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ON THE HOLOMORPHIC INVARIANTS

FOR GENERALIZED KÄHLER-EINSTEIN METRICS

Yuji Sano

Abstract

In [9], Mabuchi extended the notion of Kähler-Einstein metrics to the case of Fano

manifolds with novanishing Futaki invariant. We call them generalized Kähler-Einstein

metrics. He defined the holomorphic invariant aM in terms of the extremal Kähler

vector field, which is the obstruction for the existence of generalized Kähler-Einstein

metrics. The purpose of this short paper is to show that the above obstruction is

actually equivalent to the vanishing of the holomorphic invariant of Futaki’s type de-

fined by Futaki [4] (see also [8]). As its corollary, we can show that CP2aCP2 admits

generalized Kähler-Einstein metrics by the method using multiplier ideal sheaves in [6].

1. Introduction

Let ðM;WÞ be an n-dimensional Kähler manifold with Kähler class W. For

a Kähler form o ¼
ffiffiffiffiffiffiffi
�1

p

2p

P
i; j gij dz

i5dz j , we denote its Ricci form by RicðoÞ ¼

�
ffiffiffiffiffiffiffi
�1

p

2p
qq log detðgijÞ. The Kähler form o is called a Kähler-Einstein form when

its Ricci form is proportional to o. Since the Ricci form represents the first
Chern class of M, when we consider the problems concerning Kähler-Einstein
metrics we should assume that the Kähler class W is proportional to c1ðMÞ, that
is to say, c1ðMÞ has a definite sign. Although the existence problem of Kähler-
Einstein metrics for the case when c1ðMÞ is negative definite is solved by Aubin
and Yau independently and the case when c1ðMÞ is zero is solved by Yau, the
existence problem for the case of c1ðMÞ > 0 (the Fano case) is still open. In this
paper, we assume ðM; c1ðMÞÞ be a Fano manifold. For a Kähler form o, we
denote the Einstein discrepancy function by ho such that

RicðoÞ � o ¼
ffiffiffiffiffiffiffi
�1

p

2p
qqho;

ð
M

ehoon ¼
ð
M

on:
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One of the well-known obstructions for the existence of Kähler-Einstein metrics
on Fano manifolds is the vanishing of the holomorphic invariant F : hðMÞ ! C
introduced by Futaki [2] (which is often called Futaki invariant)

F ðXÞ :¼
ð
M

Xhgo
n
g ;

where hðMÞ is the Lie algebra of holomorphic vector fields. In [9], Mabuchi
extended the notion of Kähler-Einstein metrics to the case of Fano manifolds
with non vanishing Futaki invariant F as follows; the Kähler form og is ‘‘Kähler-
Einstein’’ in the sense of [9] if and only if the complex gradient vector field

gradCoð1� ehgÞ :¼ 1ffiffiffiffiffiffiffi
�1

p
X
ij

gij qð1� ehgÞ
qz j

q

qzi

of 1� ehg is holomorphic. To avoid confusion, we call it a generalized Kähler-
Einstein form throughout this paper. Note that generalized Kähler-Einstein
forms are just the ordinary Kähler-Einstein forms when Futaki invariant
vanishes. Mabuchi introduced the holomorphic invariant aM as an obstruction
of Futaki’s type for generalized Kähler-Einstein metrics, which is described in
terms of the extremal Kähler vector field introduced by Futaki and Mabuchi [5].
To be self-contained, let us recall the definition of the extremal Kähler vector
field. Let

~kko :¼ j A Cy
R ðMÞ j gradCo j A hðMÞ;

ð
M

jon ¼ 0

� �
:

Let pr : L2ðM;oÞR ! ~kko be the orthogonal projection, where L2ðM;oÞR is the
Hilbert space of all real-valued L2-functions on ðM;oÞ. Then, we define the
extremal Kähler vector field by

no :¼ gradCo prðsðoÞ � ŝsÞ ¼ gradCo prð1� ehoÞ;ð1Þ

where sðoÞ is the scalar curvature and ŝs is its average. (cf. [5] and Theorem 2.1
in [9] for the second equality in (1).) Now we let

aM :¼ max
M

prð1� ehoÞ;

which is independent of the choice of o. Mabuchi (Theorem 3.1 in [9]) proved
the following obstruction for generalized Kähler-Einstein metrics as the analogue
of Futaki’s obstruction.

Theorem 1.1 (Mabuchi). Let ðM; c1ðMÞÞ be a Fano manifold. If M admits
generalized Kähler-Einstein metrics, then aM < 1.

On the other hand, Mabuchi extended the notion of generalized Kähler-
Einstein metrics as Einstein multiplier Hermitian metrics of some type s in [10]
with respect to the Hamiltonian holomorphic vector field X ¼ �no. We will
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recall it in Section 2. Futaki ([4], also Li [8]) defined the holomorphic invariant
F s
X as the generalization of Futaki invariant for Einstein multiplier Hermitian

metrics. Its definition also will be illustrated in Section 2. Then, our main
result is

Theorem 1.2. Let ðM; gÞ be a Fano manifold with a Kähler metric g which
represents c1ðMÞ. Let nog

be the extremal Kähler vector field. For the multiplier
Hermitian structure of type of sðsÞ ¼ �logðsþ cÞ for some c > aM with respect to
X ¼ �nog

, the holomorphic invariant F s
X vanishes if and only if aM < 1.

Kähler-Ricci solitons can be regarded as one of Einstein multiplier Hermi-
tian metrics. (As for Einstein multiplier Hermitian metrics, see Section 2.)
Futaki and the author extended Nadel’s multiplier ideal sheaves to the case of
Kähler-Ricci solitons in order to show their existence ([6]). We can extend this
method also to the case of Einstein multiplier Hermitian metrics of any s (Section
3). Combining Theorem 1.2 we have

Corollary 1.3. CP2aCP2 admit generalized Kähler-Einstein metrics in
c1ðMÞ.

This example is found by Mabuchi by solving an ODE (see Example 5.8
[9]). We remark that the above example is a non Kähler-Einstein manifold due
to Matsushima’s obstruction [11], so the above generalized Kähler-Einstein
metrics are not the ordinary Kähler-Einstein metrics. As for other examples
of generalized Kähler-Einstein manifolds, see Section 5 in [9]. The organization
of this paper is as follows. In Section 2, we recall Einstein multiplier Hermitian
metrics and the definition of the holomorphic invariant F s

X . Then we complete
the proof of Theorem 1.2. In Section 3, we explain the extension of multiplier
ideal sheaves to the case of Einstein multiplier Hemitian metrics. In Section 4,
we complete the proof of Corollary 1.3.

Acknowledgements. The author thanks Yanir Rubinstein for his detailed and
useful remarks and comments. This work is supported by JSPS-EPDI fellowship
and done during the author’s stay in Institut des Hautes Études Scientifiques.
He thanks IHES for its kindly hospitality.

2. Einstein multiplier Hermitian metrics

In this section, we shall recall Eintein multiplier Hermitian metrics and
complete the proof of the main theorem. Firstly let us recall multiplier
Hermitian metrics. Let ðM; gÞ be a Fano manifold. For a non trivial holo-
morphic vector field X , let

KX :¼ fo A c1ðMÞ jLXR
o ¼ 0g
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where XR :¼ X þ X and LXR
is the Lie derivative along XR. Suppose that X is

Hamiltonian, that is to say, to each o A KX we can associate a real-valued
function yX ;o A Cy

R ðMÞ such that

X ¼ gradCo yX ;o;

ð
M

yX ;oo
n ¼ 0:

Let lmin;X :¼ min yX ;o, lmax;X :¼ max yX ;o which are independent of the choice of
o A KX ([5]). Let sðsÞ be a real-valued smooth function defined on the interval
½lmin;X ; lmax;X � satisfying one of the following conditions:

(a) _ssa 0a €ss
(b) €ssb 0

where _ss and €ss are the first derivative and the second derivative of s respectively.
To each o A KX , Mabuchi denotes a multiplier Hermitian metric of type s by a
conformally Kähler metric ~oo :¼ o expð�sðyX ;oÞ=nÞ. Since the multiplier Her-
mitian metric ~oo can be regarded as an Hermitian metric on the holomorphic
tangent bundle TM of M, it induces an Hermitian connection

~‘‘ ¼ ‘� qðsðyX ;oÞÞ
n

idTM ;

where ‘ is the natural connection with respect to o. Then the Ricci form
RicsðoÞ of ð ~oo; ~‘‘Þ equals to

RicðoÞ þ
ffiffiffiffiffiffiffi
�1

p

2p
qqsðyX ;oÞ;

and we call a form ~oo satisfying RicsðoÞ ¼ o an Einstein multiplier Hermitian
form. Futaki defined the holomorphic invariant for Einstein metrics in the sense
of multiplier Hermitian metrics in [4] as follows;

F s
X ðYÞ :¼

ð
M

Y ðho þ sðyX ;oÞÞe�sðyX ;oÞon; Y A hðMÞ:ð2Þ

As the ordinary Futaki invariant, F s
X is also independent of the choice of g and a

Lie algebra character, and the obstruction for the existence of Einstein multiplier
Hermitian metrics.

Now let us see that generalized Kähler-Einstein metrics are Einstein mul-
tiplier Hermitian metrics. Firstly, take the extremal Kähler vector field no as
�X . Next let sðsÞ ¼ �logðsþ cÞ where c is a constant strictly greater than aM .
Then, since ffiffiffiffiffiffiffi

�1
p

2p

 !�1

ðRicsðoÞ � oÞ ¼ qqðho � logð�prð1� ehoÞ þ cÞÞ

¼ �qq logðe�hoð�prð1� ehoÞ þ cÞÞ;

so we find that ~oo is an Einstein multiplier Hermitian form if and only if

prð1� ehoÞ ¼ c� ec
0þhoð3Þ
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for some constant c 0. Since
Ð
M
prð1� ehoÞon ¼ 0 and

Ð
M
ehoon ¼

Ð
M
on, we

have ec
0 ¼ c ¼ 1. So (3) implies

gradCoð1� ehoÞ ¼ gradCoðprð1� ehoÞÞ A hðMÞ;
that is to say, o is a generalized Kähler-Einstein form. Now let us complete the
proof of Theorem 1.2.

Proof of Theorem 1.2. Let us consider F s
X for generalized Kähler-Einstein

metrics, i.e.,

X ¼ �no

yX ;o ¼ �prð1� ehoÞ
sðsÞ ¼ �logðsþ cÞ; c > aM :

To each holomorphic vector field Y , we can associate a function ~yyY ;o A Cy
C ðMÞ

satisfying

gradCo
~yyY ;o ¼ Y ;

ð
M

~yyY ;oe
hoon ¼ 0:

Then, we have

1ffiffiffiffiffiffiffi
�1

p ~yyY ;o ¼ 1ffiffiffiffiffiffiffi
�1

p Do
~yyY ;o � Yho;ð4Þ

where Do :¼ �
P

i; j g
ij q2

qziqz j
is the complex Laplacian with respect to o.

Remark that this Laplacian has the opposite sign of the ordinary one. The
equality (4) comes from the proof of Theorem 2.4.3 in p. 41 [3] (also (2.1) in [15]).
To see it, for any point x A M let us choose a local coordinate near x such that
gij ¼ dij at x. Then, at x the Ricci identity implies

qjð~yyY ;o � Do
~yyY ;o þ

ffiffiffiffiffiffiffi
�1

p
YhoÞ ¼ ð~yyY ;oÞj þ ð~yyY ;oÞii j þ fð ~yyY ;oÞiðhoÞigj

¼ ð~yyY ;oÞj þ ð~yyY ;oÞii j þ ð ~yyY ;oÞiðhoÞij
¼ ð~yyY ;oÞj þ ð~yyY ;oÞii j þ ð ~yyY ;oÞiðRicij � gijÞ

¼ ð~yyY ;oÞii j þ ð ~yyY ;oÞi Ricij

¼ ð~yyY ;oÞi ji � ð ~yyY ;oÞ�kk Rickj þ ð~yyY ;oÞi Ricij ¼ 0;

hence ~yyY ;o � Do
~yyY ;o þ

ffiffiffiffiffiffiffi
�1

p
Yho is constant on M. Furthermore, we find that

~yyY ;o � Do
~yyY ;o þ

ffiffiffiffiffiffiffi
�1

p
Yho equals to zero, because the definition of ~yyY ;o and an

integration by parts implyð
M

ð~yyY ;o � Do
~yyY ;o þ

ffiffiffiffiffiffiffi
�1

p
YhoÞehoon ¼

ð
M

ð�Do
~yyY ;o þ

ffiffiffiffiffiffiffi
�1

p
YhoÞehoon

¼ 0:
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From (4), we have

F s
X ðYÞ ¼

ð
M

Y ðho � logðyX ;o þ cÞÞ � ðyX ;o þ cÞon

¼ c

ð
M

Yhoo
n þ

ð
M

ðYhoÞyX ;oo
n �

ð
M

YyX ;oo
n

¼ cF ðYÞ þ 1ffiffiffiffiffiffiffi
�1

p
ð
M

ð� ~yyY ;o þ Do
~yyY ;oÞyX ;oo

n �
ð
M

YyX ;oo
n

¼ cF ðYÞ þ 1ffiffiffiffiffiffiffi
�1

p
ð
M

ð� ~yyY ;o þ Do
~yyY ;oÞyX ;oo

n

� 1ffiffiffiffiffiffiffi
�1

p
ð
M

ðDo
~yyY ;oÞyX ;oo

n

¼ cF ðYÞ � 1ffiffiffiffiffiffiffi
�1

p
ð
M

~yyY ;oyX ;oo
n

¼ ðc� 1ÞFðY Þ;ð5Þ

where F is the ordinary Futaki invariant. The equality (5) comes from Theorem
C in [5] (see also [7]). To see it, let yY ;o A Cy

C ðMÞ be the function satisfying

gradCo yY ;o and
Ð
M
yY ;oo

n ¼ 0. Since yY ;o � ~yyY ;o is constant and yX ;o A ~kko, it
is su‰cient to show

FðYÞ ¼ 1ffiffiffiffiffiffiffi
�1

p
ð
M

yY ;oyX ;oo
n:

In fact,

F ðYÞ ¼
ð
M

Yhoo
n ¼

ð
M

ðgradCo yY ;oÞhoon

¼ 1ffiffiffiffiffiffiffi
�1

p
ð
M

X
i; j

gij qho

qzi
qyY ;o

qz j
on

¼ 1ffiffiffiffiffiffiffi
�1

p
ð
M

yY ;oðDohoÞon ¼ � 1ffiffiffiffiffiffiffi
�1

p
ð
M

yY ;oðsðoÞ � nÞon

¼ � 1ffiffiffiffiffiffiffi
�1

p
ð
M

yY ;oðprðsðoÞ � nÞÞon ¼ � 1ffiffiffiffiffiffiffi
�1

p
ð
M

yY ;oðprð1� ehoÞÞon

¼ 1ffiffiffiffiffiffiffi
�1

p
ð
M

yY ;oyX ;oo
n:

If aM < 1, then letting c ¼ 1 we find that the holomorphic invariant F s
X

vanishes. Conversely, if F s
X vanishes, then c ¼ 1 (i.e., aM < 1) or the ordinary

Futaki invariant vanishes (i.e., aM ¼ 0, see [9]). r
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3. Multiplier ideal sheaves

In [6], Futaki and the author extended Nadel’s multiplier ideal sheaves ([12])
to the case of Kähler-Ricci solitons, which are Einstein multiplier Hermitian
metrics of type sðsÞ ¼ �sþ ðconstantÞ. In this section, we shall explain the
extension of the multiplier ideal sheaves to the case of Einstein multiplier
Hermitian metrics of all types. In general the multiplier ideal sheaves are
constructed as follows. (In this paper, we adopt the classical definition in [12].
As for the more general definition, see [1].) Let ðM; c1ðMÞÞ be an n-dimensional
Fano manifold with a compact subgroup G of the group AutðMÞ of holomorphic
automorphisms of M. Let S ¼ fuig be a sequence of G-invariant Kähler

potentials in c1ðMÞ such that for any a A
n

nþ 1
; 1

� �
,

sup ui ¼ 0; lim
i!y

ð
M

expð�auiÞon
0 ¼ y;ð6Þ

and for some non-empty open subset U HMð
U

expð�uiÞon
0 aOð1Þ:ð7Þ

(Note that there always exists U satisfying (7) due to the property of pluri-
subharmonic functions. For the detailed proof, see Theorem 3.1 in p. 236 [14].)
For S as above, Nadel constructed a GC-invariant coherent ideal sheaf IS HOM ,
which is called the multiplier ideal sheaf, satisfying

� IS 0OM , IS 0 0
� For a non-negative Hermitian line bundle L,

HqðM;LnISÞ ¼ 0 ðq > 0Þ;ð8Þ

where GC denotes the complexification of G. Remark that we can construct a
coherent ideal sheaf satisfying the same property as in the Kähler-Einstein case

replacing the constant
n

nþ 1
by any positive constant c < 1. Let us consider the

case of multiplier Hermitian structures. Let X be a holomorphic Hamiltonian
vector field whose potential function is denoted by yX A Cy

R ðMÞ with respect to

o. The Kähler form oj ¼ og þ
ffiffiffiffiffiffiffi
�1

p

2p
qqj is an Einstein multiplier Hermitian

metric if and only if j satisfies

detðgij þ jijÞ
detðgijÞ

¼ expðhg � jþ sðyX ÞÞ:ð9Þ

We consider the continuity method for (9)

detðgij þ jt; ijÞ
detðgijÞ

¼ expðhg � tjþ sðyX ; tÞÞ;ð10Þ
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where yX ; t is the potential function of X with respect to ot ¼ og þ
ffiffiffiffiffiffiffi
�1

p

2p
qqjt.

Since the right hand in (10) at t ¼ 0 is uniformly bounded, (10) is solvable at
t ¼ 0 (cf. Appendix 4 in [10]). By the implicit function theorem, the space
T ¼ ft 0 A ½0; 1� j ð10Þ is solvable at t ¼ t 0g is open. By the standard theory, the
closedness of T is equivalent to the uniform C0 estimate of jt. Let b :¼
lmax;X � lmin;X > 0. Mabuchi ([10]) studied in detail that the multiplier Hermi-
tian structures have similar properties to the ordinary Kähler structures. So, by
the similar arguments in [6] we can prove

Proposition 3.1 (Proposition 4.1 in [6]). If there is a real constant

a0 A
nþ b

nþ 1þ b
; 1

� �
and a uniform constant C such that

ð
M

expð�a0ðjt � sup jtÞÞe�sðyX ; 0Þon
0 aCð11Þ

for t A ½0; tyÞ, then (10) is solvable at t ¼ ty. In particular, if (10) is not solvable
at ty A ð0; 1�, then there is a sequence ftig such that ti ! ty andð

M

expð�aðjti � sup jtiÞÞo
n
0 ! y

as i ! y for any constant a A
nþ b

nþ 1þ b
; 1

� �
.

From this proposition, we find that if M does not admit any Einstein
multiplier Hermitian structure of type s the divergence of fjti � sup jtig produces
the GC-invariant multiplier ideal sheaf Is as defined by Nadel in [12]. This
multiplier ideal sheaf Is satisfies the Nadel’s cohomology vanishing theorem (8),

because
nþ b

nþ 1þ b
< 1. Nadel showed the relationship between the subvariety

VHM cut out by the multiplier ideal sheaf I induced by the continuity method
and Futaki invariant ([13]). Futaki and the author extended his result to the
case of Kähler-Ricci solitons (Theorem 1.4 in [6]). Following the similar
arguments, it is easy to check that Nadel’s result can be extended to the
case of Einstein multiplier Hermitian metrics as follows.

Proposition 3.2 ([13], [6]). Let ðM; gÞ be a Fano manifold with a XR-
invariant Kähler metric g whose Kähler form represents c1ðMÞ and a compact
subgroup G of AutðMÞ. Suppose that closedness does not hold for the continuity
method of (10), so that we get a GC-invariant multiplier ideal subvariety Vs HM.
Let Y A hðMÞ be a holomorphic vector field on M such that F s

X ðY Þ ¼ 0. Then we
have Vs QZþðY Þ.
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Here ZðY ÞHM denotes the zero set of Y and

ZþðY Þ :¼ fp A ZðY Þ jReðdivðYÞðpÞÞ > 0g;
where divðY Þ ¼ ðLYvolgÞ=volg and volg is the volume form induced by g. In
general divðYÞ will depend on our choice of volume form. However it is easy to
check that at points where Y vanishes, divðY Þ does not depend on our choice of
the volume form. Therefore, ZþðYÞ is a well-defined set.

4. Proof of Corollary 1.3

In this section, we shall show Corollary 1.3 by using Proposition 3.2.
Firstly, to apply Proposition 3.2, it is necessary to investigate the possible
multiplier ideal subvarieties. The possible multiplier ideal subvarieties on the
surface given by the blow-up of CP2 at one point are determined by using its
symmetry. Let us see it. Let M be the surface obtained by blowing up CP2 at
p0 ¼ ½1 : 0 : 0�. Since M is a toric Fano manifold and its moment polytope has the
Z2-symmetry, M has the action of the compact group G generated by the compact
torus action and the Z2-action. Let p1 ¼ ½0 : 1 : 0� and p2 ¼ ½0 : 0 : 1�. Let E be
the exceptional divisor of the above blow up. Since the proper transform p0p1 on
the blow-up of CP2 at p0 has the self-intersection zero, we can translate it in M. In
fact, since

t1 ¼
1 0 0

0 1 0

0 1 1

0
B@

1
CA

fixes ð1; 0; 0Þ A C3, so we find that t1 A AutðMÞ and the complexification GC
1 of

G1 :¼ t1Gt�1
1 gives rise to the continuous translations of the proper transform

p0p1 in X . By the same way, we have a compact group G2 whose complex-
ification GC

2 gives rise to the continuous translations of p0p2. Let G 0 be the
compact subgroup of AutðMÞ generated by G, G1 and G2. From the invariance
of MIS under ðG 0ÞC-action, we can reduce the possible MIS to the following two
cases; the exceptional divisor E or the ðþ1Þ-curve L which does not intersect
with E.

Next, to apply Proposition 3.2, it is necessary to show the vanishing of the
holomorphic invariant F s

X . For that purpose, we use the following result of
Zhou and Zhu ([16]).

Proposition 4.1 (Proposition 5.1 in [16]). Let prð1� ehoÞ be the potential

function of the extremal Kähler vector field. On CP2aCP2, we have

�2 < prð1� ehoÞ < 1:

Now, we are in position to complete the proof of Corollary 1.3.

Proof of Corollary 1.3. Firstly, combining Theorem 1.2 and Proposition
4.1, we find that the holomorphic invariant F s

�no
ðYÞ ¼ 0 for all Y A hðMÞ where

sðsÞ ¼ �logðsþ 1Þ on CP2aCP2. It is easy to check that there is a holomorphic
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vector field Y A hðMÞ whose real part YR generates a flow which fixes both of E
and L, and flows from E towards L. Since EHZþðYÞ and LHZþð�Y Þ,
Proposition 3.2 implies that the continuity method (10) does not produce any

ðG 0ÞC-invariant multiplier ideal sheaves on CP2aCP2. Hence, CP2aCP2 admits
generalized Kähler-Einstein metrics. r
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