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WEIGHTED BEREZIN TRANSFORMATIONS WITH APPLICATION
TO TOEPLITZ OPERATORS OF SCHATTEN CLASS
ON PARABOLIC BERGMAN SPACES

MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

Abstract

In the setting of a-parabolic Bergman spaces, we consider weighted versions of
averaging functions and Berezin transformations. Related norm equivalence relations
are shown. They are very useful to study our Bergman spaces. As an application, we
characterize the Schatten classes of compact Toeplitz operators.

1. Introduction

We consider the o-parabolic operator
LW = 0,4 (=A,)”
A2

on the upper half space Rfrl, where A, = 6; + .-+ 05, denotes the Laplacian
on the x-space R" and 0 < o < 1. Here we denote by X = (x,7) and Y = (y,s)
points in RTI = R" x (0,00). The parabolic Bergman space (b§,<-,->) under
consideration is a Hilbert space defined by

b? = {ue L*(V); L-harmonic on R"™'},

where V' denotes the (n+ 1)-dimensional Lebesgue measure on Rfrl.

Since for X € Rfrl the point evaluation u — u(X) : b2 — R is bounded (see
[5]), the orthogonal projection from L?(V) onto b? is represented as an integral
operator by a kernel R,, which is called the a-parabolic Bergman kernel. For a
positive Radon measure u on Rﬁ“, we define the Toeplitz operator T, with
symbol u by

(1)) i= [ ROV )ulY) dY) (we b)),
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In the study of Toeplitz operators, the following averaging function #® and
Berezin transformation (* are very useful (see [1], [6], [7], [10]):

A (X) = u(Q (X)) V(0 (X)),
A = (v 02 dﬂ(Y)/ | v avr),

where Q*)(X) is an a-parabolic Carleson box, defined by
1.1 XY = {(P1se ey Y s) t <5 <2t |x — il <27V j=1,...,n}.
y y = Vi J

Among our previous studies, we take up here the following compactness result
([7, Theorem 1]): Let x>0 be a Radon measure on Rﬁ“ satisfying

(1.2) J(l + 1+ %) du(x, 1) < oo

for some 6 € R. Then the following statements are equivalent:
(i) T, is compact on b2,
(i) limy_., A4%(Y) =0,
(111) limyﬂ_d /j(“)( Y) = 0,
where .o is the point of infinity of the one point compactification of RTI.
From now on we denote by V* the weighted measure

(1.3) dV*(X) = WD qy(x).

Note that V* is an invariant measure with respect to a-parabolic similarities (see
(3.2) below). This invariant measure plays an imprtant role in our argument (see
Remark 1 below).

In this paper, we define the weighted versions of averaging functions and
Berezin transformations and give some norm estimates for them. As the result,
the following new relation between 4® and g is established.

THEOREM 1. Let 1 <o < o. Then for a Radon measure 1t >0 on R:’f],
A% e L°(V*) if and only if i*) e L°(V*).

It will be also shown that if 4* e L?(V*) (so that fi® e L°(V*)) then the
Toeplitz operator T, is compact. This fact brings us a classification of compact
Toeplitz operators. For 1 <o < oo, we denote by /7 the set of all g-summable
real sequences.

DerFmiTION 1. A compact operator T on a Hilbert space & is said to be of
Schatten o-class if the sequence of all singular values (/1,)}7;0 of T belongs to [
where the singular values 4; of T mean the eigenvalues of |T|:=+T*T. Here
(/lj);io is arranged in decreasing order and repeated according to multiplicity (if
there are only a finite number N of non-zero singular values, we consider 4; =0
for j > N). Denote by &?(#) the totality of compact operators on # of
Schatten o-class.
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There is the following relation between singular values and eigenvalues. Let
(,uj)j‘ﬁo be the sequence of eigenvalues of a compact operator 7', repeated
according to multiplicity, and in decreasing order of absolute values. Then
for every m > 0,

m

m
P I
=0 =0

holds (see [3, p. 1093]). Note also that if 7 is a positive definite self-adjoint
operator, then T = |T|, so that 4; =y, for all j.
We can characterize Toeplitz operators of Schatten class.

THEOREM 2. Let 1 <o < oo. For a Radon measure u>0 on R”Jrl satisfy-
ing (1.2) for some 0 € R, the Toeplitz operator T, on b is in the Schatten o-class

S°(b2) if and only if i) e L7(V*).

We mention here that in the classical setting (for spaces of holomorphic or
harmonic functions), there are some forerunning deep works (e.g. [4], [2], [1])-

This paper Wi]l be organized as follows: In section 2, we review the
definition of L(*-harmonic functions and some properties of the a-parabolic
Bergman kernel. In section 3, we recall the a-parabolic similarity, which enables
us to introduce mean functions. Norm estimates of mean operators on Orlicz
spaces are proved in section 4. In section 5, we define weighted averaging
functions and weighted Berezin transformations. Since both are examples of
mean functions, some norm relations are deduced from estimates proved in the
previous section. We discuss them and give a proof of Theorem 1 in section 6.
In section 7, we apply our norm relations to characterization of Schatten class of
compact Toeplitz operator. Theorem 2 is proved in this section. We note that
our relations are also useful to study Carleson inequalities on parabolic Bergman
spaces (see [9]). The last section is an appendix, where we discuss a property of
the space of Schatten class operators of Orlicz type for the sake of completeness.

Throughout this paper, C will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

Throughout this paper, we denote by C*(R™""), resp. Co(R"™"), the set of
all infinitely differentiable functions on R”+1 which have compact support, resp.
the set of all continuous functions which tends to zero at the point of infinity .o7.

A continuous funcion u on R"'' is said to be L*-harmonic, if L®u =0 in
the sense of distribution, i.c.,

Ju(X) L@p(X) dV(X) =0



504 MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

for every p e C¥(R"™), where

0 . .
L@M&0:=—TM%0—awhmJ (0(x+ 3, ) — p(x, )|y dy
ot 310 ly|>6

and
oy = 47T (0 + 22)/2) /T (=) > 0.
The fundamental solution W® of L(® is given by

W (x,1) = Qn)iﬂjRnexp(—llélz“ﬂL\/—_IX-f) dé >0

0 t<0.
Then it has the following homogeneity:
(2.1) Pk W) (512, 51) = s~ (rHIPD/224K) (B oKy () (x 1),
where = (f,,...,0,) € Nj be a multi-index and k>0 be an integer. Here

Ny =NU{0} denotes the set of all nonnegative integers. We use the following
estimate frequently: There exists a constant C > 0 such that

(2.2) 08X W) (x,1)] < C(t + x| )~ (8D 224

for all (x, t)eR_’frl (see [5]). The a-parabolic Bergman kernel R,(X,Y) =
R,(x,t; y,s) (i.e., the reproducing kernel of the Hilbert space bi) is given by

Ry(x,1;p,5) == =20, W (x — y, 1 +5).
We also use a kernel RS™ for (B,m) e N x Ny:
REM(X,Y) = cp s PIZm00 0 R,(X, Y),

where ¢z, = (—1)#I(=2)"/m!.  When =0, R” := R®™ as well as R, has the
following reproducing property: For 1 < p < co and for every u € b2, u = R'u,

(2.3) u(X) = RMu(X) == JR;}’(X, Y)u(Y) dv(Y)

holds. Remark that if # # 0, then R”™ may not necessarily have a reproducing

property.
The following elementary fact is very useful in our later argument: Let

ALdeR. If-1<i<d— (2’10( + 1), then there exists a constant C > 0 such that

(24) Jz*(er t+ Jx — 90 dV(x, 1) = G0+ /2

for every (y,s) ERTI. By (2.2) there exists a constant C > 0 such that
(25) R (x 15y, 9)] < GV (0 g5 o — ) 72D,
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1
Hence (2.1) and (2.4) show that if @—Fm (241 (=-1 , then
20 20 )4

(2.6) IRy D)llogyy = G DY

for every Y = (y,s) eRTl, where C > 0 is independent of Y.

3. o-parabolic similarities and mean functions

In order to define a mean function, we recall o-parabolic similarities ([8]).
For ¢> 0, the mapping 7\ : (y,s) — (£'/2*y,1s5) is called an o-parabolic dila-
tion. A transformation on R"! is said to be an a-parabolic similarity if it is a
composition of a-parabolic dilations and translations. Evidently, the equation
L™y =0 is invariant under o-parabolic similarities. Let X, = (0,1) be taken
as a reference point in RT’I. Then for every X = (x,1) eRT’l, there exists a
unique o-parabolic similarity @y which maps the reference point Xy to X and is
bijective on Rj’r“. In fact, @y is given by

Dy (3,8) = Teot (y,5) = (1% + x, 19),

where T : (p,s)+ (y+x,s) for xe R". We remark that {®y;X e R"™'} =
{;;t >0} x {T\;x e R"} is a semi-direct product as a transformation group, so
that RTI has a group structure by ®y®y = Oy.y, where

(3.1) XY = (V*y 4 x,15) = Oy (Y).

Let f be a Borel measurable function on RTI. It is easily seen that for
every Y e R™™, we have

(3.2) J F(X) 25D qy(x) = J FY - X)) qy(x).
This means that dV*(X) = ¢ "/?**1) gV (X) is a left-invariant measure. Note

that +! dV(X) is a right-invariant measure (see [8]).
For a Radon measure p on Rff”], we put

(3.3) AIX) = [ 1007 dp().

If p is absolutely continuous with respect to V, i.e., dp(X) = p(X) dV(X), then,
by change of variables,

RIX) = O [ vy dv(y)
holds. Thus for a measure u, we may define

(34) ) i= 1 [t ) du(y).
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Note that if du(X) = f(X) dV(X), then we have
(3-5) H(f dV)(X) = 5, f(X).

When p is an absolutely continuous probability measure, we call .#,u a mean
function of u with respect to p.

Using the group structure (3.1), we can consider convolution of measures.
Let p; and p, be Radon measures on RTI. Then the convolution p; x p, is a
Radon measure defined by

(3.6) [ ato <= [[ 100 ¥) oy 00 dpa(r),
We make some remarks. For a Borel measurable function f, we have

(37) 'ﬂ;’l‘ﬂl)zf = <¢[1|*p2f

whenever both sides are defined. If p, is absolutely continuous with respect to
the Lebesgue measure V, then p, * p, is also absolutely continuous. In this case,
we obtain

(38) V%] ‘fpz:u = ‘ﬂl’l*ﬂzlu'

Moreover if both p; and p, are absolutely continuous with respect to ¥, then the
density of p; % p, is given by

(3.9) P naX) = [ (Va1 X0 0P v (),

By change of variables, we also obtain

(3.10) pema(X) = [ Y (D)t dV ()

4. Boundedness of mean operators on Orlicz spaces

Let W be the set of all convex and strictly increasing functions v : [0, 00) —
[0,00) such that ¥(0) =0 and lim,_, ¥(s) = co. By the convexity of iy, we
have

4.1 SoW(t) < Y(sot)

for any so > 1 and t > 0. From now on, we use the following notation. For
n € R, we denote by V), the weighted measure

(4.2) AV, (X) =" dV(X).

Hence V* = V_4 2411
The Orlicz space with respect to iy € ¥ and V), is a Banach space defined by

LY(V,) := {f; Borel measurable on R’ﬁl, /1 Lo,y < o0},
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When (f) = t° with ¢ > 1, the corresponding space is nothing but the usual
L°(V,) and

where

/1

1/o
ey = Wiy = (JLrenr anon)

PrOPOSITION 1. Let p be a probability measure on Rff' and n € R.  Then we
have the following inequality: For every Borel measurable function f >0 on
Rn+l

+

[wensaoyav,oo < ([t anm) [ucrooy anon.
In particular, if p satisfies
(4.3) s ap(r) < e
then the mean operator 4, : LY(V,) — L¥(V,) is bounded.

Proof. By the Jensen inequality, we have

VALN) < [WU0X 1) dp(y)
so that
|[wtrce v dpcry avio = [ [s s @) av2) dpty)
gives us the desired inequality. Now suppose (4.3) and f e L¥(V,). Then

putting 5o := max{1, [s77~! dp(Y)} and taking 7 > 0 such that [y(|f]/7) dV, <
1, we have

88) ) o (220 s
< [o(V19) a1,

which implies that .7,f € LY(V,) and |4/l 1v(v,) < sollfll o, O

In the case of y(¢) =1¢° with ¢ > 1, the condition that p is probability
measure is not necessary.
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PrOPOSITION 2. Let 1 <o < . For neR and a Radon measure p on
R, we have

19 sy = ([5709 A (0) ) ey
for every feL°(V,).

Proof. Use the Minkowski inequality instead of the Jensen inequalty in the
above proof. O

5. Weighted averaging functions and weighted Berezin transformations

In this section, we consider weighted versions of averaging functions and
Berezin transformations. As before, we use the notation dV;(X) = t* dV(X).
Let u be a positive Radon measure on R:’fl. For a Borel set S in Rfl of finite
and positive V;-volume, we define a weighted averaging function for u by

(5.1) Ag (X)) = quw) o du(Y)

If S = Q¥(X,) with Xp = (0,1) and 2 = 0, then A ou is nothing but the original
averaging function 4.
Also let (f,m) e Nj x Ny be a multi-index, 0 < p < 0 and AeR. If
n 1]

2 “l<i<|=—+1 -1 —
(5.2) < <<2a+ )(p )+(2a+m>p,
then RS™(-, X) e LP(V;) and by (2.6)

J|Rf”"(Y, X)|Pdv,(Y) = Cit™,

where C; is a constant and

K= (p—1)<2’;+1)—/1.

In this case, we define a weighted Berezin transformation of u by

JIRE™ (Y, X)|7s dp(Y) _ 1" J A
53) By (X)) =21~ = — | [RE™(Y, X)|Ps* du(Y),
(5:3) Bpmp.at(X) (IR (v X" avy(v) G R, ™(Y, X)) (Y)
If (B,m,p,2)=1(0,0,2,0), then By ou is the original Berezin transformation
7

I

These functions in (5.1) and (5.3) are mean functions discussed in section
3. In fact, let
*1s(x, 1)

pS,}.(X) = VA(S) )
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where 1g is the characteristic function of S. Then since
(5.4) Vi(@x(S)) = 214 y,(8),
we see easily Ag u(X) =4, u(X). Also, by the homogeneity (2.1), we have
(5.5) RPm(Y, X) = WD REm(x =1y Xp).

Hence putting pg ,,, , ,(X) = (t*/C)|RE™(X, Xo)|?, we obtain

K

[ m
By piti(X) = —J RE™(Y, X)|7s" du(¥)

C
th
e

o [ (S ) REP(X - Y, Xo)|? du(Y)

& [iemoRgm ety s auy)

= /2 jpﬁ,m,p,xx-‘ Y) du(Y)

= L%ﬁ. m,p, /ﬂ(X) :

For a Borel measurable function f on R_’l“, we also set

As 1 f(X) =5, (fdV)(X) and Bgyp . f(X) =9, (fdV)(X).
Then, as in (3.5), we see

1

Asif (X) = 5, J(X) = 55 5

|, rmavm,
Dy (S)
and

JIRE™(Y, X)|Pf(Y) dV;(Y)
JIRE™ (Y, X)|P dvy(Y)

B p,if (X) =9, [(X)=

6. Norm estimates on Orlicz spaces

In this section we give some norm estimates of the weighted averaging
function and the weighted Berezin transformation on Orlicz spaces. Let { be a
fixed convex function which belongs to ¥. The following lemmas follow from
Proposition 1.

LEMMA 1. Let A1,22,n € R and let U and V be two relatively compact non-
empty open sets in R"“. Then for a posmve Radon measure p on R”+1
AU)]:uEL ( ) lf‘al’ld Only lf‘AV/LZILLEL (V)



510 MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

Proof. Take a relatively compact open set K such that Uc K-V :=
{Z-Y;ZeK,YeV}. Then pg, *py,, >0 on K-V so that there exists a
constant C > 0 such that Cpg ;. * py ;, = py ;. Hence it follows from (3.9) that

(6.1)  AvuX) = Jpu (X)) < CIy o, WX) = CIp . (Ay 11)(X).
By Proposition 1, ., s bounded on LY(V,), and hence Ay jueLV(V,)
implies Ay j,p e L‘”(V,,). The converse is similarly proved. O

We assume (5.2). Then
p

Z —p o n
P (6,0 = g (L o ) P,

where C; is a constant such that [pg,, , (X)dV(X) =1, defines the mean
operator
B/)’Jnspv/1 = Lﬁﬁﬁ.m.p.l'

Lemma 2. Let (f,m)eN{x Ny, 0<p<oo and A,neR. If (52) and

n n Bl :

2 —+1+A—pl—+1+—= 1 1
(6.2) g T LT p(2a+ + +m)<77+ <A+
hold, then there exists a constant C > 0 such that
(6.3) 1B, mp,2f v,

for every feLV(V,).
Proof. By (2.4) and (6.2), we have
Jlinilp[)’,m,p’/i(X) dV(X>
— 1 Jl n— 1 ( +t+|x| ) p(n/2o4+1+|p|/20+m) dV( ) o0,
G
so that (6.3) follows from Proposition 1. O

Lemma 3. Let (f,m)e Ny x Ny, 0< p< oo and A,t,neR.  We assume
(5.2). Then for a compact set K of positive Lebesgue measure and a positive
Radon measure u on RTI, we have

Ak, <ttll Loy, < ClIBpmp,attll Lo,
with some constant C > 0 independent of .
Proof. We may assume that |Bgup ey, < oo. Take a relatively
compact open set Uy # @ and 6 > 0 such that
|REM(. Xp)| =6 on Up.
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By (5.5), if Y™'- X € Uy, then [RE™M(X,Y)| = s 2+ so that
lK
B tlX) = ¢ [IREP(Y X0 du )

> L tlct—p(n/2a+l)6p J S/l d,u( Y)
G Dy (Vo)

517
= a l_(”/ZOH-l)_;- VA(CDX(UO))AUO,;JU( Y)

Hence by (5.4), we have
5P
B p, ot > o Vi(Us) Ay, it = CAy, p.

We also take a relatively compact open set U such that K - Uy '« U. Then as
in (6.1) we have

Iv iBpmp.att = CIy ; Ay, i = CAg 0 = CAg 1.

Hence Proposition 1 again shows

HAK,rﬂHLw(V,,) < Cl|lIv,2Bp,mp. 4| Ly, = C||Bﬁ.,m,p,/lﬂ||m(r/”)- U

We also obtain the opposite inequality.

LemmA 4. Let (f,m) e Nj x No, 0 < p < o and L,t,n € R, and let U # (
be a relatively compact open set in R"™'. If (5.2) and (6.2) hold, then

HBﬁ‘meﬂ”L‘/‘(V,,) < CllAu,ztll vy,

with some constant C > 0 independent of p.

Proof.  We first remark that by (3.8) Bg ., Av, it = Iy ripu M and also
by (3.10) |

Ppmps* pU‘T(X’ 1) = Jﬁﬂ,m,11,i(X' Yﬁl)pU.r(Y)Sil dv(y)
1 f A
= EJU <S> (1 + sy + |)C _ tl/szf1/2ay|20()*p(11/20¢+1+\/}\/20(+m>

pU.,‘r(yvs)
X—

s V().

This convolution is bounded below by Cpy ,, , ;(x,t) with some constant C > 0,
because '

(6.4) L+ sl |22 — V2212 < (1 + 1+ [x]™)
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for (x, t) R"™" and (y,s) e supp(py ;) with some constant C. In fact, since
s/ Jis bounded on supp(pU 5), if V/2|x| <1, then 1+s’1t+l|l’1/2“
s7/2p* < 1 4 Ct. Otherwise,

|t71/2ax_sfl/29<y| < t71/2a|x| +S71/2a|y| < thl/2a|x| <C

implies (6.4) too. Hence by Lemma 2, we have

C1B,mp,ittll Lo vy < BpmpiAu cttll o,y < Clldu, ]

which shows the lemma. O

LV (V)

We make a remark for the case of Y(f) =1° (1 <o < o). In this case, the
assumption (5.2) is not necessary and the assumption (6.2) can be replaced by

n Ib’l n+1
(6.5) 51t A=p (2 1o+ ) <A+l

In fact, for a positive Radon measure y > 0, we put

By p ipt(X) = t* J |RE™M(Y, X)|Ps* du(Y),

where x = (p — 1)< + 1) — 4, and we consider

ﬁ/j’m’pM:(x, [) (1 S+ |x| ) 11/2¢+1+Vf|/21+m)

Then Bg,, ,u(X) and %5 u(X) can be defined without (5.2). Moreover

p/f m,p, A

By mpn(X) < CSy  u(X) by (2.5) and (5.5). If (6.5) holds, then
J.S_('7+l>/5ﬁ[f,m,p7/l( Y) dY < oo, and as in Proposition 2, we also see

([ p07 ava)) " = [([ 00727 12000) sy v

_ (Js*”“)/”ﬁﬁ,mp,z( Y) dY) 10 e,

This argument also holds for ¢ = co. From these observations, we have the
following proposition.

PrOPOSITION 3. Let (ff,m) € Ny x No, 0 < p < oo and A,t€ R.  Then, for a
positive Radon measure u on R”‘H, we have the following assertions.

(1) Let 1<o<o0 and neR Then for a compact set K of positive
Lebesgue measure on RTI, we have

”AK,T,“HU(V,,) =< CHB/f,m.,pJﬂHLJ(VW)

with some constant C > 0 independent of L.
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1Bgompitlloqry < CllAv. el oy,

with some constant C > 0 independent of p.

The following theorem is one of our main results in this paper. Theorem 1
is obtained as a corollary.
THEOREM 3. Let —-1<1<0<p< oo, and take an integer m =

2 i
(;— 1) (2}1_oc+ 1). Then there exists a constant C >0 such that for a Radon

measure >0 on R,

(6.6) C71||BO,I41-,117/1:UHL'/'(V‘) < Hﬂ(“)HLW(V*) < C||BO,m.,pJ.N||M(V*)-
In particular, i € LY(V*) if and only if g™ e LY(V*).

Proof. By assumption, (5.2) and (6.2) hold for =0 and 5 = —(;—a+ 1).
O

Hence Lemmas 1, 2, 3, and 4 show our assertion.

7. Schatten class of compact Toeplitz operators

We extend the definition of Schatten class operators to the Orlicz type. In
this section, let € ¥ be fixed again.

DEerFmITION 2. A compact operator 7" on a Hilbert space # is said to be
of Schatten -class if the sequence of all singular values (/1/);20 of T belongs to
the sequence space /¥ of Orlicz type, and then we write 7 € &Y (#). Here
(4)/2 € 1Y means

jzwo:lp();j) <

with some constant 7 > 0. We put

. - A
1Tlo oy = mf{r >0, Zw(;f) < 1}‘
=0

In Appendix we will verify that &¥(#) is a vector space and is complete
with respect to || - [[ v ().

As we mentioned in section 1, we know a necessary and sufficient condition
that the Toeplitz operator 7T, is compact. From this fact we obtain another
sufficient condition.
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PROPOSITION 4. Let >0 be a Radon measure on R"™. If i) e LV (V*),
then the Toeplitz operator T, is compact.

For the proof we prepare the following lemma.
Lemma 5. Let e CX(R™™) and fe LV(V*). Then 9,f € Co(R"™).

Proof. We may assume that go >0, [p(X)dV(X)=1 and f>0. Let
7> 0 be a constant such that [y(f(X)/7) dV*(X) < co. For any ¢ > 0, choose
a compact set K in R”+ such that

| oo aron < We)
R™NK

ol
where we denote ¢*(X) := t"/**lp(X) and |¢*||,, = SUpy ¢ get 0" (X)]. Put
Ko := K - (supp(p)) ' = {X e R}""; (Ox(supp())) N K # 0}.

Then Kj is compact. Since
RIX) = [0 10X ¥) ar(v) = [ (f X ) v (1),

for each X GRTI\KO, the Jensen inequality gives us

(P2 = [ (e maro

<l | w(@) v (Y)
D (supp(p)) T

<l f,. o (5)

<Y(e),
because FV* is invariant under o-parabolic similarities. Hence we have
J,f(X) < er, which shows the lemma. O

Proof of Proposition 4. Take pe CF (R"“) such that ¢ > 0, [(X dV( )
=1 and ¢(Xp) > 0. Then by the assumptlon and Lemma 5, we have 7,4 e
Co (R”“). Since fi¥ = Z,u and ¢ *p > Cp with some constant C > 0, where
P = Poe(xy),0» We have

Iofl® = Iy I = Ipppt = CIpu = CA

This implies limy_, 4*(X) =0, and hence the compactness of 7, follows.
]
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We remark a relation between o-parabolic Bergman kernel and the left-
invariant measure.

Remark 1. ||RX ||2LZ(V) dV(X) is a left-invariant measure, where we put
(7.1) RY(Y) = R, (X, Y).

In fact we can write Ry(X,Y) =3 ")¢;(X)e;(Y) in p01ntw1se and RY =
ei(X)e: 1n b2 for any complete orthonormal system (e; of b2 Then
= Zo o ’j y p Y i) Zo

||RXHL2 = R,(X,X). By the homogeneity, R,(X,X) = ("/ZHUR (X0, Xo), so
that
(12)  IRY sy dV(X) = Ry(X, X) dV(X) = Ry(Xo, Xo) dV*(X).

The following theorem is another main result of this paper. Theorem 2 is
obtained as a corollary.

THEOREM 4. Let > 0 be a Radon measure on R”+1 satisfying (1.2) for some
deR. Then T, e V(b?) if and only if i eL‘/’(V ). Moreover, we have a
norm znequallty

(7.3) CUA N oy < W Tll vy < ClLA™)

with some constant C > 1 independent of p.

LY (V)

Proof. We first show that 4 e LY(V*) implies T, e ¥V (b?). Let m>
%—Fl be an integer and —1 < A < 0. Since By 1,4 € LY(V*) by Theorem 3,
we can take 7 > 0 with

Jw <—B°*’"v 1*’1“()()) dV*(X) < 1.

T

Clearly T, is a positive definite self-adjoint operator. By Proposition 4, it is
compact. Hence we can take a comlete orthonormal system (¢;) /2, of b2 which
consists of eigenvectors of 7}, such that the corresponding elgenvalues are given
by 4 = 2j(Ty) = {Tej,e;) = f|ej )|? du(X). Then by the Schwarz inequality,

& (X) = (Js’v/zs-*/zexY)R:l(X, ¥) dv( Y>)2

< (js’-R;f(X, Y| av( Y)) ([satmPirzcr yar Y))

< cm,mjs*|ej<Y>|2|R;"<X, Y)| dv(Y),
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where G, ; = [s*|R"(Xo, Y)| dV(Y) < oo by (2.4) and (2.5). Therefor by the
Fubini theorem and the Jensen inequality we have

iy < o | (7 [IRECE D) ) )l (0 v ()

= CJBO,171,l,ﬂ.ﬂ(Y)lej(Y)|2 dV( Y)

b((25) = [w (Pt ) avn),

where sy := max{l, R,(Xo, Xo)}. Therefore by (7.2)
- BO m, 1 ,,Ll( Y) 2
> (i) = ij(—) (V) av(¥)

_ J <BO m,1, ),u >
< J (BO m, 1, ﬂ:u >S dV
< J (BO m, 1, ﬂ:u >

which implies that T, e ¥ (b?) and || T, ,v ) < S0ClBom, 1,240l Lv(y+)-  Hence
the latter inequality in (7.3) follows from Theorem 3.

Next we assume T, € ¥ (b2). As in the proof of the if part, we can take a
complete orthonormal system (ej)jio of eigenvectors of 7,. Now, take 7 >0
with 377 W(4;/1) <1, where /; = (Tyej,¢;>. Then by the spectral mapping

theorem,
(B $4()

and

(Y,Y)dV(Y)

v (Y

for ueb?, so that

<€j(X)€j»'//<%> Rf> = <€j(X)€jkailﬁ<i—:> ek(X)€k> = lﬁ(%) le;(X)> =0

and Y(4;/t) = [<e[(X)ej,y(T,/t)RY> dV(X). Hence we have the following
trace formula
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- Jg<e,<x)e/, w(%) Rf> v (X) = J<R§, w(%) R§> AV (X)

=0
= [ () IRy v )
where 1) := R /|[R)| ;2. Since
o - LR R 1
TR YTV IR,

the Jensen inequality gives us

() (D) S o)
< Yo u(H) o = (T,
Jj=0
Hence putting s; := min{l, R,(Xp, Xo)}, by (7.2) we have

() fX )HRXHLZ V(x)
ry

() IR g v

—jfojw(if)gl

IA

IA
> /\ <=

C 1
which implies that 2 e LY(V*) and [|&™ 1y < — | Tull v (2. Theorem 3
again shows the former inequality in (7.3). 51 ’ O

8. Appendix

Let €W, that is, ¥ : [0,00) — [0,00) be a convex and strictly increasing
function satisfying that ¥(0) = 0 and lim,_, ¥(s) = co. For a Hilbert space #,
we denote by £ () the set of all bounded linear operators on # and & l”(Jf)
the set of all compact operators on # of Schatten s-class, respectively.



518 MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

It is known in general theory that & ‘/’(Jf) is a linear space, and is complete
(cf. [3, pp. 1088—-1095], see also [11]), however, we give precise statements in our
case for the sake of completeness.

For a compact operator T on 2, we denote by A;(T) the j-th (j=>0)
singular value of 7. The following min-max principle plays an important role.

[ Tul| _ [ Tul]

Hc?/’subspace ue H-\{0} ||u|| HC/SUbSP?’lCc ue H\{0} ||u||
dim H dim H > j+1

(81) A1) =

(cf. [3, Lemma 2 in §9 of XI]). In particular,
(8.2) A(T) = ||T]|.
It also follows from (8.1) that for two compact operators 7; and 7> on J#,
(83) /1j+k(T1 + Tz) < ;Lj(T]) + /lk(Tz)
for every j >0 and k> 0. Using this inequality and (8.2), we obtain
(8.4) 14(T1) = 4(T2)| < [|[Th — T2|.
Moreover, for any A,Be ¥(H), we see
(8.5) 4(ATB) < [|A] [|BI|4(T).
Now we can state the following fundamental results.

ProPOSITION 5. (i) V(A#) is a vector space.

(i) (|71 + Tallgv iy < 4T gw ) + 1 T2l v o))

(iii) LY (H) is complete in the sense that if (Tk)k | is a sequence in SV (H)
such that limg /oo || T — T/ || vy = 0, then there exists TesV(H)
such that llmkﬁwHTk — T||(/¢,(_%p)

Proof. Let T),The ¥V(#) and ceR be arbitrary. Since 4(cTy) =

(Th), ¢Tye PV (AH). To see T+ Tre SV (#), we will show (ii). For
k: 1,2, take any 7 > 0 with [ Tk[[4v ) < /4. Then

i <4) TA><1

Jj=0

By (8.3), we have Ay (T1 + T2) < A;(T1) + 4;(T2). Since y € ¥ satisfies 4y(s + 1)
< (4s) + y(41), we have

2 Oa(Ti+ 1)\ a1 ([ (44(T)) 47,(T») 1
]ZW< ]TI+T2 )S ZZ(W<TIJ+72>+IP(T1]+T2>) =7

J=0
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Similarly, Asj1(T1 + T2) < A(T1) + Aj41(T>) gives us

i Joji1(T1 + T) - 1

T+ 1 =2
Thus we obtain ||71 + 1o/ gv(4) < 71 + 2. Arbitrariness of 7, and 7, implies
(i). Unfortunately we do not know whether the constant 4 in (ii) can be

removed or not.

Finally, we assume limg/—.o|[T% — T/|[4v () = 0. Then (Tk)py s a
Cauchy sequence in Z(#), so that there ex1sts a compact operator 7' such

that limy_,, Ty = T in £ (#). Then by (8.4), limy_, 4;(Ty) = A;/(T) for j > 0.
For any ¢ > 0, there exists ky such that

(e 1)

if k,/ >ko. Hence, by (8.4) again and the Fatou theorem, we have

)t o) (5.0

Jj=

which implies 7, — T € &V (#), ie., T € SV (H), and ||T} — T||gv () < & when-
ever k > ko. This shows (iii). O
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