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MEROMORPHIC FUNCTIONS THAT SHARE SOME PAIRS OF
SMALL FUNCTIONS

Ping L1 AND CHUNG-CHUN YANG*

Abstract

We discuss possible relations between two meromorphic functions f and g when
they share some pairs of small functions. By utilizing the generalized Nevanlinna’s
second main theorem for small functions obtained recently, we have been able to show
that two meromorphic functions f and g must be linked by a quasi-Mobius transfor-
mation if they share three pairs of small functions CM* and share another pair of small
function IM*. Moreover, we also improves a known result due to T. Czubiak and G.
Gundersen on two meromorphic functions sharing five pairs of values and the results on
the unicity of meromorphic functions that share five small functions obtained by Li Bao-
Qin and Li Yu-Hua as well.

1. Introduction and results

Let f be a meromorphic functions defined on the complex plane C. We
assume the reader is familiar with the standard notations and basic results on
Nevanlinna’s value distribution theory such as the characteristic function 7'(r, 1),
the counting functions above the poles of f: N(r, f) and N(r,f) as well as the
proximity function m(r, f) (see, e.g., [3], [14]). The notation S(r, f) is defined to
be any quantity satisfying S(r, /) = o(T(r, f)) as r — oo possibly outside a set of
r of finite linear measure. A meromorphic function a (# oo) is called a small
function with respect to f provided that T(r,a) = S(r,f). We denote by
Nyy(r, f) the counting function of the poles of f of multiplicities < k, where
every such a pole is counted only once, and denote by N(r, f) the counting
function of the poles of f of multiplicities > k, where every such a pole is
counted only once. Let f and g be two nonconstant meromorphic functions,
and a, b be two values in C. We say that f and g share the value ¢ IM (CM)
provided that f(z) —a and g(z) —a have same zeros ignoring multiplicities
(counting multiplicities). We say that f and g share the pair of values (a,b)
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IM (CM) provided that f(z) —a and g(z) — b have same zeros ignoring multi-
plicities (counting multiplicities). The well-known Nevanlinna’s five values the-
orem says that two meromorphic functions must be identical if they share five
values IM. Nevanlinna’s four values theorem says that two meromorphic
functions must be linked by a Md&bius transformation if they share four values
CM. Since then, the subject on the unicity of meromorphic or entire functions
that share some values has been studied by many complex analysts.

The studies of “‘sharing value or sharing pair of values IM or CM” can be
extended to ‘“‘sharing pairs of small functions IM* or CM* as follows (see, e.g.,
1], [9]).

Let f and g be two nonconstant meromorphic functions, and a, b be two
small meromorphic functions with respect to both f and g. Denote N(r, f = a,
g = b) the counting function which counts the common zeros of f — « and g — b,
each such zero is counted only once. Denote Ng(r,f =a,g = b) the counting
function which counts the common zeros of f—a and g — b with the same
multiplicities, each such zero is counted only once. We say that f and g share
the pair (a,b) in the sense of IM* provided that

N(r,ﬁ) —~N(r,f =a,g=>b)=S(r,f),

and

N(r—L5) = N = ag=0) = Slr).

We say that f and g share the pair (a4,b) in the sense of CM* provided that

]\_/(r,fl_a> — Ng(r, f =a,g =b) = S(r, f),
and

N(g—ib> _Ne(rnf =a,g="b) = S(r,g).

For convenience, we recall the notation S*(r, /) which is defined to be any
quantity such that for any positive number ¢ there exists a S(r, /) satisfying the
following inequality:

1S (NI < eT(r, f) + S, /).

Suppose that .#(C) is the set of all meromorphic functions on C. For f € .#(C),
Let

S(f) = {g e M(C): T(r,g) = S(r. )},
P(f) = {g e M(C) : T(r.g) = S (. f)}.
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It is obvious that both % (f) and .*(f) are fields of functions, which are closed
under products and differentiating, and & (f) < &#*(f). It is easily seen that we
can not find any set / of infinite linear measure such that T'(r, /) < S*(r, f),
rel.

Nevanlinna’s five values theorem has been generalized to small functions case
(see, [7], [12], [5]), i.e., two nonconstant meromorphic functions must be identical
if they share five small functions IM. The number 5 may be reduced to 4, if f
and g have few poles. In fact, Ishizaki and Toda proved the following result.

THEOREM A ([6]). Let f and g be two transcendental meromorphic functions,
and let ay, . .., ay be distinct small functions of f and g. If f and g share a,, ..., a4
IM, and if

N(r, f) <uT(r,f)+S(r,f) and N(r,g) <vT(r,g) + S(r,9),
hold for some constants u,v e [0,1/19), then [ =g.

It follows that Nevanlinna’s four values theorem can be generalized as
follows.

THEOREM B ([8]). Let f and g be nonconstant meromorphic functions and aj,
@, az, a4 be four distinct small functions of f and g. If f and g share a;, ay CM*,
and share az, ay IM*, then f is a quasi-Mdbius transformation of g, i.e., there exist

Sfour small functions o; (i=1,2,3,4) of g such that f :m.
o3g + o4

THEOREM C ([4], [9]). Let f and g be nonconstant meromorphic functions and
ai, bi (i=1,2,3,4) (a; # a;,b; # b;,i # j) be small functions of f and g. If f
and g share the four pairs (a;,b;) CM*, then f is a quasi-Mébius transformation

of g.
The following two functions

s e+l . _(ez+1)2
(1) f(Z)—m and g@)—m7

which was found by G. G. Gundersen in 1979 (see [2]), shows that two mer-
omorphic functions f and g sharing four values IM may not be linked by a
Mobius transformation. In fact, it is easily seen that f and g share 0, 1, —1/8,
oo IM, but f is not a Mobius transformation of g. Note that f and § also share
the pair (—1/2,1/4) CM. So, two meromorphic functions that share five pairs
of values may not be linked by a Mobius transformation. However, the
following theorem shows that two meromorphic functions must be linked by
a Mobius transformation when they share six pairs of values.



MEROMORPHIC FUNCTIONS THAT SHARE SOME PAIRS OF SMALL FUNCTIONS 133

THEOREM D ([1]). Let f and g be two nonconstant meromorphic functions
that share six pairs of values (ar,by), 1 <k <6, IM, where a; # a; and b; # b;
whenever i # j. Then f is a Mdbius transformation of g.

In this paper, we shall prove the following results.

THEOREM 1. Let f and g be nonconstant meromorphic functions and a;,
bi (i=1,2,3,4) (a; # a;,b; # bj,i # j) be small functions of f and g. If f and g
share three pairs (a;,b;) (i=1,2,3) CM*, and share the fourth pair (as,bs) IM*,
then f is a quasi-Mdbius transformation of g.

If the condition “f and ¢ share the pair (¢,b) IM*” in Theorem 1 is
replaced by “f(z) — a(z) = 0 implies g(z) — b(z) = 07, then the conclusion may
not be true. In fact, the function

1 2z z —2z( 2z z
f(2) :Z(e —2¢"+4) and g¢g(z) =e “(e” —2e° +4)
share 0, 1, oo CM, and f(z) —3/4 = 0 implies g(z) — 3 =0, but f(z) can not be
a Mobius transformation of ¢g(z).

The condition “f and ¢ share three pairs CM* and another pair IM*” in
Theorem 1 can not be replaced by “f and g share two pairs CM* and another
two pairs IM*” either. For example, the functions

(e - 1) _=2(ef - 1)°
fE) = and g =
share the pairs (1,1), (c0,00) CM, and share the pairs (0,0), (—2,—8) IM, but
f(z) is not a Mobius transformation of g(z).

THEOREM 2. Let f and g be two nonconstant meromorphic functions, and aj,
by (j=1,...,5) be small functions with respect to f and g, and a; # a;, b; # b;
whenever i # j. If f and g share the four pairs (ay,by) IM*, 1 < k <4, and if the
inequalities

(2) N(r’f—las> <AT(r, f)+ S(r,f) and ]V(r,

) ST+ 50,

hold for 2€10,1/3), then f is a quasi-Mdbius transformation of g.

From Theorem 2, we can get the following result for entire functions that
share four pairs of finite values.

COROLLARY 1. Let f and g be two nonconstant entire functions, and aj,
by (j=1,...,4) be finite values, and a; # a;, b; # b; whenever i # j. If f and g
share the four pairs (ax,br) IM*, 1 <k <4, then f is a Mobius transformation

of g.
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THEOREM 3. Let f and g be two nonconstant meromorphic functions, and a;,
b (j=1,...,6) be small functions with respect to f and g, and a; # a;, b; # b;
whenever i ;é ] If f and g share the five pairs (ay,by) IM*, 1 <k <5, and if f is
not a quasi-Mobius transformation of g, then the following ldenlzlzes or inequalities

hold.
(@) T(r,f)
5

]
<N

Tg) 50
) AT(r,f) + S (. f):

) < a)+S*(V,f),i?éj’ i?j:]‘""75;
_/

G
g

o
ﬂ
—
\.\
I
=
\’\
—
N——

( F—a) TS0
(f) N(}’, :a6;g:b61)S %T(r’f)"i_S*(rvf); :
(2) T(r,f):N(r,f_as)-|-S*(r,f)andT(r,f):2N<r,f_a‘)—|—S*(r,f)

fori=1,....4if a=0b;, i=1,....,4

Remark. From (g) of Theorem 3, we see that if f and ¢ share five distinct
small functions IM*, then f is a quasi-Mé&bius transformation of g, and thus
f =g. This result was proved in [7] (entire case) and [12] (meromorphic case).

COROLLARY 2. Let f and g be two nonconstant meromorphic functions, and
aj, by (j=1,...,6) be small functions with respect to f and g, and a; # a;, b; # b;
whenever i # j. If f and g share the five pairs (ay,by) IM*, 1 <k <5, and if
there exists a number A€ [0,2/5) such that

_ 1 _
W) = NS = a0 = bo) < 2700.1) +50.1)
— g
then f must be a quasi-Mobius transformation of g¢.

Remark. The conclusion of Corollary 2 for the special case: 4 =0 and all
a;, b; are values, can be found in [4].

Obviously, Theorem 2 is a generalization of Theorem A, Theorem 1 is a
generalization of Theorem C, and Corollary 2 is a generalization of Theorem D.

2. Lemmas

Lemma 1 ([9], [11]). Let f and g be two nonconstant meromorphic functions,
ay, ap and az be three distinct small functions with respect to f and g. If f and g
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share ay, ay, a3 CM*, and if f is not a quasi-Mdbius transformation of g, then for
any small function ¢ (# ai,a2,as) with respect to [ and g, we have

T(r, f)= N(r,ﬁ) +S(r, f) and N<3<r,fL_C) =S, f).

LemmA 2 ([10]). Let hy and hy be two nonconstant meromorphic functions
satisfying
N(ryhi) +N(r,1/h;) = S(r), i=1,2.

If hihi — 1 is not identically zero for all integers s and t (|s| + |t| > 0), then for any
positive number &, we have

N(ryhy = 1,hy = 1) <eT(r) + S(r),
where T(r) = T(r,h) + T(r,hy) and S(r) = o(T(r)) as r — oo, except for a set of

r of finite linear measure.

Lemma 3 ([13]). Suppose that f(z) is a nonconstant meromorphic function,
and a\(z),ax(z),...,a,(z) are distinct small functions of f(z). Then for any
positive number &, we have

q. _ 1
(q—2)T(r, f) < ;N(r, = a_,> +eT(r, f) + S(r, f).

LEMMA 4. Let hy hy and h be nonconstant meromorphic functions such that
T(r,h)) < cT(r,h)+S(r,h) (i=1,2), where ¢ is a positive constant, and

— —( 1
N(r,h;) —l—N(r,F) =S(rh), i=1,2.

Let a and b be two small meromorphic functions of h. If the function f =
ahy + bhy + 1 is not constant, then

N (r, }) _ S(r ).

Proof. Let o; =h{/h; (i=1,2). By the lemma of logarithmic derivative
and the conditions of Lemma 4, we have T(r,a;) =S(r,h) (i=1,2). Let
ay=a +auy, by =b' +buwy, ap=a]+ayy and by = b{ + bjop. It is obvious
that T(r,a;) = S(r,h) and T(r,b;) = S(r,h), i=1,2. If both a; and b; are
identically zero, then both ah; and bh, are constant, which implies that f is a
constant. This contradicts the assumption. Without loss of generality, we may
assume that b; is not identically zero.

Suppose that zy is zero of f of multiplicity > 3, but not a zero or pole of
o; (i=1,2). Then we have
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3) f(z0) = a(z0)hi(20) + b(z0)h2(20) +1 =0,

(4) f'(z0) = a1(z0)h(20) + b1(20)h2(20) = 0,

(5) S"(20) = az(z0)h1(20) + ba(20)ha(z0) = 0.

If zy is not zero or pole of b;, then from (4) and (5) we have
)

ax(z0)  ba(zo
ai(zo)  bi(zo)’

If ay/a; # by /by, then we get

_ 1 — 1
Nialr=)|<N|lr,— | < S(r,h).
(3< f) ( az/al—bz/bl> ()
Suppose that ay/a; = by/b;. We get

a; hy by
© a b b
By integration, we get
(7 arhy = cbiha,

where ¢ is a nonzero constant. From (4) and (7), we get (¢ + 1)b;(z0)h2(z0) = 0.
Note that h;(zg) #0 (i=1,2). We have ¢ = —1. Thus ' =ajh; +bjhy =0, it
follows that f is a constant, a contradiction. Hence zp must be a zero or pole of
bi. Therefore, we have

— 1
N(3 (l’,7> < T(r,by)+ S(r,h) < S(r, h),
which completes the proof of Lemma 4. O

LeEMMA 5. Suppose that [ and g are nonconstant meromorphic functions,
F=F(f,g) is a polynomial in f and g with coefficients being small functions with
respect to f and g. The degree of F about f is p, and the degree about g is q.
Then we have

(8) T(r,F) < pT(r,f) +4qT(r,g) + S(r, ).

Proof. The function F can be written as F = 7 _ ¢ f kg where ¢, are
small functions with respect to f and g, and 0 < n; <g¢. It is obvious that

) N(r,F) < pN(r, f) 4+ qN(r,g) + S(r, f).

To estimate m(r,F), for a fixed positive number r, we set A} =
{0€0,2n] : |f(re?)| <1}, Ay =[0,27]\4;, By = {0€0,2x] : [g(re”)| < 1}, and
Bz = [0, 27‘[]\31 Then
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m(r,F) = %L , log"|F(re™)| dO + %L Ny log"|F(re™)| dO

1 J 0 1 0
+— log™ |F(re' dH—J log™|F(re™)| do.
s toerRCen dos [ togtlr(e)

Simple computation shows that

J Y do < J d do,
ANBy A1NB;

J Y do < qJ log"|g(re™)]| d0+J ® do,
Ai1NB, A1NB, A1NB,

J WY d < pJ log™|f (re')| dO + J ® do,
A>NB, A>NB, A>,NB,

J W do < pJ log*|f (re™)| d0+qJ
A,NB, ANBy

A>NB,

log™|g(re™)| dO + J D do,

A>NB,

where W =log"|F(re?”)] and @ =log" (37 |ck(re®)]). By adding these
inequalities together, we get

(10) m(r, F) < pm(r, ) + gm(r, g) + S(r, f).

The desired inequality follows from (9) and (10). O

3. Proofs of the results

Proof of Theorem 1. Without loss of generality, we assume that f and g
share the pairs 0, 1, co CM*, and share the pair (a,b) IM*, where a (£ 0,1, )
and b (#£0,1, c0) are small functions of f and g, otherwise, we can consider the
following transformation

pof-a m—a o g—bi b —bs

f—a3 aa—a g—>by by—bi

By Nevanlinna’s second main theorem, we have

f=1 S
p(r,f=0,9=0)+Ng(r,f=1,9g=1)
+ Ne(r, f =0, =0)+S(r, f)
<3T(r,g)+ S(r, f).

Similarly, we have T(r,g) <3T(r,f)+ S(r,g). Therefore, an S(r,f) is an
S(r,g), and vice versa. We write S(r) = S(r, f) = S(r,g). Let

T(r,f) < N(r,f)+ ]V(r, ;) + N(r, l) + S(r, f)
<N
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b f Cbh—1 f—1
(11) =g =T

Since f and ¢ share 0, 1, oo CM*, we have

(12) N(r.hy) +N<r,hli) =S(r), i=1,2.

It is obvious that T'(r,h;) < T(r,f)+ T(r,g) + S(r) <4T(r, f)+ S(r).

Suppose that f is not a quasi-Mobius transformation of g. Then /; and 7y
can not be small functions of f and g. Since f and g share the pair (a,b) IM*,
by Theorem A, we have a #b. By Lemma 1, we get

T(r, f) §2N<r,]%a> +S(r) <2N(r, f =a,g =b) + S(r)

§2N(r,h1 =1,h= 1)+S(}’)

By Lemma 2, there exist two nonzero integers s; and 7 such that ' = hy'. Let
d be the greatest common factor of s; and f;. Then there exist a nonzero
constant ¢ such that h{ = ch}, where s=us,/d and t=1t/d. Note that there
many common l-points of 4; and h;. Therefore, c = 1. Thus we have 4] = hl.
Since s and ¢ are relatively prime to each other, there exist two nonzero integers u
and v such that us+ovr=1. Let

(13) h = h{hj.
Then we have
(14) hl - ht, hz =h’.

Without loss of generality, we can assume that s > 1. From (11) and (14), we
get

(15) f—a— (1 —a)h*+ah' —1

ala—1) h —bhs + (b — 1)k’
bb—1) a—1 a, a—1, a,
=1 " =1 "

If No(r,1/f —a) = S(r) and N(5(r,1/g — b) = S(r), then f and g share the pair
(a,b) CM*. Thus, by Theorem B, f and g must be linked by a quasi-Mobius
transformation. Thus we may assume, without loss of generality, that

— 1
N(2<’7f—_a> #S(r).
Suppose that zy is a multiple zero of f — a, but not the zero or pole of a, b,

not the 1-point of a, b either. It follows from (15) that z; must be a multiple
zero of A*t' —bh*+ (b— DI, ie.,

(B = bh* + (b — 1A'} (z0) = 0,
{((s + O = sbh* + (b — V)h")o — b'h* + b'h'}(zo) = 0,

’ gib:
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where o = h’/h # 0, which is a small function of f. Note that f and g share
the pair (a,b) IM*. From (11) and (13), we get h(z9) = 1. It follows from the
above equation that o(z) =0 or s — (s — 1)b(z9) = 0. Since N5(r,1/(f —a)) #
S(r) and o # 0, we get

s—(s—0)b=0.

Hence b =s/(s—1t) is a constant. Since f and g share oo CM* and share the
pair (a,b) IM*, we can see from (15) that the two functions

(16)  F(h):==h™" —bh* + (b—1)h' and G(h) == (1 — a)h® +ah' — 1

share 0 IM*. Suppose that z; is a common zero of F and G, but not the zero or
pole of a, not the 1-point of a either. Then we have

b(Z]) -1
a(zl) —1 ’

It follows that /(z;) = 1 or h(zy) = ro(z1), where ro := {(b—1)/(a—1)}"(b/a)" is
a small function of f, and rg # 0. Therefore, F and G can be expressed as

(17)  F=Aih"(h—1)""(h—rp)? and G = Aok (h — 1) (h — 1ro)®,

where A; is a small function of f, and k;, p;, ¢; are non-negative integers. By
Lemma 4, we see that p; <2 and ¢; <2. Since & =1 is a root of G(h) =0, and
a multiple root of F(h) =0. We have p; =2 and p, > 1. Note that there are
three terms in F(h). We get ¢ < 1.

If pp=2, then A=1 is a multiple root of G(h) =0. By the arguments
similar to that in the above, we can prove that a = s/(s —t) = b. Therefore, f
and g share ¢ IM*. By Theorem B, f is a quasi-Mé&bius transformation of g,
which contradicts the assumption. Hence p, = 1.

From (16), we see that there are at most three terms in G(k). Thus ¢, > 1.
And then ¢g; > 1, otherwise F and G can not share 0 IM*. Hence ¢; = 1. Then
we have

b(z1)
a(zl

hS(Zl) = ht(Zl) =1 or hS(Zl) = ht(Zl) =

~—

A
(18) F:Z?”%M—UG

By computation,
(19) (h—1)G=(1—a)h*™ — (1 —a)h* +1+ah™" —ah' — h.

However, there are at most three terms in F(4). This may be occur only when
t=1,s=2,b=2o0rt=—-1,5s=1,b= % In both cases, F' can be expressed as
A h*¥ (h — 1), which shows that F(h) can not be the form 4h% (h — 1)*(h — ry),
ro # 0. So, if f is not a quasi-Mobius transformation of g, then we will arrive at
a contradiction. This also completes the proof of Theorem 1. O

Proof of Theorem 2. By utilizing quasi-Mobius transformation, we assume,
without loss of generality, that none of ¢; and b, (j =1,...,5) is infinity. Let £
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be the quasi-Mobius transformation such that a; = £(b;), j=1,2,3. Note that
f and g share (a;,b;) IM* (1 < j<4). A quantity S(r, f) is also a S(r,g), and
vise versa. For convenience, in the sequel we write S(r) := S(r, f) = S(r,g) and
S*(r) :=S*(r, f) = S*(r, 9).

Assume f is not a quasi-Mobius transformation of g, then we have

20 SN(r ) <K (r) 50 < T + 700 + 0

j=1 7f_af B

By Lemma 3, we have

(21) 3T(r,f)£Z]V(r, ! )—l—S*(r).

From (2), (20) and (21), we get

3T(r, f) < T(r, f)+ T(r,g) +]V<r,

That is

(22) 2T(r,f)ST(r,g)+]V<r, ! >+/1T(r,f)+S*(r).

Similarly, we have

(23)  2T(r,f) < T(r,g) +N(r, >+/1T(r,f) +S*(r), j=1,2,3.

1
S —aq
Adding the three inequalities in (23) together and using (20) again yield

6T (r,f)<3T(r,g)+T(r,f)+ T(r,g)+ 32T, f)+ S*(r).

Hence

(24) ST(r,f) <4T(r,g) + 32T (r, f) + S*(r).
Symmetrically, we have

(25) 5T(r,g) <4T(r, )+ 3AT(r,g9) + S*(r).

Add the above two inequalities yield
T, )+ T(r,g) <3M(T(r, f)+T(r,g))+S*(r).

This is impossible for the number A < 1/3. Hence f must be a quasi-Mobius
transformation of ¢. ]

Proof of Theorem 3. Without loss of generality, we assume that a; # oo,
bj#w (j=1,...,6), and a# co. Furthermore, we may assume (a;,b) =
(0,0), (a2,b2) =(1,1), and (as,b3) =(—1,—1). It is not difficult to find five
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small functions ¢; (j=1,...,5) (at least one of them is not identically zero) such
that the following function

(26) F:=F(f,9) =caf’g+cfg+csf*+af +csg
satisfy F(a;,b;) =0 for j=1,...,5. By Lemma 5, we have
(27) T(r,F)<2T(r,f)+T(r,g)+ S(r).

If F =0, then (c1f?+caf +¢s5)g=—(c3f>+caf). Note that at least one
of ¢; is not zero. Therefore, cif?+crf +c5s#0. Hence

af’+af
cif?+ e f +cs.

Since g is not a quasi-Mobius transformation of f, the right-hand side of the
above equation is irreducible. Therefore, T(r,g) = 2T (r, f) + S(r). By Lemma
3, we have

( ! ) 5 (1)

<S5T(r, f)+ S*(r).

Therefore, 67 (r, f) < 5T(r, )+ S*(r), which is impossible. Hence F # 0.
Since f and g share the five pairs (a;,b;) IM*, and F(a;,b;) =0 for

(28) g=-

2|

2\

T(r,g) stj
j=1
5
<2
J=

j=1,...,5 by Lemma 3 and Lemma 5, we have
4T(rf)<ZS:ZV<r ! )-I—N(r ! )4—5*(1’)
’ o f—a f —as
1\ - .
SN(V’F>+N<r’f—a6>+S (r)
— 1
<27 1)+ ) + N () 4570
S —as
Therefore,
(29) 2T(0f) £ T(0) + N () 4570
—ds

which implies that
(30) I(r,f)<T(r,g)+S"(r).
Symmetrically, we have

(31) T(r,g) < T(r,f)+ S*(r).
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This proves (a). It follows from (31) and Lemma 5 that

iﬁ(r, : > < ]V(r,}:) +S(r) < 3T(r, f) + S*(r),

= S

By Lemma 3, the opposite inequality also holds. Therefore, (b) holds. From
(21), (20) and (31), we get

37(r, f) <2T(r, f) + N(r, f—_l a4> + N(h

That is

_ 1 — 1 .
T(r,f) < N<r’f—a4> —|—N<r7f — as) + S*(r).
Similarly, we can deduce that
(32) T(r,f) < ]V(r, ﬁ) + ]V(r, f;aj) + S*(r)

holds for i,j=1,...,5 and i # j. Therefore, (c) holds. From (32), (20) and
(31), we have

3T(r, f) < iﬁ(r,l>+3ﬁ(r, , : >+S*(r)

j=1 f_a./

This gives

/= a4> +50

T(r,f) <3N (r,

Similarly, we can obtain

T(r,f) S3N(r,.1>+5*(r), i=1,...,5,

_ai

which shows that (d) holds. From (29), (30) and (31), we can deduce

(33) T(r,f) < N(r,f ! >+S*(r).

_a6

Therefore, (¢) holds. By arguing similarly to that in the proof of (b), we have

4
SN (o) N0 =g = be) 370 ) 4570,
i=1 !
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Therefore,

1
S —as

5
]V(r ! >§3T(r,f)+lv<r,
=1

f—a >_N(V’f_a‘”g_b6)+5*(7)-

1

From this and Lemma 3, we get

N(r7f:a6vg:b6) SN("v
Similarly, we have

N(Vaf—%,g—be)SN(r, >+S*(r), i=1,...,4.

b
f—ai
Add the five inequalities together and then use (b), we get

SN(r. f =as,g = be) < 3T(r, f) + S™(r).

So, (f) holds.
Suppose furthermore that ¢; =b; for i =1,...,4. We have

4
(34) 2 N<r, ﬁ) < N(r,f 1_ g) <27(r, f) + S*(r).
From this and by (c), we get

(35) N<r’_fia,->+]v(r’fiaj>ST(r’f)+S*(r)'
And thus

36) N(rtg )+ N (ryt ) = TO 45700 =L

which yields

(37) N(r,

1 . .
f'—a[):T(r"f)+S (r), i=1,...,4.

— 1
From this and (b), we get N <r,—> =T(r,f)+ S*(r). This also completes
the proof of Theorem 3. f—as O

4. Concluding remark and questions

We are unable to show whether the number 1/3 in Theorem 2 is best or
not. So we propose the following question for further study.
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QUESTION 1. Suppose that f and g are two nonconstant meromorphic
functions, a;, b; (j=1,...,5) are small functions with respect to /" and g, and
a; # aj, b; # b; whenever i # j. Can one find a number d > 1/3 such that f
must be a quasi-Mobius transformation of g as long as f and g share the four
pairs (ax,br) IM*, 1 <k <4, and the inequalities

]V(r,f _1 as) <AT(r,f)+ S(r,f) and N(r,m

) < iT(r,9) + S(r,9)
hold for all 1€ [0,d)?

From (d) in Theorem 3, we can see that ©(a;, /) < 3, i=1,...,5, provided
that /" and g share five pairs (a;,5;) IM*, and f is not a quasi-Mdbius transfor-

mation of g. Thus we have the following question.

QUESTION 2. Suppose that f and g are two nonconstant meromorphic
functions sharing five pairs of small functions (a;,b;) (i=1,...,5), and f is not
a quasi-Mobius transformation of g. What is the minimal number x such that
O(a;, /)< i=1,...,5?

By consideration of the functions f and § in (1), we see that the number d in
Question 1 must be less than or equal to 1/2, and the minimal number u in
Question 2 can not be less than 1/2.

From Theorem 1, we see that two meromorphic functions must be linked by
a quasi-Mobius transformation if they share three pairs of small functions CM*,
and share another pair of small functions IM*. The following conjecture is
reasonable.

CONJECTRUE. Suppose that f and g are two nonconstant meromorphic
Sfunctions sharing five pairs of small functions (a;,b;) IM* (i=1,...,5). If
two of the pairs are shared in the sense CM*, then f must be a quasi-Mdbius
transformation of g.
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