/ [Cuas:STly ——  ZL{m@))  —/= Zs{u(B)x3(6)}
* o (14)
0 — Zy 4 [Ci(14),SP(2)] 3y —— Z; AN 0
D D+ 0|p.
: i o1 (14)°
0 — L) T [CunSly —— Zymm) 2o
i (14)" ’ q" 3  (13)°
Zy{(3)} — Ze{n(3)x5(6)} ——  [Cu3), 8] —— Za{ua(3)a(6)} — 0
0 0

Since d(02(7)) = 0(17)02(6) = a1(3)a2(6), the third J is an isomorphism so that the
second 0 is surjective. Since Jq*a3(7) = ¢*0u3(7) =0, there exists a € [C,, (14),
Sp(2)]5) such that p.(a) =¢*03(7). The order of a is 9 or 27. In order to
induce a contradiction, assume the order of @ is 9. By the exactness of the first
column of the above diagram, there exists a generator b of mi3(Sp(2)) ;) = Zo
such that p.b=304(7). Then p.(¢*b—3a)=0. Hence ¢*b— 3aeKer(p,) =
Image(i,) *Z3 and 0=3(¢*h—3a) =3¢*h. This contradicts #g*h=9.
Therefore the order of a is 27. Hence [Cy(14),Sp(2)](3) = Z27{i.23(3)}. This
completes the proof of (4.15).

Proof of Lemma 4.2 (1).
sequence.

As seen above, we have the following exact

0= Zo{zs} 5 [Conr 871 = Za{'} @ Z3{esvnr,vVee} — 0
We have
4’ =4iyop’ (since S* is an H-space)

€ {4i3,u',2vi4} oq (by [9, Proposition 1.9])
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and
Indet{4s3, ', 2v14} = 413 0 m13(S?) + m15(S?) 0 2015 = Zys,
T2 {4u3, 1! 2via}y © {dis, 22 2016}, = {215,254, 2016}
= {2i5,13117,2v16} = {215 0 13, 117, 2016}, = {0}.
Hence

{415,311/, 2v16}, = Indet{4ss, 221’ 2vi6}, = 415 0 X2m15(S?) = Zs,
{43, 1/, 2v14} = Zys.

Therefore, if we take x/ as a 2-primary element, then 413 o i/ = 0, that is, 4u’ = 0.
Since i"*(e3v11) = e3viy and " (e'f3) = €'n;3 = v'eg, it suffices to prove that
#e3vy] = #¢&'7;3 =2. This is done as follows. Since 7] = vy and #é&;3 = 2,
#e3711 = 2. Since i : [Cy,,,S"] — m14(S'?) is an isomorphism, #i3 =2 so
that #&'7; = 2. O

Proof of Lemma 4.2 (2). We have the following exact sequence.
0 — Zs {5} ® Zofyps) L [Cas, ST L Zo{do'y — 0
We have
2-4¢" =21;040’ (since S’ is an H-space)
€ {2i7,46',2vi4} oq (by [9, Proposition 1.9])
and
Indet{2:7,40",2v14} = 2m13(S”) = Z4{2(7} @ Zgs.

We shall show {2i7,46",2vi4} = Z4{2(;} ® Z¢3 as follows. Since X : nlg(S7) —
m19(S%) is an isomorphism by [9] and Indet{2:5, Z(40"),2vs}, = 2719(S®), we have

2{217,40",2v14} = (—1){215,2(40"), 2v15},.
We have
{213,2(40"),2vi5}, > {215,2(40”"), 2115}, o vig  (by [9, Proposition 1.2])
and
{213,%(46"),2115}, 2 Z(4")onp;s =0 (by [9, Corollary 3.7)),
Indet{2i5,%(40"), 2115}, = 215 0 Zmy5(S7) 4 2716(S¥) = 0.

Hence  {213,%(40"),2115}; ={0} so that {215,%Z(4¢'),2vi5},20. Thus
{213,%(40"), 2v15}, = 2719(S®) and

{217,40",2v14} = 2m15(S7) = Z4{207} @ Zss.
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Therefore we can write
2-4¢' =2xq*¢; (0 <x<3).
In this case, we have
#(40' —xq°(7) =2,
[Coni 8"y = Zs{q" (7} @ Z3{q"Vivi6, 40" — xq" (7}
Hence, by rewriting 46’ — x¢*{; as 4¢’, we have
[Cons 37](2) = Zs{q" (1} ® Z3{q V116, 40"} U

Proof of Lemma 4.2 (3). Since T : m5(S°) — m13(S®) is injective by [9], we
have 3150 mz(Ss) = 3n12(S5) as desired. O

Proof of Lemma 4.2 (4). It follows from [9, Theorem 13.9] that n13(S3)(3) =
Z3{01(3)02(6)} and from [9, Lemma 13.5] that
1(3) € {21(3),2(315), 201 (5)}, = {21(3), Z(315), 21 (5)} < m10(S?).
Since Indet{o;(3),Z(315), 2o (5)} = 77(S3) 0 21 (7) + o1 (3) 0 719(S®) = 0, we have
02(3) = {1 (3), 316,01 (6) }; = {1 (3), 316,01 (6) }.
Then
22(3)o1(10) = {o1 (3), 316, 21(6) } © 01 (10)
=01(3) 0 2{315,01(5),1(8)} (by [9, Proposition 1.4])
€ a1(3) o (—{316,21(6),01(9)},) (by [9, Proposition 1.3])
= —(a1(3) o {316,201 (6),21(9)},) (since S* is an H-space).
We have Indet{31,01(6),1(9)}; = 316 0 Zn12(S°) =3 -27112(85) and so
o1(3) o Indet{316, 21 (6),21(9)}, = 0.
Thus o(3) o {313,21(6),21(9)}, consists of a single element. Hence
01(3) 0 {316,021 (6),01(9) }; = 1 (3) o (—=2{315, 21 (5), 01 (8)})
=01(3) o (—2u2(6)) (by [3, Proposition 4.4 (1)])
= o1 (3)02(6).
Therefore oy(3)o;(10) = —a(3)oa(6) as desired. O
Proof of Lemma 4.2 (5). Since a3(3) € {02(3),3110,01(10)}, by [9, Lemma
13.5], we have
(4.16)  o3(3)ou(14) € {2(3), 3110, 21 (10) }, 0 01 (14)
= 03(3) 0 {319,021 (9),1(12)} (by [9, Proposition 1.4]).
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Since {315, 1(5),%1(8)} = 202(5) + 3m12(S®) by [3, Proposition 4.4(1)], we have
202(9) € T*{315, 01 (5), 21 (8)} = {319, 21 (9), 21 (12)} .
We have
Indet{319, 21 (9), 21 (12)} = 319 0 716(S°) = 3m16(S?),

where the last equality follows from the fact Zm;s5(S®) = m16(S°). Hence
{319,1(9), 01 (12)} = 202(9) + 3716(S”).  Since 714(S?) is stable and is isomorphic
to Zs @ Zsy by [9], it follows that

{319, 21(9), 21 (12)} = 205(10) + 3717(S'?)
and so
o2(3) 0 2{319,01(9), a1 (12)} = 02(3) 0 202(10) = —atp(3)ez2(10).
Hence (4.16) yields
(4.17) 03(3)a1 (14) = —02(3)02(10).
By [9, Proposition 13.3], we have
117(S%) 3) = Z3{o1(3)24(6)}.

Hence o3(3)o(14) = x - o1(3)a5(6) for some integer x. Then (4.17) yields
(4.18) —on(4)oa(11) = a3(4)oy (15) = x - oy (4)05(7).
By the EHP-sequence, we see that o;(4)a(7) # 0. On the other hand, we have

0p(4) o o (11) € Z{ot1(3), 316,01 (6) } 0 0a(11) = —{ot1(4), 317,001 (7) } 0 02(11)

= 01(4) o {317,01(7), 22(10) }.

Since Indet{317,0(7),2(10)} = 317 OTE]g(S7), it follows that o;(4) o {317,a1(7),
02(10)} is a single element. Thus

(419) 062(4)062(11) = 061(4) [¢] {317, o1 (7), 062(10)}.

Since PR mg(S7)(3> = Zo{o5(7)} = (7])) 5) = Zo{0s3}, where 0
limy_, oo 7,44(S”™), we have

2%{317,01(7),02(10)} = Bi, 0, 0 ).

By [9, (3.9)], we have 31,a1,00) = oz, 01,31). It follows from [8, Proposition
4.17 ii)] that <oa,o0q,31) =205 + 3%f, so that

{317,021 (7),02(10)} = 204(7) + 3m15(S7).
Hence (4.18) and (4.19) yield
(=x) - a1 ($)a3(7) = oo (4)ea (11) = a1 (4) 0 2053(7) = — o1 (4)13(7).
Therefore x =1 (mod 3) and a3(3)a;(14) = o1(3)25(6) as desired. O

S«



546 KATSUMI OSHIMA AND HIDEAKI OSHIMA

REFERENCES

[1] W. BROWDER AND E. SPaNIER, H-spaces and duality, Pacific J. Math. 12 (1970), 411-414.

[2] H. KacHi, J. Mukal, T. Nozaki, Y. SuMiTA AND D. TaMAKI, Some cohomotopy groups of
suspended projective planes, Math. J. Okayama Univ. 43 (2001), 105-121.

[3] K. Maruyama AND H. OsmiMa, Homotopy groups of the spaces of self-maps of Lie
groups, J. Math. Soc. Japan 60 (2008), 767-792.

[4] M. Mimmura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6
(1967), 131-176.

[5] M. Mimura AND H. OsmHima, Self homotopy groups of Hopf spaces with at most three
cells, J. Math. Soc. Japan 51 (1999), 71-92.

[6] M. MiMURA AND H. Topa, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto
Univ. 3 (1964), 217-250.

[7] K. OcucH, Generators of 2-primary components of homotopy groups of spheres, unitary
groups and symplectic groups, J. Fac. Sci. Univ. Tokyo 11 (1964), 65-111.

[8] H. Topa, p-primary components of homotopy groups IV, Compositions and toric construc-
tions, Memoirs Univ. of Kyoto 32 (1958), 143-160.

[9] H. Topa, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49,
Princeton, 1962.

Katsumi Oshima

IBARAKI UNIVERSITY

Miro, IBARAKI 310-8512

JAPAN

E-mail: 08nd402l@mcs.ibaraki.ac.jp

Hideaki Oshima

IBARAKI UNIVERSITY

Mirto, IBARAKI 310-8512

JAPAN

E-mail: ooshima@mzx.ibaraki.ac.jp



