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WEIGHTED BEREZIN TRANSFORMATIONS WITH APPLICATION

TO TOEPLITZ OPERATORS OF SCHATTEN CLASS

ON PARABOLIC BERGMAN SPACES

Masaharu Nishio, Noriaki Suzuki and Masahiro Yamada

Abstract

In the setting of a-parabolic Bergman spaces, we consider weighted versions of

averaging functions and Berezin transformations. Related norm equivalence relations

are shown. They are very useful to study our Bergman spaces. As an application, we

characterize the Schatten classes of compact Toeplitz operators.

1. Introduction

We consider the a-parabolic operator

LðaÞ :¼ qt þ ð�DxÞa

on the upper half space Rnþ1
þ , where Dx :¼ q2x1 þ � � � þ q2xn denotes the Laplacian

on the x-space Rn and 0 < aa 1. Here we denote by X ¼ ðx; tÞ and Y ¼ ðy; sÞ
points in Rnþ1

þ ¼ Rn � ð0;yÞ. The parabolic Bergman space ðb2a ; h�; �iÞ under
consideration is a Hilbert space defined by

b2a :¼ fu A L2ðVÞ;LðaÞ-harmonic on Rnþ1
þ g;

where V denotes the ðnþ 1Þ-dimensional Lebesgue measure on Rnþ1
þ .

Since for X A Rnþ1
þ the point evaluation u 7! uðX Þ : b2a ! R is bounded (see

[5]), the orthogonal projection from L2ðVÞ onto b2a is represented as an integral
operator by a kernel Ra, which is called the a-parabolic Bergman kernel. For a
positive Radon measure m on Rnþ1

þ , we define the Toeplitz operator Tm with
symbol m by

ðTmuÞðXÞ :¼
ð
RaðX ;YÞuðYÞ dmðYÞ ðu A b2aÞ:
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In the study of Toeplitz operators, the following averaging function m̂mðaÞ and
Berezin transformation ~mmðaÞ are very useful (see [1], [6], [7], [10]):

m̂mðaÞðXÞ :¼ mðQðaÞðX ÞÞ=VðQðaÞðXÞÞ;

~mmðaÞðXÞ :¼
ð
RaðY ;XÞ2 dmðYÞ

�ð
RaðY ;X Þ2 dVðYÞ;

where QðaÞðX Þ is an a-parabolic Carleson box, defined by

QðaÞðXÞ :¼ fðy1; . . . ; yn; sÞ; ta sa 2t; jxj � yjja 2�1t1=2a; j ¼ 1; . . . ; ng:ð1:1Þ
Among our previous studies, we take up here the following compactness result
([7, Theorem 1]): Let mb 0 be a Radon measure on Rnþ1

þ satisfyingð
ð1þ tþ jxj2aÞ�d

dmðx; tÞ < yð1:2Þ

for some d A R. Then the following statements are equivalent:
(i) Tm is compact on b2a ,
(ii) limY!A m̂mðaÞðY Þ ¼ 0,
(iii) limY!A ~mmðaÞðY Þ ¼ 0,

where A is the point of infinity of the one point compactification of Rnþ1
þ .

From now on we denote by V � the weighted measure

dV �ðX Þ ¼ t�ðn=2aþ1Þ dVðXÞ:ð1:3Þ
Note that V � is an invariant measure with respect to a-parabolic similarities (see
(3.2) below). This invariant measure plays an imprtant role in our argument (see
Remark 1 below).

In this paper, we define the weighted versions of averaging functions and
Berezin transformations and give some norm estimates for them. As the result,
the following new relation between m̂mðaÞ and ~mmðaÞ is established.

Theorem 1. Let 1a s < y. Then for a Radon measure mb 0 on Rnþ1
þ ,

m̂mðaÞ A LsðV �Þ if and only if ~mmðaÞ A LsðV �Þ.

It will be also shown that if m̂mðaÞ A LsðV �Þ (so that ~mmðaÞ A LsðV �Þ) then the
Toeplitz operator Tm is compact. This fact brings us a classification of compact
Toeplitz operators. For 1e s < y, we denote by l s the set of all s-summable
real sequences.

Definition 1. A compact operator T on a Hilbert space H is said to be of
Schatten s-class if the sequence of all singular values ðljÞyj¼0 of T belongs to l s

where the singular values lj of T mean the eigenvalues of jT j :¼
ffiffiffiffiffiffiffiffiffiffi
T �T

p
. Here

ðljÞyj¼0 is arranged in decreasing order and repeated according to multiplicity (if
there are only a finite number N of non-zero singular values, we consider lj ¼ 0
for j > N). Denote by SsðHÞ the totality of compact operators on H of
Schatten s-class.

502 masaharu nishio, noriaki suzuki and masahiro yamada



There is the following relation between singular values and eigenvalues. Let
ðmjÞ

y
j¼0 be the sequence of eigenvalues of a compact operator T , repeated

according to multiplicity, and in decreasing order of absolute values. Then
for every mb 0,

Xm
j¼0

jmj j
s
a
Xm
j¼0

ls
j

holds (see [3, p. 1093]). Note also that if T is a positive definite self-adjoint
operator, then T ¼ jT j, so that lj ¼ mj for all j.

We can characterize Toeplitz operators of Schatten class.

Theorem 2. Let 1a s < y. For a Radon measure mb 0 on Rnþ1
þ satisfy-

ing (1.2) for some d A R, the Toeplitz operator Tm on b2a is in the Schatten s-class
Ssðb2aÞ if and only if m̂mðaÞ A LsðV �Þ.

We mention here that in the classical setting (for spaces of holomorphic or
harmonic functions), there are some forerunning deep works (e.g. [4], [2], [1]).

This paper will be organized as follows: In section 2, we review the
definition of LðaÞ-harmonic functions and some properties of the a-parabolic
Bergman kernel. In section 3, we recall the a-parabolic similarity, which enables
us to introduce mean functions. Norm estimates of mean operators on Orlicz
spaces are proved in section 4. In section 5, we define weighted averaging
functions and weighted Berezin transformations. Since both are examples of
mean functions, some norm relations are deduced from estimates proved in the
previous section. We discuss them and give a proof of Theorem 1 in section 6.
In section 7, we apply our norm relations to characterization of Schatten class of
compact Toeplitz operator. Theorem 2 is proved in this section. We note that
our relations are also useful to study Carleson inequalities on parabolic Bergman
spaces (see [9]). The last section is an appendix, where we discuss a property of
the space of Schatten class operators of Orlicz type for the sake of completeness.

Throughout this paper, C will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

Throughout this paper, we denote by Cy
c ðRnþ1

þ Þ, resp. C0ðRnþ1
þ Þ, the set of

all infinitely di¤erentiable functions on Rnþ1
þ which have compact support, resp.

the set of all continuous functions which tends to zero at the point of infinity A.
A continuous funcion u on Rnþ1

þ is said to be LðaÞ-harmonic, if LðaÞu ¼ 0 in
the sense of distribution, i.e.,ð

uðXÞ �gLðaÞLðaÞjðXÞ dVðX Þ ¼ 0
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for every j A Cy
c ðRnþ1

þ Þ, where

gLðaÞLðaÞjðx; tÞ :¼ � q

qt
jðx; tÞ � cn;a lim

d#0

ð
jyj>d

ðjðxþ y; tÞ � jðx; tÞÞjyj�n�2a
dy

and

cn;a ¼ �4ap�n=2Gððnþ 2aÞ=2Þ=Gð�aÞ > 0:

The fundamental solution W ðaÞ of LðaÞ is given by

W ðaÞðx; tÞ ¼ ð2pÞ�n

ð
Rn

expð�tjxj2a þ
ffiffiffiffiffiffiffi
�1

p
x � xÞ dx t > 0

0 ta 0:

8<:
Then it has the following homogeneity:

qb
xq

k
t W

ðaÞðs1=2ax; stÞ ¼ s�ððnþjbjÞ=2aþkÞðqb
xq

k
t W

ðaÞÞðx; tÞ;ð2:1Þ
where b ¼ ðb1; . . . ; bnÞ A N n

0 be a multi-index and kb 0 be an integer. Here
N0 ¼ N U f0g denotes the set of all nonnegative integers. We use the following
estimate frequently: There exists a constant C > 0 such that

jqb
xq

k
t W

ðaÞðx; tÞjaCðtþ jxj2aÞ�ððnþjbjÞ=2aþkÞð2:2Þ
for all ðx; tÞ A Rnþ1

þ (see [5]). The a-parabolic Bergman kernel RaðX ;YÞ ¼
Raðx; t; y; sÞ (i.e., the reproducing kernel of the Hilbert space b2a ) is given by

Raðx; t; y; sÞ :¼ �2qtW
ðaÞðx� y; tþ sÞ:

We also use a kernel Rb;m
a for ðb;mÞ A N n

0 �N0:

Rb;m
a ðX ;YÞ :¼ cb;ms

ðjbj=2aþmÞqb
yq

m
s RaðX ;Y Þ;

where cb;m ¼ ð�1Þjbjð�2Þm=m!. When b ¼ 0, Rm
a :¼ R0;m

a as well as Ra has the
following reproducing property: For 1a p < y and for every u A bp

a , u ¼ Rm
a u,

uðX Þ ¼ Rm
a uðX Þ :¼

ð
Rm

a ðX ;YÞuðYÞ dVðY Þð2:3Þ

holds. Remark that if b0 0, then Rb;m
a may not necessarily have a reproducing

property.
The following elementary fact is very useful in our later argument: Let

l; d A R. If �1 < l < d� n

2a
þ 1

� �
, then there exists a constant C > 0 such that

ð
tlðsþ tþ jx� yj2aÞ�d

dVðx; tÞ ¼ Csl�dþðn=2aþ1Þð2:4Þ

for every ðy; sÞ A Rnþ1
þ . By (2.2) there exists a constant C > 0 such that

jRb;m
a ðx; t; y; sÞjaCsðjbj=2aþmÞðtþ sþ jx� yj2aÞ�ðn=2aþ1Þ�ðjbj=2aþmÞ:ð2:5Þ
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Hence (2.1) and (2.4) show that if
jbj
2a

þm >
n

2a
þ 1

� �
1

p
� 1

� �
, then

kRb;m
a ð�;Y ÞkLpðVÞ ¼ Csðn=2aþ1Þð1=p�1Þð2:6Þ

for every Y ¼ ðy; sÞ A Rnþ1
þ , where C > 0 is independent of Y .

3. a-parabolic similarities and mean functions

In order to define a mean function, we recall a-parabolic similarities ([8]).
For t > 0, the mapping t

ðaÞ
t : ðy; sÞ 7! ðt1=2ay; tsÞ is called an a-parabolic dila-

tion. A transformation on Rnþ1 is said to be an a-parabolic similarity if it is a
composition of a-parabolic dilations and translations. Evidently, the equation
LðaÞu ¼ 0 is invariant under a-parabolic similarities. Let X0 ¼ ð0; 1Þ be taken
as a reference point in Rnþ1

þ . Then for every X ¼ ðx; tÞ A Rnþ1
þ , there exists a

unique a-parabolic similarity FX which maps the reference point X0 to X and is
bijective on Rnþ1

þ . In fact, FX is given by

Fðx; tÞðy; sÞ ¼ Tx � tðaÞt ðy; sÞ ¼ ðt1=2ayþ x; tsÞ;

where Tx : ðy; sÞ 7! ðyþ x; sÞ for x A Rn. We remark that fFX ;X A Rnþ1
þ g ¼

ftðaÞt ; t > 0gy fTx; x A Rng is a semi-direct product as a transformation group, so
that Rnþ1

þ has a group structure by FXFY ¼ FX �Y , where

X � Y :¼ ðt1=2ayþ x; tsÞ ¼ FX ðYÞ:ð3:1Þ

Let f be a Borel measurable function on Rnþ1
þ . It is easily seen that for

every Y A Rnþ1
þ , we haveð

f ðXÞt�ðn=2aþ1Þ dVðX Þ ¼
ð
f ðY � X Þt�ðn=2aþ1Þ dVðXÞ:ð3:2Þ

This means that dV �ðXÞ ¼ t�ðn=2aþ1Þ dVðXÞ is a left-invariant measure. Note
that t�1 dVðXÞ is a right-invariant measure (see [8]).

For a Radon measure r on Rnþ1
þ , we put

Ir f ðXÞ :¼
ð
f ðX � YÞ drðYÞ:ð3:3Þ

If r is absolutely continuous with respect to V , i.e., drðXÞ ¼ rðX Þ dVðXÞ, then,
by change of variables,

Ir f ðXÞ ¼ t�ðn=2aþ1Þ
ð
f ðY ÞrðX�1 � YÞ dVðY Þ

holds. Thus for a measure m, we may define

IrmðX Þ :¼ t�ðn=2aþ1Þ
ð
rðX�1 � YÞ dmðYÞ:ð3:4Þ
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Note that if dmðXÞ ¼ f ðX Þ dVðXÞ, then we have

Irð f dVÞðXÞ ¼ Ir f ðXÞ:ð3:5Þ

When r is an absolutely continuous probability measure, we call Irm a mean
function of m with respect to r.

Using the group structure (3.1), we can consider convolution of measures.
Let r1 and r2 be Radon measures on Rnþ1

þ . Then the convolution r1 � r2 is a
Radon measure defined byð

f dðr1 � r2Þ :¼
ðð

f ðX � Y Þ dr1ðX Þ dr2ðY Þ:ð3:6Þ

We make some remarks. For a Borel measurable function f , we have

Ir1Ir2 f ¼ Ir1�r2 fð3:7Þ

whenever both sides are defined. If r2 is absolutely continuous with respect to
the Lebesgue measure V , then r1 � r2 is also absolutely continuous. In this case,
we obtain

Ir1Ir2m ¼ Ir1�r2m:ð3:8Þ

Moreover if both r1 and r2 are absolutely continuous with respect to V , then the
density of r1 � r2 is given by

r1 � r2ðX Þ ¼
ð
r1ðYÞr2ðY�1 � XÞs�ðn=2aþ1Þ dVðYÞ:ð3:9Þ

By change of variables, we also obtain

r1 � r2ðXÞ ¼
ð
r1ðX � Y�1Þr2ðY Þs�1 dVðY Þ:ð3:10Þ

4. Boundedness of mean operators on Orlicz spaces

Let C be the set of all convex and strictly increasing functions c : ½0;yÞ !
½0;yÞ such that cð0Þ ¼ 0 and lims!y cðsÞ ¼ y. By the convexity of c, we
have

s0cðtÞacðs0tÞð4:1Þ

for any s0 b 1 and tb 0. From now on, we use the following notation. For
h A R, we denote by Vh the weighted measure

dVhðXÞ ¼ th dVðX Þ:ð4:2Þ

Hence V � ¼ V�ðn=2aþ1Þ.
The Orlicz space with respect to c A C and Vh is a Banach space defined by

LcðVhÞ :¼ f f ; Borel measurable on Rnþ1
þ ; k f kLcðVhÞ < yg;
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where

k f kLcðVhÞ :¼ inf t > 0;

ð
c

j f j
t

� �
dVh a 1

� �
:

When cðtÞ ¼ ts with sb 1, the corresponding space is nothing but the usual
LsðVhÞ and

k f kLts ðVhÞ ¼ k f kLsðVhÞ :¼
ð
j f ðX Þjs dVhðXÞ

� �1=s
:

Proposition 1. Let r be a probability measure on Rnþ1
þ and h A R. Then we

have the following inequality: For every Borel measurable function f b 0 on
Rnþ1

þ , ð
cðIr f ðX ÞÞ dVhðXÞa

ð
s�h�1 drðYÞ

� �ð
cð f ðX ÞÞ dVhðX Þ:

In particular, if r satisfies ð
s�h�1 drðY Þ < y;ð4:3Þ

then the mean operator Ir : L
cðVhÞ 7! LcðVhÞ is bounded.

Proof. By the Jensen inequality, we have

cðIr f ðXÞÞa
ð
cð f ðX � YÞÞ drðYÞ

so that ðð
cð f ðX � Y ÞÞ drðYÞ dVhðXÞ ¼

ðð
s�h�1cð f ðZÞÞ dVhðZÞ drðYÞ

gives us the desired inequality. Now suppose (4.3) and f A LcðVhÞ. Then
putting s0 :¼ maxf1;

Ð
s�h�1 drðYÞg and taking t > 0 such that

Ð
cðj f j=tÞ dVh a

1, we haveð
c

jIr f jðXÞ
s0t

� �
dVhðXÞa

ð
s�h�1 drðYÞ

� �ð
c

j f jðX Þ
s0t

� �
dVhðXÞ

a

ð
c

j f jðXÞ
t

� �
dVhðXÞa 1;

which implies that Ir f A LcðVhÞ and kIr f kLcðVhÞ a s0k f kLcðVhÞ. r

In the case of cðtÞ ¼ ts with sb 1, the condition that r is probability
measure is not necessary.
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Proposition 2. Let 1a say. For h A R and a Radon measure r on
Rnþ1

þ , we have

kIr f kLsðVhÞ a

ð
s�ðhþ1Þ=s djrjðYÞ

� �
k f kLsðVhÞ

for every f A LsðVhÞ.

Proof. Use the Minkowski inequality instead of the Jensen inequalty in the
above proof. r

5. Weighted averaging functions and weighted Berezin transformations

In this section, we consider weighted versions of averaging functions and
Berezin transformations. As before, we use the notation dVlðX Þ ¼ tl dVðX Þ.
Let m be a positive Radon measure on Rnþ1

þ . For a Borel set S in Rnþ1
þ of finite

and positive Vl-volume, we define a weighted averaging function for m by

AS;lmðX Þ :¼ 1

VlðFX ðSÞÞ

ð
FX ðSÞ

sl dmðYÞ:ð5:1Þ

If S ¼ QðaÞðX0Þ with X0 ¼ ð0; 1Þ and l ¼ 0, then AS;0m is nothing but the original
averaging function m̂mðaÞ.

Also let ðb;mÞ A N n
0 �N0 be a multi-index, 0 < p < y and l A R. If

�1 < l <
n

2a
þ 1

� �
ðp� 1Þ þ jbj

2a
þm

� �
p;ð5:2Þ

then Rb;m
a ð�;X Þ A LpðVlÞ and by (2.6)ð

jRb;m
a ðY ;X Þjp dVlðY Þ ¼ C1t

�k;

where C1 is a constant and

k :¼ ðp� 1Þ n

2a
þ 1

� �
� l:

In this case, we define a weighted Berezin transformation of m by

Bb;m;p;lmðXÞ :¼
Ð
jRb;m

a ðY ;XÞjpsl dmðYÞÐ
jRb;m

a ðY ;X Þjp dVlðY Þ
¼ tk

C1

ð
jRb;m

a ðY ;XÞjpsl dmðYÞ;ð5:3Þ

If ðb;m; p; lÞ ¼ ð0; 0; 2; 0Þ, then B0;0;2;0m is the original Berezin transformation
~mmðaÞ.

These functions in (5.1) and (5.3) are mean functions discussed in section
3. In fact, let

rS;lðX Þ :¼ tl1Sðx; tÞ
VlðSÞ

;
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where 1S is the characteristic function of S. Then since

VlðFX ðSÞÞ ¼ tn=2aþ1þlVlðSÞ;ð5:4Þ

we see easily AS;lmðXÞ ¼ IrS; lmðX Þ. Also, by the homogeneity (2.1), we have

Rb;m
a ðY ;XÞ ¼ t�ðn=2aþ1ÞRb;m

a ðX�1 � Y ;X0Þ:ð5:5Þ

Hence putting rb;m;p;lðX Þ :¼ ðtl=C1ÞjRb;m
a ðX ;X0Þjp, we obtain

Bb;m;p;lmðXÞ ¼ tk

C1

ð
jRb;m

a ðY ;XÞjpsl dmðYÞ

¼ tk

C1

ð
jt�ðn=2aþ1ÞRb;m

a ðX�1 � Y ;X0Þjpsl dmðY Þ

¼ t�ðn=2aþ1Þ
ð

1

C1

s

t

� �l
jRb;m

a ðX�1 � Y ;X0Þjp dmðYÞ

¼ t�ðn=2aþ1Þ
ð
rb;m;p;lðX�1 � YÞ dmðY Þ

¼ Irb;m; p; l
mðXÞ:

For a Borel measurable function f on Rnþ1
þ , we also set

AS;l f ðXÞ :¼ IrS; lð f dVÞðXÞ and Bb;m;p;l f ðXÞ :¼ Irb;m; p; l
ð f dVÞðX Þ:

Then, as in (3.5), we see

AS;l f ðX Þ ¼ IrS; l f ðXÞ ¼ 1

VlðFX ðSÞÞ

ð
FX ðSÞ

f ðYÞ dVlðYÞ;

and

Bb;m;p;l f ðXÞ ¼ Irb;m; p; l
f ðXÞ ¼

Ð
jRb;m

a ðY ;X Þjpf ðY Þ dVlðY ÞÐ
jRb;m

a ðY ;XÞjp dVlðY Þ
:

6. Norm estimates on Orlicz spaces

In this section we give some norm estimates of the weighted averaging
function and the weighted Berezin transformation on Orlicz spaces. Let c be a
fixed convex function which belongs to C. The following lemmas follow from
Proposition 1.

Lemma 1. Let l1; l2; h A R and let U and V be two relatively compact non-
empty open sets in Rnþ1

þ . Then for a positive Radon measure m on Rnþ1
þ ,

AU ;l1m A LcðVhÞ if and only if AV ;l2m A LcðVhÞ.
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Proof. Take a relatively compact open set K such that U HK � V :¼
fZ � Y ;Z A K ;Y A Vg. Then rK;l2

� rV ;l2
> 0 on K � V so that there exists a

constant C > 0 such that CrK;l2
� rV ;l2

b rU ;l1
. Hence it follows from (3.9) that

AU ;l1mðXÞ ¼ IrU ;l1mðXÞaCIrK ; l2
�rV ; l2

mðX Þ ¼ CIrK ; l2
ðAV ;l2mÞðX Þ:ð6:1Þ

By Proposition 1, IrK; l2
is bounded on LcðVhÞ, and hence AV ;l2m A LcðVhÞ

implies AU ;l1m A LcðVhÞ. The converse is similarly proved. r

We assume (5.2). Then

rb;m;p;lðx; tÞ :¼
tl

C2
ð1þ tþ jxj2aÞ�pðn=2aþ1þjbj=2aþmÞ;

where C2 is a constant such that
Ð
rb;m;p;lðXÞ dVðX Þ ¼ 1, defines the mean

operator

Bb;m;p;l :¼ Irb;m; p; l
:

Lemma 2. Let ðb;mÞ A N n
0 �N0, 0 < p < y and l; h A R. If (5.2) and

n

2a
þ 1þ l� p

n

2a
þ 1þ jbj

2a
þm

� �
< hþ 1 < lþ 1ð6:2Þ

hold, then there exists a constant C > 0 such that

kBb;m;p;l f kLcðVhÞ aCk f kLcðVhÞð6:3Þ
for every f A LcðVhÞ.

Proof. By (2.4) and (6.2), we haveð
t�h�1rb;m;p;lðXÞ dVðXÞ

¼ 1

C2

ð
t�h�1tlð1þ tþ jxj2aÞ�pðn=2aþ1þjbj=2aþmÞ

dVðx; tÞ < y;

so that (6.3) follows from Proposition 1. r

Lemma 3. Let ðb;mÞ A N n
0 �N0, 0 < p < y and l; t; h A R. We assume

(5.2). Then for a compact set K of positive Lebesgue measure and a positive
Radon measure m on Rnþ1

þ , we have

kAK ; tmkLcðVhÞ aCkBb;m;p;lmkLcðVhÞ

with some constant C > 0 independent of m.

Proof. We may assume that kBb;m;p;lmkLcðVhÞ < y. Take a relatively
compact open set U0 0j and d > 0 such that

jRb;m
a ð�;X0Þjb d on U0:
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By (5.5), if Y�1 � X A U0, then jRb;m
a ðX ;YÞjb s�ðn=2aþ1Þd so that

Bb;m;p;lmðX Þ ¼ tk

C1

ð
jRb;m

a ðY ;X Þjptl dmðYÞ

b
1

C1
tkt�pðn=2aþ1Þdp

ð
FX ðU0Þ

sl dmðYÞ

¼ dp

C1
t�ðn=2aþ1Þ�lVlðFX ðU0ÞÞAU0;lmðYÞ:

Hence by (5.4), we have

Bb;m;p;lmb
dp

C1
VlðU0ÞAU0;lmbCAU0;lm:

We also take a relatively compact open set U such that K �U�1
0 HU . Then as

in (6.1) we have

IU ;lBb;m;p;lmbCIU ;lAU0;lmbCAK ;lmbCAK ; tm:

Hence Proposition 1 again shows

kAK ; tmkLcðVhÞ aCkIU ;lBb;m;p;lmkLcðVhÞ aCkBb;m;p;lmkLcðVhÞ: r

We also obtain the opposite inequality.

Lemma 4. Let ðb;mÞ A N n
0 �N0, 0 < p < y and l; t; h A R, and let U 0j

be a relatively compact open set in Rnþ1
þ . If (5.2) and (6.2) hold, then

kBb;m;p;lmkLcðVhÞ aCkAU ; tmkLcðVhÞ

with some constant C > 0 independent of m.

Proof. We first remark that by (3.8) Bb;m;p;lAU ; tm ¼ Irb;m; p; l�rU ; t
m, and also

by (3.10)

rb;m;p;l � rU ; tðx; tÞ ¼
ð
rb;m;p;lðX � Y�1ÞrU ; tðY Þs�1 dVðYÞ

¼ 1

C2

ð
U

t

s

� �l
ð1þ s�1tþ jx� t1=2as�1=2ayj2aÞ�pðn=2aþ1þjbj=2aþmÞ

�
rU ; tðy; sÞ

s
dVðy; sÞ:

This convolution is bounded below by Crb;m;p;lðx; tÞ with some constant C > 0,
because

1þ s�1tþ tjt�1=2ax� s�1=2ayj2a aCð1þ tþ jxj2aÞð6:4Þ
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for ðx; tÞ A Rnþ1
þ and ðy; sÞ A suppðrU ;lÞ with some constant C. In fact, since

s�1=2ay is bounded on suppðrU ;lÞ, if t�1=2ajxja 1, then 1þ s�1tþ tjt�1=2ax�
s�1=2ayj2a a 1þ Ct. Otherwise,

jt�1=2ax� s�1=2ayja t�1=2ajxj þ s�1=2ajyjaCt�1=2ajxjaC

implies (6.4) too. Hence by Lemma 2, we have

C�1kBb;m;p;lmkLcðVhÞ a kBb;m;p;lAU ; tmkLcðVhÞ aCkAU ; tmkLcðVhÞ;

which shows the lemma. r

We make a remark for the case of cðtÞ ¼ ts ð1a s < yÞ. In this case, the
assumption (5.2) is not necessary and the assumption (6.2) can be replaced by

n

2a
þ 1þ l� p

n

2a
þ 1þ jbj

2a
þm

� �
<

hþ 1

s
< lþ 1:ð6:5Þ

In fact, for a positive Radon measure mb 0, we put

~BBb;m;p;lmðX Þ :¼ tk
ð
jRb;m

a ðY ;XÞjpsl dmðYÞ;

where k ¼ ðp� 1Þ n

2a
þ 1

� �
� l, and we consider

~rrb;m;p;lðx; tÞ ¼ tlð1þ tþ jxj2aÞ�pðn=2aþ1þjbj=2aþmÞ:

Then ~BBb;m;p;lmðXÞ and I~rrb;m; p; l
mðXÞ can be defined without (5.2). Moreover

~BBb;m;p;lmðX ÞaCI~rrb;m; p; l
mðXÞ by (2.5) and (5.5). If (6.5) holds, thenÐ

s�ðhþ1Þ=s ~rrb;m;p;lðYÞ dY < y, and as in Proposition 2, we also seeð
ðI~rrb;m; p; l

f ðX ÞÞs dVhðXÞ
� �1=s

a

ð ð
f ðX � Y Þs dVhðXÞ

� �1=s
~rrb;m;p;lðY Þ dY

¼
ð
s�ðhþ1Þ=s ~rrb;m;p;lðY Þ dY

� �
k f kLsðVhÞ:

This argument also holds for s ¼ y. From these observations, we have the
following proposition.

Proposition 3. Let ðb;mÞ A N n
0 �N0, 0 < pay and l; t A R. Then, for a

positive Radon measure m on Rnþ1
þ , we have the following assertions.

(1) Let 1a say and h A R. Then for a compact set K of positive
Lebesgue measure on Rnþ1

þ , we have

kAK ; tmkLsðVhÞ aCk ~BBb;m;p;lmkLsðVhÞ

with some constant C > 0 independent of m.
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(2) If 1a say and h A R satisfy (6.5), then for a relatively compact open
set U 0j on Rnþ1

þ ,

k ~BBb;m;p;lmkLsðVhÞ aCkAU ; tmkLsðVhÞ

with some constant C > 0 independent of m.

The following theorem is one of our main results in this paper. Theorem 1
is obtained as a corollary.

Theorem 3. Let �1 < la 0 < p < y, and take an integer mb

2

p
� 1

� �
n

2a
þ 1

� �
. Then there exists a constant C > 0 such that for a Radon

measure mb 0 on Rnþ1
þ ,

C�1kB0;m;p;lmkLcðV �Þ a km̂mðaÞkLcðV �Þ aCkB0;m;p;lmkLcðV �Þ:ð6:6Þ

In particular, m̂mðaÞ A LcðV �Þ if and only if ~mmðaÞ A LcðV �Þ.

Proof. By assumption, (5.2) and (6.2) hold for b ¼ 0 and h ¼ � n

2a
þ 1

� �
.

Hence Lemmas 1, 2, 3, and 4 show our assertion. r

7. Schatten class of compact Toeplitz operators

We extend the definition of Schatten class operators to the Orlicz type. In
this section, let c A C be fixed again.

Definition 2. A compact operator T on a Hilbert space H is said to be
of Schatten c-class if the sequence of all singular values ðljÞyj¼0 of T belongs to
the sequence space lc of Orlicz type, and then we write T A ScðHÞ. Here
ðljÞyj¼0 A lc means

Xy
j¼0

c
lj

t

� �
< y

with some constant t > 0. We put

kTkScðHÞ :¼ inf t > 0;
Xy
j¼0

c
lj

t

� �
a 1

( )
:

In Appendix we will verify that ScðHÞ is a vector space and is complete
with respect to k � kScðHÞ.

As we mentioned in section 1, we know a necessary and su‰cient condition
that the Toeplitz operator Tm is compact. From this fact we obtain another
su‰cient condition.
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Proposition 4. Let mb 0 be a Radon measure on Rnþ1
þ . If m̂mðaÞ A LcðV �Þ,

then the Toeplitz operator Tm is compact.

For the proof we prepare the following lemma.

Lemma 5. Let j A Cy
c ðRnþ1

þ Þ and f A LcðV �Þ. Then Ij f A C0ðRnþ1
þ Þ.

Proof. We may assume that jb 0,
Ð
jðX Þ dVðXÞ ¼ 1 and f b 0. Let

t > 0 be a constant such that
Ð
cð f ðXÞ=tÞ dV �ðXÞ < y. For any e > 0, choose

a compact set K in Rnþ1
þ such thatð
R nþ1

þ nK
cð f ðX Þ=tÞ dV �ðX Þ < cðeÞ

kj�ky
;

where we denote j�ðXÞ :¼ tn=2aþ1jðXÞ and kj�ky :¼ supX AR nþ1
þ

jj�ðX Þj. Put

K0 :¼ K � ðsuppðjÞÞ�1 ¼ fX A Rnþ1
þ ; ðFX ðsuppðjÞÞÞVK0jg:

Then K0 is compact. Since

Ij f ðXÞ ¼
ð
jðYÞ f ðX � Y Þ dVðYÞ ¼

ð
j�ðYÞ f ðX � Y Þ dV �ðY Þ;

for each X A Rnþ1
þ nK0, the Jensen inequality gives us

c
Ij f ðX Þ

t

� �
a

ð
suppðjÞ

c
f ðX � YÞ

t

� �
j�ðYÞ dV �ðYÞ

a kj�ky
ð
FX ðsuppðjÞÞ

c
f ðY Þ
t

� �
dV �ðYÞ

a kj�ky
ð
R nþ1

þ nK
c

f ðYÞ
t

� �
dV �ðY Þ

< cðeÞ;

because V � is invariant under a-parabolic similarities. Hence we have
Ij f ðX Þ < et, which shows the lemma. r

Proof of Proposition 4. Take j A Cy
c ðRnþ1

þ Þ such that jb 0,
Ð
jðXÞ dVðX Þ

¼ 1 and jðX0Þ > 0. Then by the assumption and Lemma 5, we have Ijm̂m
ðaÞ A

C0ðRnþ1
þ Þ. Since m̂mðaÞ ¼ Irm and j � rbCr with some constant C > 0, where

r ¼ rQðaÞðX0Þ;0, we have

Ijm̂m
ðaÞ ¼ IjIrm ¼ Ij�rmbCIrm ¼ Cm̂mðaÞ:

This implies limX!A m̂mðaÞðXÞ ¼ 0, and hence the compactness of Tm follows.
r
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We remark a relation between a-parabolic Bergman kernel and the left-
invariant measure.

Remark 1. kRX
a k

2
L2ðVÞ dVðXÞ is a left-invariant measure, where we put

RX
a ðYÞ :¼ RaðX ;Y Þ:ð7:1Þ

In fact, we can write RaðX ;YÞ ¼
Py

j¼0 ejðXÞejðYÞ in pointwise and RX
a ¼Py

j¼0 ejðXÞej in b2a for any complete orthonormal system ðejÞyj¼0 of b2a . Then

kRX
a k

2
L2ðVÞ ¼ RaðX ;XÞ. By the homogeneity, RaðX ;XÞ ¼ t�ðn=2aþ1ÞRaðX0;X0Þ, so

that

kRX
a k

2
L2ðVÞ dVðXÞ ¼ RaðX ;XÞ dVðX Þ ¼ RaðX0;X0Þ dV �ðX Þ:ð7:2Þ

The following theorem is another main result of this paper. Theorem 2 is
obtained as a corollary.

Theorem 4. Let mb 0 be a Radon measure on Rnþ1
þ satisfying (1.2) for some

d A R. Then Tm A Scðb2aÞ if and only if m̂mðaÞ A LcðV �Þ. Moreover, we have a
norm inequality

C�1km̂mðaÞkLcðV �Þ a kTmkScðb2
a Þ aCkm̂mðaÞkLcðV �Þð7:3Þ

with some constant Cb 1 independent of m.

Proof. We first show that m̂mðaÞ A LcðV �Þ implies Tm A Scðb2aÞ. Let mb

n

2a
þ 1 be an integer and �1 < l < 0. Since B0;m;1;lm A LcðV �Þ by Theorem 3,

we can take t > 0 with ð
c

B0;m;1;lmðX Þ
t

� �
dV �ðXÞa 1:

Clearly Tm is a positive definite self-adjoint operator. By Proposition 4, it is
compact. Hence we can take a comlete orthonormal system ðejÞyj¼0 of b2a which
consists of eigenvectors of Tm such that the corresponding eigenvalues are given
by lj ¼ ljðTmÞ ¼ hTmej; eji ¼

Ð
jejðXÞj2 dmðXÞ: Then by the Schwarz inequality,

jejðXÞj2 ¼
ð
sl=2s�l=2ejðYÞRm

a ðX ;YÞ dVðYÞ
� �2

a

ð
sljRm

a ðX ;YÞj dVðYÞ
� � ð

s�ljejðYÞj2jRm
a ðX ;Y Þj dVðYÞ

� �
aCm;lt

l

ð
s�ljejðYÞj2jRm

a ðX ;Y Þj dVðYÞ;

515weighted berezin transformations



where Cm;l ¼
Ð
sljRm

a ðX0;YÞj dVðY Þ < y by (2.4) and (2.5). Therefor by the
Fubini theorem and the Jensen inequality we have

lj aCm;l

ð
s�l

ð
jRm

a ðX ;YÞjtl dmðXÞ
� �

jejðY Þj2 dVðYÞ

¼ C

ð
B0;m;1;lmðY ÞjejðY Þj2 dVðYÞ

and

c
lj

s0tC

� �
a

ð
c

B0;m;1;lmðYÞ
s0t

� �
jejðYÞj2 dVðY Þ;

where s0 :¼ maxf1;RaðX0;X0Þg. Therefore by (7.2)

Xy
j¼0

c
lj

s0tC

� �
a
Xy
j¼0

ð
c

B0;m;1;lmðY Þ
s0t

� �
jejðYÞj2 dVðYÞ

¼
ð
c

B0;m;1;lmðYÞ
s0t

� �
RaðY ;YÞ dVðY Þ

a

ð
c

B0;m;1;lmðY Þ
s0t

� �
s0 dV

�ðY Þ

a

ð
c

B0;m;1;lmðY Þ
t

� �
dV �ðYÞa 1;

which implies that Tm A Scðb2aÞ and kTmkScðb2
a Þ a s0CkB0;m;1;lmkLcðV �Þ. Hence

the latter inequality in (7.3) follows from Theorem 3.
Next we assume Tm A Scðb2aÞ. As in the proof of the if part, we can take a

complete orthonormal system ðejÞyj¼0 of eigenvectors of Tm. Now, take t > 0
with

Py
j¼0 cðlj=tÞa 1, where lj ¼ hTmej; eji. Then by the spectral mapping

theorem,

c
Tm

t

� �
u ¼

Xy
k¼0

c
lk

t

� �
hu; ekiek

for u A b2a , so that

ejðXÞej;c
Tm

t

� �
RX

a

� �
¼ ejðX Þej ;

Xy
k¼0

c
lk

t

� �
ekðXÞek

* +
¼ c

lj

t

� �
jejðXÞj2 b 0

and cðlj=tÞ ¼
Ð
hejðXÞej;cðTm=tÞRX

a i dVðXÞ. Hence we have the following
trace formula
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Xy
j¼0

c
lj

t

� �
¼
ðXy

j¼0

ejðX Þej ;c
Tm

t

� �
RX

a

� �
dVðXÞ ¼

ð
RX

a ;c
Tm

t

� �
RX

a

� �
dVðX Þ

¼
ð

rXa ;c
Tm

t

� �
rXa

� �
kRX

a k
2
L2ðVÞ dVðX Þ

where rXa :¼ RX
a =kRX

a kL2ðVÞ. Since

~mmðaÞðX Þ ¼
Ð
RaðX ;Y Þ2 dmðY ÞÐ
RaðX ;YÞ2 dVðYÞ

¼ hTmR
X
a ;R

X
a i

kRX
a k

2
L2ðVÞ

¼ hrXa ;Tmr
X
a i;

the Jensen inequality gives us

c
~mmðaÞðXÞ

t

� �
¼ c

hrXa ;Tmr
X
a i

t

� �
¼ c

Xy
j¼0

lj

t
hrXa ; eji

2

 !

a
Xy
j¼0

c
lj

t

� �
hrXa ; eji

2 ¼ rXa ;c
Tm

t

� �
rXa

� �
:

Hence putting s1 :¼ minf1;RaðX0;X0Þg, by (7.2) we have

ð
c s1

~mmðaÞðXÞ
t

� �
dV �ðX Þa

ð
s1c

~mmðaÞðXÞ
t

� �
dV �ðX Þ

a

ð
c

~mmðaÞðX Þ
t

� �
kRX

a k
2
L2ðVÞ dVðXÞ

a

ð
rXa ;c

Tm

t

� �
rXa

� �
kRX

a k
2
L2ðVÞ dVðXÞ

¼
Xy
j¼0

c
lj

t

� �
a 1;

which implies that ~mmðaÞ A LcðV �Þ and k~mmðaÞkLcðV �Þ a
1

s1
kTmkScðb2

a Þ. Theorem 3
again shows the former inequality in (7.3). r

8. Appendix

Let c A C, that is, c : ½0;yÞ ! ½0;yÞ be a convex and strictly increasing
function satisfying that cð0Þ ¼ 0 and lims!y cðsÞ ¼ y. For a Hilbert space H,
we denote by LðHÞ the set of all bounded linear operators on H and ScðHÞ
the set of all compact operators on H of Schatten c-class, respectively.
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It is known in general theory that ScðHÞ is a linear space, and is complete
(cf. [3, pp. 1088–1095], see also [11]), however, we give precise statements in our
case for the sake of completeness.

For a compact operator T on H, we denote by ljðTÞ the j-th ð jb 0Þ
singular value of T . The following min-max principle plays an important role.

ljðTÞ ¼ min
HHH:subspace

dimHa j

max
u AH?nf0g

kTuk
kuk ¼ max

HHH:subspace
dimHbjþ1

min
u AHnf0g

kTuk
kukð8:1Þ

(cf. [3, Lemma 2 in §9 of XI]). In particular,

l0ðTÞ ¼ kTk:ð8:2Þ

It also follows from (8.1) that for two compact operators T1 and T2 on H,

ljþkðT1 þ T2Þa ljðT1Þ þ lkðT2Þð8:3Þ

for every jb 0 and kb 0. Using this inequality and (8.2), we obtain

jljðT1Þ � ljðT2Þja kT1 � T2k:ð8:4Þ

Moreover, for any A;B A LðHÞ, we see

ljðATBÞa kAk kBkljðTÞ:ð8:5Þ

Now we can state the following fundamental results.

Proposition 5. (i) ScðHÞ is a vector space.
(ii) kT1 þ T2kScðHÞ a 4ðkT1kScðHÞ þ kT2kScðHÞÞ.
(iii) ScðHÞ is complete in the sense that if ðTkÞyk¼1 is a sequence in ScðHÞ

such that limk;l!ykTk � TlkScðHÞ ¼ 0, then there exists T A ScðHÞ
such that limk!ykTk � TkScðHÞ ¼ 0.

Proof. Let T1;T2 A ScðHÞ and c A R be arbitrary. Since ljðcT1Þ ¼
jcjljðT1Þ, cT1 A ScðHÞ. To see T1 þ T2 A ScðHÞ, we will show (ii). For
k ¼ 1; 2, take any tk > 0 with kTkkScðHÞ < tk=4. Then

Xy
j¼0

c
4ljðTkÞ

tk

� �
a 1:

By (8.3), we have l2jðT1 þ T2Þa ljðT1Þ þ ljðT2Þ. Since c A C satisfies 4cðsþ tÞ
acð4sÞ þ cð4tÞ, we have

Xy
j¼0

c
l2jðT1 þ T2Þ

t1 þ t2

� �
a
Xy
j¼0

1

4
c

4ljðT1Þ
t1 þ t2

� �
þ c

4ljðT2Þ
t1 þ t2

� �� �
a

1

2
:
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Similarly, l2jþ1ðT1 þ T2Þa ljðT1Þ þ ljþ1ðT2Þ gives usXy
j¼0

c
l2jþ1ðT1 þ T2Þ

t1 þ t2

� �
a

1

2
:

Thus we obtain kT1 þ T2kScðHÞ a t1 þ t2. Arbitrariness of t1 and t2 implies
(ii). Unfortunately we do not know whether the constant 4 in (ii) can be
removed or not.

Finally, we assume limk;l!ykTk � TlkScðHÞ ¼ 0. Then ðTkÞyk¼1 is a
Cauchy sequence in LðHÞ, so that there exists a compact operator T such
that limk!y Tk ¼ T in LðHÞ. Then by (8.4), limk!y ljðTkÞ ¼ ljðTÞ for jb 0.
For any e > 0, there exists k0 such thatXy

j¼0

c
ljðTk � TlÞ

e

� �
a 1

if k; lb k0. Hence, by (8.4) again and the Fatou theorem, we have

Xy
j¼0

c
ljðTk � TÞ

e

� �
¼
Xy
j¼0

lim
l!y

c
ljðTk � TlÞ

e

� �
a lim inf

l!y

Xy
j¼0

c
ljðTk � TlÞ

e

� �
a 1;

which implies Tk � T A ScðHÞ, i.e., T A ScðHÞ, and kTk � TkScðHÞ a e when-
ever kb k0. This shows (iii). r
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