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ON THE HOLOMORPHIC INVARIANTS
FOR GENERALIZED KAHLER-EINSTEIN METRICS
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Abstract

In [9], Mabuchi extended the notion of Kéhler-Einstein metrics to the case of Fano
manifolds with novanishing Futaki invariant. We call them generalized Kéhler-Einstein
metrics. He defined the holomorphic invariant o, in terms of the extremal Kéhler
vector field, which is the obstruction for the existence of generalized Kahler-Einstein
metrics. The purpose of this short paper is to show that the above obstruction is
actually equivalent to the vanishing of the holomorphic invariant of Futaki’s type de-
fined by Futaki [4] (see also [8]). As its corollary, we can show that CP?#CP? admits
generalized Kéhler-Einstein metrics by the method using multiplier ideal sheaves in [6].

1. Introduction

Let (M, Q) be an n-dimensional Kédhler manifold with Kéhler class Q. For
vV—1 A A o .
a Kahler form o = 2_21-_ 79;7dz' AdZ/, we denote its Ricci form by Ric(w) =
v—_1 . n ' i L
- 766 log det(g;7). The Kéhler form w is called a Kahler-Einstein form when

its Ricci form is proportional to w. Since the Ricci form represents the first
Chern class of M, when we consider the problems concerning Kéhler-Einstein
metrics we should assume that the Kéhler class Q is proportional to ¢;(M), that
is to say, ¢;(M) has a definite sign. Although the existence problem of Kéhler-
Einstein metrics for the case when ¢;(M) is negative definite is solved by Aubin
and Yau independently and the case when ¢ (M) is zero is solved by Yau, the
existence problem for the case of ¢;(M) > 0 (the Fano case) is still open. In this
paper, we assume (M,c¢;(M)) be a Fano manifold. For a Kihler form w, we
denote the Einstein discrepancy function by /4, such that

V1 .
Ric(w) — v = ——00h,, J el = J w”.
271' M M
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One of the well-known obstructions for the existence of Kédhler-Einstein metrics
on Fano manifolds is the vanishing of the holomorphic invariant F : h(M) — C
introduced by Futaki [2] (which is often called Futaki invariant)

F(X) = JM Xhyo!,

where h(M) is the Lie algebra of holomorphic vector fields. In [9], Mabuchi
extended the notion of Kéhler-Einstein metrics to the case of Fano manifolds
with non vanishing Futaki invariant F as follows; the Kdhler form o, is “Kéhler-
Einstein” in the sense of [9] if and only if the complex gradient vector field
-6 1 - 6114) 0

C hq . -
grad, (1 : \/_ZU: B
of 1 — e’ is holomorphic. To avoid confusion, we call it a generalized Kihler-
Einstein form throughout this paper. Note that generalized Kéhler-Einstein
forms are just the ordinary Kaéhler-Einstein forms when Futaki invariant
vanishes. Mabuchi introduced the holomorphic invariant o), as an obstruction
of Futaki’s type for generalized Kéhler-Einstein metrics, which is described in
terms of the extremal Kihler vector field introduced by Futaki and Mabuchi [5].
To be self-contained, let us recall the definition of the extremal Kdihler vector
field. Let

%0) = {QG CRw(M) |gradg WGb(M)’JMwwn = O}

Let pr: L>(M,w)g — f, be the orthogonal projection, where L>(M,w)g is the
Hilbert space of all real-valued L’-functions on (M,®). Then, we define the
extremal Kéihler vector field by

(1) Ve := gradS pr(s(w) — §) = gradS pr(1 — e),

where s(w) is the scalar curvature and § is its average. (cf. [5] and Theorem 2.1
in [9] for the second equality in (1).) Now we let

oy 1= MaAx pr(l —e™),

which is independent of the choice of w. Mabuchi (Theorem 3.1 in [9]) proved
the following obstruction for generalized K&hler-Einstein metrics as the analogue
of Futaki’s obstruction.

THEOREM 1.1 (Mabuchi). Let (M, c;(M)) be a Fano manifold. If M admits
generalized Kihler-Einstein metrics, then oy < 1.

On the other hand, Mabuchi extended the notion of generalized Kéhler-
Einstein metrics as Einstein multiplier Hermitian metrics of some type ¢ in [10]
with respect to the Hamiltonian holomorphic vector field X = —v,. We will
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recall it in Section 2. Futaki ([4], also Li [8]) defined the holomorphic invariant
F7 as the generalization of Futaki invariant for Einstein multiplier Hermitian
metrics. Its definition also will be illustrated in Section 2. Then, our main
result is

THEOREM 1.2. Let (M,g) be a Fano manifold with a Kdhler metric g which
represents ¢i(M). Let v, be the extremal Kdihler vector field. For the multiplier
Hermitian structure of type of a(s) = —log(s + c) for some ¢ > oy with respect to
X = —vy,, the holomorphic invariant Fy vanishes if and only if oy < 1.

Kaéhler-Ricci solitons can be regarded as one of Einstein multiplier Hermi-
tian metrics. (As for Einstein multiplier Hermitian metrics, see Section 2.)
Futaki and the author extended Nadel’s multiplier ideal sheaves to the case of
Kaéhler-Ricci solitons in order to show their existence ([6]). We can extend this
method also to the case of Einstein multiplier Hermitian metrics of any o (Section
3). Combining Theorem 1.2 we have

COROLLARY 1.3. CP?*#CP? admit generalized Kdhler-Einstein metrics in
C1 (M)

This example is found by Mabuchi by solving an ODE (see Example 5.8
[9]). We remark that the above example is a non Kéhler-Einstein manifold due
to Matsushima’s obstruction [11], so the above generalized Kéhler-Einstein
metrics are not the ordinary Kaéhler-Einstein metrics. As for other examples
of generalized Kéhler-Einstein manifolds, see Section 5 in [9]. The organization
of this paper is as follows. In Section 2, we recall Einstein multiplier Hermitian
metrics and the definition of the holomorphic invariant F7. Then we complete
the proof of Theorem 1.2. In Section 3, we explain the extension of multiplier
ideal sheaves to the case of Einstein multiplier Hemitian metrics. In Section 4,
we complete the proof of Corollary 1.3.

Acknowledgements. The author thanks Yanir Rubinstein for his detailed and
useful remarks and comments. This work is supported by JSPS-EPDI fellowship
and done during the author’s stay in Institut des Hautes Etudes Scientifiques.
He thanks IHES for its kindly hospitality.

2. Einstein multiplier Hermitian metrics

In this section, we shall recall Eintein multiplier Hermitian metrics and
complete the proof of the main theorem. Firstly let us recall multiplier
Hermitian metrics. Let (M,g) be a Fano manifold. For a non trivial holo-
morphic vector field X, let

Hy :={wec(M)]| Ly, =0}



434 YUJI SANO

where Xg := X + X and Ly, is the Lie derivative along Xg. Suppose that X is
Hamiltonian, that is to say, to each we Ay we can associate a real-valued
function Oy ., € Cg (M) such that

X = gradg 0x, 0, J Ox, 0" = 0.
M

Let Inin, x := min Oy ¢, Imax, x := max 0y, which are independent of the choice of
we Ay ([5]). Let o(s) be a real-valued smooth function defined on the interval
[Imin, x » Imax, x| satisfying one of the following conditions:

(@) 6<0<gd

(b) 6=0
where ¢ and & are the first derivative and the second derivative of o respectively.
To each w € Ay, Mabuchi denotes a multiplier Hermitian metric of type ¢ by a
conformally Kéhler metric & := w exp(—o(fy,,)/n). Since the multiplier Her-
mitian metric @ can be regarded as an Hermitian metric on the holomorphic
tangent bundle TM of M, it induces an Hermitian connection

ﬁ . v O(U(ZX@))

id7w,
where V is the natural connection with respect to w. Then the Ricci form
Ric’(w) of (@®,V) equals to

Ve

. 1
RIC(CU) + 7 550’((9)(’,,,),

and we call a form @ satisfying Ric’(w) = w an Einstein multiplier Hermitian
form. Futaki defined the holomorphic invariant for Einstein metrics in the sense
of multiplier Hermitian metrics in [4] as follows;

(2) Fy(Y):= J Y (ho + 0(0x,0))e " oo Y e h(M).
M
As the ordinary Futaki invariant, F{ is also independent of the choice of g and a
Lie algebra character, and the obstruction for the existence of Einstein multiplier
Hermitian metrics.

Now let us see that generalized Kéhler-Einstein metrics are Einstein mul-
tiplier Hermitian metrics. Firstly, take the extremal Kéhler vector field v, as

—X. Next let g(s) = —log(s + ¢) where ¢ is a constant strictly greater than oy,.
Then, since
-1
A -
( > > (Ric”(w) — @) = 00(hy, — log(—pr(1 — ") + ¢))

— — 08 log(e " (—pr(1 — ") + ¢),
so we find that @ is an Einstein multiplier Hermitian form if and only if

(3) pr(l — o) = ¢ — ¢ the
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for some constant ¢’. Since [, pr(l —e™)w" =0 and [, 0" = [, »", we
have e =c=1. So (3) implies

gradS(1 — ") = gradS(pr(1 — ™)) € h(M),
that is to say, w is a generalized Kéhler-Einstein form. Now let us complete the

proof of Theorem 1.2.

Proof of Theorem 1.2. Let us consider Fy for generalized Kéhler-Einstein
metrics, i.e.,
X=-v,

Ox.0 = —pr(1 — ™)
a(s) = —log(s+¢), ¢>ay.

To each holomorphic vector field Y, we can associate a function 0~y7w e CE (M)
satisfying

gradg Oy =17, J Hyﬁweh"’a)” =0.
M

Then, we have

| S 1
4 0&) Agw_ hwa
@) T=0r0 = =00y

02

where A, = -3, g

PR is the complex Laplacian with respect to w.
Remark that this Laplacian has the opposite sign of the ordinary one. The
equality (4) comes from the proof of Theorem 2.4.3 in p. 41 [3] (also (2.1) in [15]).
To see it, for any point x € M let us choose a local coordinate near x such that
g;=0; at x. Then, at x the Ricci identity implies

6]"(5Y,w - A(ué)’,w + Vv -1 th)

HNYA,U) j_+ (éY w) {( Y,a))i_(hCO)i}f

ll]
éy,w),?(RIC g”)

HY w)l]l (Hy’w)ff RICkJT—i_ (éva)i_ Ricl’j_ = 07

hence BY o —A éy o+ V—1Yh, is constant on M. Furthermore, we find that
0y w—A Hy o+ V—1Yh, equals to zero, because the definition of Hy » and an
integration by parts imply

J (éyw — Awéy’_’w + V-1 th)eh“a)” = J (—Awéyﬂw +v-1 th)eh‘”w”
M M

=0.
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From (4), we have

Fo(Y) = JM Y (hey — 1og(0y.0 + ) - (Ox.00 + )"

CJ thco” + (Y/’lw)ex,wwn - J YHX.(UCU"
M J

M M

= CF( Y) +\/—__1 M(*éva -+ Awéyﬁw)ﬁxﬂwa}" — JM Y@,\z’ww’7

= LF( Y) +ﬁ M(—éY,w + Awéyﬁw)ex_’ww"
1

——— | (AyOy )0y 0"
\/—_le( ¥.0)0%
1

= CF( Y) — \/——_IJM 9)’,(00)(,(00)”
(5) = (¢ = DF(Y),

where F is the ordinary Futaki invariant. The equality (5) comes from Theorem
C in [5] (see also [7]). To see it, let Oy, € C& (M) be the function satisfying
gradg 0y, and IM Oy, o0" =0. Since Oy,, — Oy, is constant and Oy, € fw, it
is sufficient to show

1
F(Y)=——| 0Oy o0x,0".
&) \/——le VolXe®
In fact,
F(Y)= J Yh,o" = J (gradS Oy ) hoo0"
M M
1 i70hg, 0y 4
— ij s n
\/_JM;‘" ozt oz ¢
*LJ Oy o(Aphy)o" = — ! J Oy o(s(w) —n)o"
\/_—1 v Y, o\Bolw - \/_—1 v Y, o
1 1
=———| Oyo(pris(w) —n))o" = ———| Oy.o(pr(l —e"))w"
| O uorist) = m)e” = == 0r(pr1 =)o
1
:ﬁj HY_’wHXYwU)n.
—1Jum

If apr <1, then letting ¢=1 we find that the holomorphic invariant F{
vanishes. Conversely, if F¢ vanishes, then ¢ =1 (i.e., oy < 1) or the ordinary
Futaki invariant vanishes (i.e., oy = 0, see [9]). O
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3. Multiplier ideal sheaves

In [6], Futaki and the author extended Nadel’s multiplier ideal sheaves ([12])
to the case of Kdihler-Ricci solitons, which are Einstein multiplier Hermitian
metrics of type o(s) = —s+ (constant). In this section, we shall explain the
extension of the multiplier ideal sheaves to the case of Einstein multiplier
Hermitian metrics of all types. In general the multiplier ideal sheaves are
constructed as follows. (In this paper, we adopt the classical definition in [12].
As for the more general definition, see [1].) Let (M,¢;(M)) be an n-dimensional
Fano manifold with a compact subgroup G of the group Aut(M) of holomorphic
automorphisms of M. Let S={u;} be a sequence of G-invariant Kéhler

potentials in ¢;(M) such that for any o€ (nj—l’ 1>,

(6) sup u; = 07 111’1’1 J exp(—otu,-)a)g = 0,
1— 00 M

and for some non-empty open subset U « M

(7 JU exp(—u;)wf < O(1).

(Note that there always exists U satisfying (7) due to the property of pluri-
subharmonic functions. For the detailed proof, see Theorem 3.1 in p. 236 [14].)
For S as above, Nadel constructed a GC-invariant coherent ideal sheaf .#5 — Oy,
which is called the multiplier ideal sheaf, satisfying

c Is# Oy, Is#0

* For a non-negative Hermitian line bundle L,

(8) HIM,L® Is)=0 (¢q>0),

where GC denotes the complexification of G. Remark that we can construct a
coherent ideal sheaf satisfying the same property as in the Kédhler-Einstein case

replacing the constant by any positive constant ¢ < 1. Let us consider the

n+1
case of multiplier Hermitian structures. Let X be a holomorphic Hamiltonian
vector field whose potential function is denoted by 0y € Cy’(M) with respect to

. The Kihler form w, = w, + 00p is an Einstein multiplier Hermitian

metric if and only if ¢ satisfies

det(g;; + ¢;7)
We consider the continuity method for (9)
det(g;; + ¢, ;7)

v

©) = exp(hy — ¢ + o(0x)).

(10) = exp(hy — t9 +a(0x 1)),
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\/w

where Oy, is the potential function of X with respect to w, = wy, + —— 06(,0,

Since the right hand in (10) at 7 =0 is uniformly bounded, (10) is solvable at
t=0 (cf. Appendix 4 in [10]). By the implicit function theorem, the space
7 ={t'€[0,1]](10) is solvable at z =1t} is open. By the standard theory, the
closedness of 7 is equivalent to the uniform C° estimate of ¢, Let b:=
Imax, x — Imin,x > 0. Mabuchi ([10]) studied in detail that the multiplier Hermi-
tian structures have similar properties to the ordinary Kéhler structures. So, by
the similar arguments in [6] we can prove

ProposiTiON 3.1 (Proposition 4.1 in [6]). If there is a real constant

n+b .
oy € <7 ) and a uniform constant C such that

+1+5’
(i | exp(-sal, — sup g)e oy < €
M
for t€(0,1y), then (10) is solvable at t = t.,. In particular, if (10) is not solvable
at ty, € (0,1], then there is a sequence {t;} such that t; — t,, and

JM exp(—a(p, — sup ¢,))wy — o0

| — 00 f tant o € ntb 1
as 1 — or any constant o e — .
Y n+14+b’

From this proposition, we find that if M does not admit any Einstein
multiplier Hermitian structure of type o the divergence of {¢, — sup ¢, } produces
the GC-invariant multiplier ideal sheaf .#° as defined by Nadel in [12]. This
multiplier ideal sheaf .77 satisfies the Nadel’s cohomology vanishing theorem (8),

b . . .
because % < 1. Nadel showed the relationship between the subvariety

7" < M cut out by the multiplier ideal sheaf .# induced by the continuity method
and Futaki invariant ([13]). Futaki and the author extended his result to the
case of Kaéhler-Ricci solitons (Theorem 1.4 in [6]). Following the similar
arguments, it is easy to check that Nadel’s result can be extended to the
case of Einstein multiplier Hermitian metrics as follows.

ProposiTioN 3.2 ([13], [6]). Let (M,g) be a Fano manifold with a Xg-
invariant Kdhler metric g whose Kdihler form represents c¢i(M) and a compact
subgroup G of Aut(M). Suppose that closedness does not hold for the continuity
method of (10), so that we get a GC-invariant multiplier ideal subvariety ¥"° = M.
Let Y € h(M) be a holomorphic vector field on M such that FZ(Y) =0. Then we
have v°° ¢ Z1(Y).
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Here Z(Y) = M denotes the zero set of Y and
Z7(Y) :={pe Z(Y)|Re(div(Y)(p)) > 0},

where div(Y) = (Lyvol,)/vol, and wvol, is the volume form induced by g. In
general div(Y) will depend on our choice of volume form. However it is easy to
check that at points where Y vanishes, div(Y) does not depend on our choice of
the volume form. Therefore, Z*(Y) is a well-defined set.

4. Proof of Corollary 1.3

In this section, we shall show Corollary 1.3 by using Proposition 3.2.
Firstly, to apply Proposition 3.2, it is necessary to investigate the possible
multiplier ideal subvarieties. The possible multiplier ideal subvarieties on the
surface given by the blow-up of CP? at one point are determined by using its
symmetry. Let us see it. Let M be the surface obtained by blowing up CP? at
po=1[1:0:0]. Since M is a toric Fano manifold and its moment polytope has the
Z,-symmetry, M has the action of the compact group G generated by the compact
torus action and the Zj-action. Let py=[0:1:0]and p, =[0:0:1]. Let E be
the exceptional divisor of the above blow up. Since the proper transform pop; on
the blow-up of CP? at p has the self-intersection zero, we can translate it in M. In
fact, since

1
Tl = 0

—_— O
- o O

fixes (1,0,0) € C*, so we find that 7; € Aut(M) and the complexification G¢ of
G :=11Gr! gives rise to the continuous translations of the proper transform
pop1 in X. By the same way, we have a compact group G, whose complex-
ification GS gives rise to the continuous translations of pgps. Let G’ be the
compact subgroup of Aut(M) generated by G, G| and G,. From the invariance
of MIS under (G’)C-action, we can reduce the possible MIS to the following two
cases; the exceptional divisor E or the (+1)-curve L which does not intersect
with FE.

Next, to apply Proposition 3.2, it is necessary to show the vanishing of the
holomorphic invariant FJ. For that purpose, we use the following result of
Zhou and Zhu ([16]).

PrOPOSITION 4.1 (Proposition 5.1 in [16]). Let pr(1 —e"») be the potential
function of the extremal Kihler vector field. On CP*#CP?, we have
—2 < pr(l —et) <1.
Now, we are in position to complete the proof of Corollary 1.3.

Proof of Corollary 1.3. Firstly, combining Theorem 1.2 and Proposition
4.1, we find that the holomorphic invariant £, (Y) =0 for all Y € h(M) where

o(s) = —log(s + 1) on CP>#CP?. 1t is easy to check that there is a holomorphic
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vector field Y € h(M) whose real part Yg generates a flow which fixes both of E
and L, and flows from E towards L. Since £ < Z"(Y) and L < Z*(-Y),
Proposition 3.2 implies that the continuity method (10) does not produce any

(G")-invariant multiplier ideal sheaves on CP>#CP?. Hence, CP?>#CP? admits
generalized Kéhler-Einstein metrics. O
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