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TANGENT BUNDLE AND INDICATRIX BUNDLE
OF A FINSLER MANIFOLD

AUREL BEJANCU

Abstract

Let F”" = (M,F) be a Finsler manifold and G be the Sasaki-Finsler metric on
TM°. We show that the curvature tensor field of the Levi-Civita connection on
(TM°,G) is completely determined by the curvature tensor field of Vranceanu con-
nection and some adapted tensor fields on 7M°. Then we prove that (TM°,G) is
locally symmetric if and only if F” is locally Euclidean. Also, we show that the flag
curvature of the Finsler manifold F” is determined by some sectional curvatures of the
Riemannian manifold (7M°,G). Finally, for any ¢ # 0 we introduce the c-indicatrix
bundle /M(c) and obtain new and simple characterizations of F” of constant flag
curvature ¢ by means of geometric objects on both IM(c) and (TM°,G).

Introduction

The geometry of the tangent bundle 7M of a Riemannian manifold (M, g)
goes back to Sasaki [20], who constructed a natural Riemannian metric G on
TM. Then G was called the Sasaki metric on TM and it was the main tool
in studying interrelations between the geometries of (M,g) and (TM,G). For
results and references on this matter we refer to the excellent survey of
Gudmundsson and Kappos [12]. Many of the research papers on this topic
pointed out deep interrelations between the tangent sphere bundles and the base
manifold (cf. Kowalski-Sekizawa [16], Yampolski [25]).

The purpose of the present paper is to initiate a study of interrelations
between the geometries of both the tangent bundle and the indicatrix bundle of a
Finsler manifold on one side, and the geometry of the manifold itself, on the
other side. As we shall see later in the paper, the extension of the study from
Riemannian manifolds to Finsler manifolds is not an easy task. This is because
a Finsler manifold F" = (M, F) does not admit a canonical linear connection on
M, as it is the Levi-Civita connection on a Riemannian manifold. Thus the
study of the geometry of F” was done by means of some linear connections on
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vector bundles over the slit tangent bundle TM° of M. Here we refer to
Berwald connection, Cartan connection, Chern-Rund connection and Hashiguchi
connection. To develop our study we consider the Sasaki-Finsler metric G on
TM° and instead of the above Finsler connections we take the Vranceanu
connection on TM° induced by the Levi-Civita connection on (TM°,G). It is
noteworthy that the local coefficients of the Vranceanu connection give the local
coefficients of all the above classical Finsler connections and viceversa. In our
study we combine both the classical coordinate approach and the modern
coordinate-free approach.

Now, we outline the content of the paper. In the first section we arrange
some basic formulae from Finsler geometry and define the adapted tensor fields
R, B and C. Then in Section 2 we show that the curvature tensor field R of
the Levi-Civita connection V on (TM° G) is completely determined by the
curvature tensor field R of Vranceanu connection V on TM° and the above
adapted tensor fields (cf. Theorem 2.2). In particular, when F” is a Riemannian
manifold, we obtain some well known results of Kowalski [15]. Section 3 deals
with interrelations between the flag curvature of F™ and the curvature of
(TM*°,G). First, we find an interesting characterization of Riemannian mani-
folds among_ Finsler manifolds by means of the covariant derivative of R with
respect to V (cf. Theorem 3.1). Then we prove that (7M°,G) is locally
symmetric if and only if F” is locally Euclidean (cf. Theorem 3.3). This is
an extension to Finsler manifolds of a result of Kowalski [15] for Riemannian
manifolds. New characterizations of Landsberg manifolds are given in Theorem
3.4. Also, we obtain an important formula which relates the flag curvature of
F™ with some sectional curvatures of (TM°,G) (cf. (3.32)). Then we introduce
the L-horizontal and L-vertical sectional curvatures of (TM°, G) and show that
the flag curvature of F” is completely determined by them (cf. Corollary 3.2).
Finally, we obtain new characterizations of Finsler manifolds of constant flag
curvature via the L-horizontal and L-vertical curvatures (cf. Theorems 3.8 and
3.9). In the last section we define for any ¢ # 0 the c-indicatrix bundle IM(c)
and construct a contact metric structure (¢, &,7,g) on it. Then we obtain simple
characterizations of F”" of constant curvature ¢ by means of the structure tensor
field ¢, the Levi-Civita connection V on (IM(c),g) and the &-horizontal and ¢&-
tangential curvatures of (IM(c),g) (cf. Theorems 4.2, 4.3, 4.4).

1. Preliminaries

Let F”" = (M,F) be an m-dimensional Finsler manifold, where F is the
fundamental function of F that is supposed to be of class C* on the slit tangent
bundle TM°® = TM\{0} (see Bao-Chern-Shen [4], p. 2). Denote by (x/,y’),
i ={1,...,m}, the local coordinates on TM, where (x') are the local coordinates
of a point x e M and (y’) are the coordinates of a vector y e T,M. Then the
functions

1 0°F?
9i =3 oyioyl’
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define a Finsler tensor field of type (0,2) on TM°. The m x m matrix [g;] is
supposed to be positive definite and its inverse is denoted by [¢”]. The following

functions
=% i1 _/k{ ’F 0F2}

L 5yi; 49 6yk6xiy oxk

have an important role in Finsler geometry.

Next, we consider the kernel VTM° of the differential of the projection
map n: TM° — M, which is known as wvertical bundle on TM°. Denote by
'(VTM®) the #(TM°)-module of sections of VTM®°, where & (TM°) is the
algebra of smooth functions on 7M°. The same notation will be used for
any other vector bundle. Locally, I'(FTM°) is spanned by the natural vector
fields {0/dy',...,0/0y™}. Then by using the functions G/ we define the
nonholonomic vector fields

P A R
(11) Q—E—le, le{l,...,m},

which enable us to construct a complementary vector subbundle HTM® to
VTM® in TTM® that is locally spanned by {6/0x!,...,5/6x™}. We call HTM®°
the horizontal distribution on TM°. Thus the tangent bundle of TM*° admits the
decomposition

(12) TTM® = HTM° & VTM°.

Then we can define the Sasaki-Finsler metric G on TM° as follows (cf. Bao-
Chern-Shen [4], p. 48, Bejancu-Farran [6], p. 35, Matsumoto [18], p. 136):

) 0 0 o 0
13 () =6 ) . 6(55a) =0

Now, we define some geometric objects of Finsler type on TM°. First, the
Lie brackets of the above vector fields are expressed as follows:

o0 0] ok 0 k _5Gik 5Gj"
Y sl R WS
and

J 0 G oGk
( ) |:5x1 ) ay/:| i ayk ) ij ji 6)}/

We note that R¥ define a skew-symmetric Finsler tensor field of type (1,2) while
Gk are the local coefficients of the Berwald connection. Some other Finsler
tensor fields defined by Rf; will be useful in a study of Finsler manifolds of
constant flag curvature (see Sections 3 and 4):

(1.6) (a) Ry =gmRj, (b) Ry =Ry, (c) R =g"Ry;.

From their properties we mention the following:
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(a) "Ry =0, (b) y"Ry;y =0, (c) Rj=Ry,

(1.7) @ RE=L R ORF
o3 oyt oy |

On the other hand, since F is positively homogeneous of degree one with respect
to y, several geometric objects on TM° will be positively homogeneous of certain
degrees. In particular, G¥ are positively homogeneous of degree one and by
(1.5) and Euler theorem we obtain

Apart from Gf, the functions F} given by

1 Ogni | Ogni  9gjj
1.9 FF =gty Tn y 2y
(19) 7 =29 \ox +5x’ oxh |’

are involved in both the Chern-Rund connection and the Cartan connection.
Moreover, we have (cf. Bejancu-Farran [6], p. 46)

(1.10) Fl.]],‘yj = G~

By means of Gl-’/? and F[f, we define a symmetric Finsler tensor field of type (1,2)

whose local components are given by

(1.11) Bf = Fj — G}

As a consequence of (1.8), (1.10) and (1.11) we have
(1.12) By =0.

Also, the Cartan tensor field is given by its local components:

1 09ij 1 g
k_ X kn99i !
(1.13) (a) C[j = 59 W or (b) Ciik = 2oy
By the homogeneity condition for F we obtain

Next, we denote by 4 and v the projection morphisms of TTM° on HTM®°
and VTM?® respectively, with respect to the decomposition (1.2). Then by using
the above Finsler tensor fields Ré‘-, C,f and Bf]‘- we define the following adapted
tensor fields:

(1.15) R: T(HTM®) x T(HTM®) — T(VTM®),
.0
_ pkvyi
R(hX,hY) =RLY X«’W,
(1.16) C: T(HTM®) x T(HTM®) — T(VTM®),

_ kvi
ChX,hY) = CjY'XT =2,
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(1.17) B: T(VTM®°) x T(VTM®) — T(HTM"),
s
_ pkyyi
B(UU,UW) = BI/W U‘]w,

where we set

) ) .0 .0
== / . = ! . == ] . == ! L.
hX =X Sx7’ hY =Y S U =U _Gy/ and oW =W e

By using (1.4) and (1.15) it is easy to check that

o o 0
(1.18)  (a) R<@,§> :Rf;ay—k and (b) R(hX,hY) = —v[hX,hY].
Thus HTM* is an integrable distribution if and only if R =0. For this reason
R is known as the integrability tensor field of HTM*°. On the other hand,
the adapted tensor fields B and C represent the obstructions for F” to be a
Landsberg manifold and a Riemannian manifold, respectively. Indeed, F” be-
comes a Landsberg (resp. Riemannian) manifold if and only if B=0 (resp.
C=0).

Finally, we should stress that the adapted tensor field R, B and C together
with the Vranceanu connection (which is constructed in the next section) will play
an important role in the study of interrelations between the geometries of the
tangent bundle and indicatrix bundle of F”* on one side, and the geometry of F”
on the other side.

2. The Levi-Civita connection and the Vranceanu connection on (7M° G)

Let (TM*°,G) be the Riemannian manifold, where G is the Sasaki-Finsler
metric on TM° given by (1.3). Then denote by V the Levi-Civita connection
on (TM°,G), that is, V is given by (cf. Yano-Kon [26], p. 29)

2.1)  26G(VyY,Z)=X(G(Y,Z)) + Y(G(Z,X)) - Z(G(X, Y))
+G(X,Y),2) - G([Y,Z],X) + G(Z,X], Y),

for any X,Y,ZeD(TM°). The Vrdnceanu connection V on TM° that is
induced by V with respect to the decomposition (1.2) is defined by

(2.2) VY =oV,xoY + hV)xhY + v[hX,0Y] + h[vX, Y],

for any X,Y e ['(TM°). Vranceanu [23] introduced V by its local coefficients
for a study of both nonholonomic manifolds and nonholonomic mechanical
systems. The invariant formula (2.2) was given by lanus [14] in the general
context of almost product manifolds. It is noteworthy that the Vranceanu
connection is one of the main tools in a study of the geometry of foliations (see
Bejancu-Farran [7]). In our case, the local coeflicients of V with respect to the

adapted frame field {(%’6%’}’ ie{l,...,m}, on TM° are given by the local
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coefficients of all the classical Finsler connections: Berwald connection, Cartan
connection, Chern-Rund connection and Hashiguchi connection. Indeed, by
using (2.2), (2.1), (1.5), (1.9) and (1.13) we obtain
0 v 0 0 v 0
(a) Va/ayfw =Gy Ea (b) V&/Jﬂg =F; Sk

0 0 0
(€) Vooyi Sy 0, (d) Vs/sus P ’];(3)/_k
Also, we should note that V is an adapted linear connection on 7'M ° with respect
to the decomposition (1.2), that is, both distributions HTM° and VTM°® are
parallel with respect to V. The main purpose of this section is to relate the
curvature tensor fields of V and V by means of R, B and C. First, we prove the
following propositions.

(2.3)

ProposITION 2.1. The Lie brackets on TM° are expressed in terms of
Vrdnceanu connection as follows:

(@) [hX,hY] = VixhY — VyhX — R(hX,hY),
(2.4) (b) [hX,vY] = VuxvY — V,yhX,

(¢) vX,vY] = VxvY — V,yvX,
for any X, Y e [(TTM?).

Proof. By direct calculations using (1.2), (1.18b), (2.2), and taking into
account that V is torsion-free we obtain

X, hY] = h[hX ,hY] + o[hX hY] = h{VjxhY — VyhX} — R(hX,hY)
= VixhY — VyyhX —R(hX, 1Y),
which proves (2.4a). Similar reason applies for proofs of (2.4b) and (2.4c). [ |

ProposITION 2.2. The adapted tensor fields B and C can be expressed in
terms of Vrdnceanu connection as follows:

(2.5) G(B(vX,vY),hZ) = = (V3zG)(vX,vY),

—_ N =

(2.6) G(C(hX,hY),vZ) = = (Vo G)(hX , hY),

2
for any X, Y, Z e '(TTM").

Proof. By using (1.3) and (2.3d) we obtain

27) (Vijoxt G) (Wﬁ_y’) = (Sxki ~ G — gin G-
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Now, we denote by g;;.x the right part in (2.7) and observe that it is just the
h-covariant derivative of g; with respect to the Berwald connection. Then by
using (18.14) and (18.24) from Matsumoto [18] and (1.11) we deduce that

(2.8) gijik = —2Cy" = 29u(Fj — Gp) = 29 B}, = 2Bji,

where “|” represents the #h-covariant derivative with respect to Chern-Rund
connection. Thus from (2.7) and (2.8) we obtain (2.5). Next, by using (1.3) and

(2.3¢c) we infer that

0 1) N 5g!-/
oyk’

(Vosopx G) (57 v

which implies (2.6) via (1.13). [

Next, in order to express the Levi-Civita connection in terms of Vrdnceanu
connection, we define for each of the adapted tensor fields R, C and B a twin
(denoted by the same symbol) as follows:

(2.9) R: [(HTM®) x T(VTM®) — T(HTM®),
G(R(hX,vY),hZ) = GR(hX,hZ),vY),

(2.10) C: T(HTM®) x T(VTM®) — T(HTM®),
G(C(hX,vY),hZ) = G(C(hX ,hZ),vY),
(2.11) B: T(HTM®) x T(VTM°®) — T(VTM®),

G(B(hX,vY),vZ) = G(B(vY,vZ),hX),
for any X,Y,Ze'(TTM°). Now, we can prove the following theorem.

Tueorem 2.1, Let F" = (M, F) be a Finsler manifold. ~Then the Levi-Civita
connection V and the Vrdnceanu connection V on (TM°, G) are related as follows:

(2.12) VixhY = VyxhY — C(hX ,hY) — %R(hX,hY),

(2.13) VixvY = VyyvY + B(hX,vY) + C(hX,vY) + %R(hX, vY),

1
(214)  VorhY = Voxh¥ + C(hY,vX) + 5R(hY,0X) + B(hY,0X),

(2.15) VoxvY = V,xvY — B(vX,vY),
for any X, Y e [(TTM?).

Proof. First, by using (1.2) and (2.2) we obtain
(2.16) G(VixhY,hZ) = G(hVxhY ,hZ) = G(VyxhY,hZ).
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Then, we use (2.1), (1.3), (2.2), (1.18b) and (2.6), and deduce that
(2.17)  G(VyxhY,vZ) = %{—UZ(G(hX, hY)) + G(h[vZ,hX],hY)
+ G(hX,h[vZ,hY]) + G(v[hX,hY]|,vZ)}
= %{—vZ(G(hX, hY))+ G(VuzhX,hY) + G(hX,V,zhY)
— G(R(hX,hY),vZ)}
= —G(C(hX,hY) +%R(hX,hY),vZ).

Thus from (2.16) and (2.17) we obtain (2.12). Next, by using (2.1), (1.3), (2.4b),
(2.6), (1.18b), (2.9) and (2.10) we infer that

(2.18) G(ViyvY,hZ) = % {vY(G(hX,hZ)) + G([hX,vY],hZ)
+ G(hX,[hZ,vY]) — Gv[hX,hZ],vY)}
1

=3 (Vo G)(hX hZ) + % G(R(hX,hZ),vY)

= G<C(hX,vY) + %R(hX, vY),hZ).

Also, by using (2.1), (1.3), (2.4b), (2.5), (2.11), and taking into account that
VTM*® is integrable, we obtain

(2.19)  G(VjyvY,vZ) = %{hX(G(UY, vZ))+ G(VixvY,vZ) — GvY,VixvZ)}

1
= i(VhXG)(vY, vZ) + G(VyxvY,vZ)

= G(VixvY + B(hX,vY),0Z).

Then (2.13) is a consequence of (2.18) and (2.19). Next, (2.14) is obtained from
(2.13) by using (2.4b) and taking into account that V is torsion-free. Finally, we
use (2.1), (1.3), (2.4b) and (2.5), and deduce that

G(VoxvY,0Z) = G(wVoyvY,0Z) = G(V,yvY,vZ),
and

G(VxvY,hZ) = %{—hZ(G(UX,UY)) — G([vX,hZ],vY)
— G(vX,[vY,hZ))} = —G(B(vX,vY),hZ),

which prove (2.15). We should remark that in all these calculations we use the
fact that V is an adapted linear connection on TM°. |
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Now, we want to find interrelations between the curvature tensor fields of \Y
and V. First, we denote by R the curvature tensor field of V, that is, we have

(2.20) R(X,Y,Z)=R(X,Y)Z=VxVyZ—VyVxZ - Vix. v Z,

for any X,Y,ZeT(TTM®). The curvature tensor field of V is denoted by R
and it is given by a similar formula to (2.20).

In order to simplify the presentation of some long formulae we use the
symbol ./(;x y), which means that in the expression that follows this symbol we
interchange 2X and /Y, and then subtract, as in the following formula

Jz/(lz)(,hY){f(h‘X’hY)} = f(thhY) _f(hYahX)'

In a similar way we use the symbol .«/(,x ,y). Now we can state the theorem on
interrelations between R and R.

Tueorem 2.2, Let F" = (M, F) be a Finsler manifold. Then the curvature
tensor field R of the Levi-Civita connection on (TM°,G) is completely determined
by the curvature tensor field R of Vrdnceanu connection on (TM°,G) and the
adapted tensor fields R, C and B as follows:

(221)  R(hX,hY,hZ) = R(hX ,hY ,hZ) + B(hZ,R(hX,hY))
+ C(hZ,R(hX,hY)) + %R(hZ, R(hX,hY))

1
— Q%(hx,h Y) { (th C) (h )77 /12) + E (Vh)(R) (/’l Y, hZ)

+ B(hX,C(hY,hZ)) + %B(hX, R(hY,hZ))

+ C(hX,C(hY,hZ)) + % C(hX,R(hY, hZ))
- %R(hX, C(hY,hZ)) + %R(hX, R(hY,hZ)) }
(2.22) R(hX ,hY vZ) = R(hX,hY ,vZ) — BR(hX,hY),vZ)
+ i { (T BIRY.02) + (T )T 12)
+ ! (VixR)(hY,vZ) + B(hX,B(hY,vZ))

2

+ C(hX,B(hY,vZ)) + %R(hX, B(hY ,vZ))

— C(hX, C(hY,vZ)) — % C(hX,R(hY,vZ))

1 1
— SR(:X, C(hY,vZ)) = R(AX.R(hY, UZ))},
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(2.23) R(wX,vY,hZ) = R(vX,vY,hZ)

+ Akan] (VrCOZ,07) + (VB Z,07)
+ = (VixR)(hZ,0Y) + C(C(hZ,vY),vX)
+ Loz, oy, ox) + éR(C(hZ, bY),0X)

+-R(R(hZ,vY),vX) + B(C(hZ,vY),vX)

N = A= N N

+-B(R(hZ,vY),vX) — B(vX, B(hZ, vY))},

(2.24) R(wX,vY vZ) = R(vX,vY,vZ)

- UQ{(Ume){(VUXB)(UY, vZ)+ C(B(vY,vZ),vX)
+%R(B(UY, vZ),vX) + B(B(vY,vZ), UX)},

(2.25)  R(hX,0Y,hZ) = R(hX,vY ,hZ) + (V;xC)(hZ,vY)

+ (Voy C)(hX ,hZ) + % (VixR)(hZ,vY)

(VoyR)(hX,hZ) + (Vix B)(hZ,vY)

N —

+

_ ClhX, C(hZ, o)) — 2 C(hx, R(HZ, 5Y))

\S]

- %R(hX, C(hZ,vY)) — %R(hX, R(hZ,vY))
+ B(hX, B(hZ,vY)) + C(hX, B(hZ,vY))

1
+5R(WX, B(IZ,vY))

— B(vY,C(hX,hZ)) — %B(UY, R(hX,hZ)),

(2.26)  R(hX,vY,vZ) = R(hX,0Y ,0Z) — (V;xB)(vY,vZ)
— (VoyB)(hX ,vZ) — (V,y C)(hX ,vZ)

- %(VUYR)(hX, vZ) + C(hX,B(vY,vZ))
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+ %R(hX, B(vY,vZ)) + B(vY, B(hX,vZ))
— C(C(hX,vZ),vY) —%C(R(hX,vZ),vY)
— %R(C(hX, vZ),vY) — %R(R(hX, vZ),vY)
— B(C(hX,vZ),vY) — %B(R(hX, vZ),vY),

for any X, Y, Z e '(TTM").

Proof. First, by using (2.12) and (2.13) we obtain

S ~ ~ 1
(2‘27) VixVivyhZ = Vh,\/(vhy/’lZ) - th{C(/’l Y, hZ) +§R(hY, hZ)}

= V]zxvh y/’lZ — C(hX, Vhth) — %R(hX, Vh th)
—Vix(C(hY, hZ)) — %V;IX(R(h Y, hZ))
— B(hX,C(hY,hZ)) — %B(hX, R(hY,hZ))

— C(hX, C(hY,hZ)) — % C(hX,R(hY,hZ))

- %R(hX, C(hY,hZ)) — %R(hX, R(hY,hZ)).

Then, taking into account the decomposition (1.2) and by using (2.12), (2.14),
(2.4a) and (1.18b) we deduce that

(228)  VixinhZ = Vipx.ihZ + Vo, imhZ
= Vix.nmhZ — C(hlhX ,hY], hZ) — %R(h[hX, hY],hZ)
+ Vo wyhZ + C(hZ, olh X, hY)) + B(hZ, o[hX . hY))
+ %R(hZ, ohX hY]) = Vyx iy ihZ — C(VaxhY . hZ)
4 C(VpyhX,hZ) — %R(thh Y, hZ) + %R(VhyhX, hZ)
— C(hZ,R(hX,hY)) — B(hZ,R(hX,hY))

- %R(hZ,R(hX,hY)).
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Next, by direct calculations using (2.20) for both R and R, and taking into
account (2.27) and (2.28) we obtain (2.21). All the other equalities from the
theorem are deduced by similar calculations as above. |

In order to relate the integrability tensor field R of HTM® to the curvature
tensor field R of the Vranceanu connection we consider the horizontal Liouville
vector field

(2.29) L=y —
and prove the following.

PROPOSITION 2.3.  The horizontal Liouville vector field is parallel with respect
to Vrdnceanu connection along the horizontal distribution HTM?®, that is, we have

(2.30) VixL =0, VX eIl (TTM°).

Proof. First, by direct calculations using (1.1) we obtain

oy’ i
Then by using (2.3b), (2.31) and (1.10) we deduce that
) ipk 0 k ipky 9
Vopoxi L = Voppuiy' s 5= 55 55+ V'Fj 55 = (=G + y'Fy) 55 =0,

which proves (2.30). [ |

We also need the almost complex structure J on TM° given by

(2.32) (a) J(;x,.) - % (b) J(a;) = f%.

The main properties of J are presented in the next section. Here we prove the
following.

PrROPOSITION 2.4.  The integrability tensor field R of HTM® is related to both
the curvature tensor field R and the torsion tensor field T of Vrdanceanu connection
as follows:

(233)  R(hX,hY) =JR(hX,hY,L)=T(X,Y), VX,YeT(TTM®).
Proof. By using (2.20) for R, (2.30), (1.4), (2.32a), (2.3c) and (1.18a) we
obtain

5 9 .0
R (@ "oxi ’L> = —IVisjani oox1 L = —I V(o apn) (y ] oxh )

Xh
0 o 0
R C —R( 2 2
v oyh ((5xf ’(5)(’)’
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which proves the first equality in (2.33). Taking into account that
T(X,Y)=VyY —VyX —[X, Y],
and by using (2.4) we deduce that
T(X,Y)=R(hX,hY),
which completes the proof of the proposition. ]

Also, we need to express the local components of the curvature tensor field R
of V in terms of the local coefficients of V. First we set

o o0 0 0 o o0 0 0
R(&x" "Ox/ ’6x’> ik 5xh’ ((Sxk "oxI’ 6y’) ik gyh’
0 o0 0 0 0 o 0 0
Rl=—,—,~—|=F— R(=—r,—,—|=P"
<0yk "ox7 ’5x’) ik xh’ (ayk "ox/ ’éyl) ik gyh

0 0 0 0 0 0 0 0
R(ayk ) dyJ 75x’> ik sxh’ (@yk ) dyJ ) @yz> ijk 6yh

Then, by direct calculations using (2.20) for R, (2.3), (1.4) and (1.5) we obtain

SF!!  SF!
(a) Kjy =5 — 5L+ FiFj — FiF},
ARh
(b) Fl :ﬂ
ijk ayk’
() Dy =0,
(2.34) 8G"  sGh
(d) Rl = 5x;{ 5;}" + GG, — G, G + C/R},,
oGl sch
(e) Pp = y’ S+ GG — CiGy + GGy,
acy och

h J /
(f) Sj = ok oy + C;Cy — GG

It is easy to see that K,hk and Flhk are the /-curvature and hv-curvature tensors of
Chern-Rund connection, while S jic 18 the v-curvature tensor of Cartan connection.
Moreover, (2.34d) and (2.34e) can be written as follows:

h hpt
Rijk Czr Rjk’
1/k Gl/k Ctk i

where H hk and G/ ji are the h-curvature and /hv-curvature tensors of Berwald
connectlon and the h-covariant derivative of C" is taken with respect to Berwald
connection. Finally, by using (1.10), (1.11), (1 5) and (2.34b) we deduce that
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h
Vo ih
% __ijlc'

h i

In the remaining part of this section we want to show that in particular,
when F” is a Riemannian manifold, the Theorems 2.1 and 2.2 give some well
known results of Kowalski [15]. Thus, let F” = (M,F) be a Riemannian
manifold, that is, we have

F?(x,y) = gy(x)y"y/,
where g;i(x) are the local components of a Riemannian metric g on M. In this
case, the functions G/ are given by

(2.36) Gl(x,») = y"T{(x),

where F‘,él.(x) are the Christoffel symbols of the Levi-Civita connection D on
(M,g). Denote by # the curvature tensor field of D and set

o a9 0 0
2. N\ v A A | — J,-/? .
(237) g(&xk ToxJ’ 6x’) A oxh
Then by using (2.36) in (1.4), and taking into account (1.1) we obtain
(2.38) RE(x, ») = ') ().

Next, we take a vector field X = X'(9/dx') on M and consider its vertical and
horizontal lifts X" = X'(0/0y") and X" = X(5/6x"), respectively. Then by using
(1.15), (2.38) and (2.37) we deduce that

(2.39) ROX", Y7, ) = (X, Yo )

(¥,y)’
where (x,y) e TM®°, y= y'(0/0x"), and X, Y, e TxM. Also, by using basic

properties of %, (2.9) and (2.38) we infer that
(2.40) ROX" Y) ) = {0, Y, X} -
Finally, by using (1.5), (2.36), (1.9), (1.1) and (1.13) we obtain
(2 41) (a) Gl?(x’ y) :Fi]]'((xa y) :r;(x)7
: k . ..
(b) Cj(x,¥)=0, Vi jke{l,....m},
which together with (2.3) imply
(@) Vy: Y' =0, (b) VyuY" = {DyY}",
(c) Vxo Y =0, (d) VysY°'={DxY}" VX,Yel(TM).

Thus, by using (2.39), (2.40) and (2.42), and taking into account that on the
Riemannian manifold (M,g) we have B=0 and C =0, from Theorem 2.1 we
deduce the following corollary.

(2.42)

CoroLLARY 2.1 (Kowalski [15]). Let G be the Sasaki metric on the tangent
bundle TM of a Riemannian manifold (M ,g). Then the Levi-Civita connections V
and D on (TM,G) and (M,g) respectively, are related as follows:
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1

< h v
(VX,, Yh)(x,y) = {DXX Yx}(x,y) - z{,%’x(X,“ Yy, y)}(x,y)7

- 1
(VX/’Y ) (x,y) — {DX Y } (x,2) +_{°%x(ya Yxa)(x)}(}fxﬁy)v

(vX”Yh)(, :_{] (an‘Ca K)}(v)f)

(va YU)(xJ}) == 0

Now, we want to find interrelations between the curvature tensor fields R
and # of V and D, respectively. First, by using (2.40) and (1.1) in (2.34) we
obtain the following proposition.

PROPOSITION 2.5.  Let (M,g) be a Riemannian manifold. Then the curvature
tensor field R of Vrdanceanu connection on (TM, G) is completely determined by the
following formulae:

(a) RX", Y Z" ={2(X,Y,Z)}",

(b) R(X", Y",Z") (X,Y,2)}",

() R(X', Y" Z" =R(X°, Y",Z") = R(X", Y" ZY
=R(X",Y" Z") =0,

&
{2

(2.43)

for any X, Y, ZeT'(TM).
Also, we need the following proposition.

ProOPOSITION 2.6. Let D be the Levi-Civita connection on a Riemannian
manifold (M,g) and V the Vrdnceanu connection on (TM,G) where G is the
Sasaki metric on TM. Then the integrability tensor R of the horizontal distri-
bution and the curvature tensor field # of D satisfy the equalities:

a) (VeR)(Y",Z") ) = {(DxR) (Y, Z, )}y,
b) (VxiR)(Y", Z°) ) = {(Dx ) (3. Z, V)}(y ),
YhZh = {#(Y,Z,X)}",

(¥"z" =

c) (VxR)(

d) (VxR) {2(x,Z,7)}",

e) (VziR ><X” ") = (VyR)(X", Z") = (VR)(Y", ZM),

£) RO R(Y"ZM) () = AR, R(Y, Z,9), X))
R(X"R(Y",Z") .,y = {R(X. 2(y,Z,Y), »)}(s.,

(
(
(
(
(2.44) (
(
(
(

g)
h) R(R(Z” Y”)vXL)u,y) =2 X 2,7, Z)}<x,y)-
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Proof. First, by using (1.15), (2.3b), (2.38), (2.41a) and (2.36) we deduce that

)
{(Vo‘/o‘x"R) (ﬁ 57) }x )

0
( i -+ R G R[/;E]t( thF)k> W}
(x.5)

{ 5 lg?h (@t rt/}( jh rt Qh 1'*1 )> J }
2y)

5)6 11] rij “rij ik “rit~ jk ay

0

[ h h h

Y ( rij + e%z[yrtk ’%njrr[k ‘%rtjrzlk jrzt ]k) ayh}
(x,7)

J 9 U
= D’1 0 ¢ 7 Sx/ oxt
{( o/oxcR) (5x/ "oxi ,y) }(x,y)’

which proves (2.44a). By similar calculations we obtain (2.44b). Next, at the
first sight, it is surprising that in the right parts of both (2.44c) and (2.44d) we do
not have covariant derivatives of #. This is due to (2.42a) and (2.42c), as we see
now. By using (2.42¢), (2.38), (2.42a) and (2.37) we infer that

5 6 L 0 LD
(Voo R) ((5_x/’(§> = Vo (Rij W) = Va/ayk( "Ry (x )W>

0 o o o\
_gh 9 o0 9 0
= P (%) oyt {g(éxf’éxi’ﬁxk>} ’

which proves (2.44c). Similar reason applies to (2.44d). Next, we write the
second Bianchi identity for £:

(Dx2)(Y,Z,y) + (DyR)(Z, X, ) + (DzA)(X, Y, y) = 0.
Then by using (2.44a) we deduce that
(VeR)(Y", Z") + (VysR)(Z", X 1) + (V2 R) (X", YT =0,
which implies (2.44e). Finally, by using (2.39) and (2.40) we obtain
ROXR(Y!,ZM) ) = R AR(Y, Z, )} ) () = {20 R(Y Z, 9), X) Y
which proves (2.44f). By similar calculations we deduce (2.44g) and (2.44h).
]

Now, we can give a new proof of the following theorem.

THEOREM 2.3 (Kowalski [15]). Let (M,g) be a Riemannian manifold and
(TM,G) be its tangent bundle endowed with the Sasaki metric G. Then the
curvature tensor field R of the Levi-Civita connection V on (TM,G) is completely
determined by the curvature tensor field # of the Levi-Civita connection D on
(M,g) as follows:
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(@) (R, ¥ 20,y =2 (D)X, Yo )

1
1 h
(x.)

+

Bl—= A

(0) (R, Y20,y = {400, 7,2) + {800, 2,7, X.)

v

1
_Z'@(%(y7Z7X)a Y7 y)}
(x.5)

AR (122, ¥) ~ Dy (1. Z. X)),

e YU,Zh)}W{L@(X, y,z)%ge(y,x,%(y, Y, Z))

h

1
__'%(y7 Y7%(J’7X7Z))} )
4 :
(x.5)
(d) R(X", Y",Z") =0,
© (RO Y2, = {3400, 7.2, X,5) + (X 2,7) |

4 (x,»)

+{(Dx2)(y, YaZ)}(hx,y)’

| =

(f) {INQ(Xha va ZU)}(x,y)
h

— {%%(Y,Z,X) +%%(y, Y,%’(y,Z,X))} ;
(x,»)

for any X, Y, Ze'(TM).

Proof. Taking into account that B= C =0 on TM, we obtain (2.45) from
(2.21)-(2.26) as follows. First, by using (2.44e), (2.44a), (2.43a) and (2.44f) in
(2.21) we obtain

{R(Xh’ th Zh)}(x,y)

= {R(X”, Yhz" + %R(Zh, R(X", ¥") + % (VyiR) (X" ZM)

1 1 1
-3 (ViR (Y ZM) — ZR(X”, R(Y" Z") + ZR( Y" R(X", Zh))}( )
X,y
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— (DA )}y + {200 7,2) + AR, 7,3).2)

h

RO RE Y DX 4R ACZN T

(x,»)

which is just (2.45a). In a similar way, by using (2.43b), (2.44b) and (2.44g)
into (2.22) we deduce (2.45b). Next, (2.45¢) follows from (2.23) by using (2.43c)
for R(X?, Y?, Z"), (2.44d) and (2.44h). As a consequence of (2.24) we obtain
(2.45d) via (2.43c) for R(X®, Y" Z"). Finally, by similar calculations in (2.25)
and (2.26) we obtain (2.45¢) and (2.45f) respectively. [ |

3. Flag curvature of F” and curvatures of (TM°,G)

Let F” = (M, F) be an m-dimensional Finsler manifold and (TM°, G) be its
slit tangent bundle endowed with the Sasaki-Finsler metric G. Then it is easy to
check that J given by (2.32) is an almost Hermitian structure on (7M°, G), that
is, we have

(3.1) G(JX,JY)=G(X,Y), VX,YeD(TTM").
The fundamental 2-form of (TM°,G,J) is denoted by Q and it is given by
(3.2) QX,Y)=G(X,JY).

Next, we consider the horizontal Liouville vector field L (see (2.29)) and define
the 1-form 6 by

(3.3) 0(X)=G(X,L), YXel(TTM").
Also, we denote by N the vertical Liouville vector field on TM°, that is, we have

A

.0
4 T —
(3.4) N=y 3y

Now, we express locally the twins of R, C and B defined by (2.9), (2.10) and
(2.11), respectively. Thus we put

o 0 —p 0 o 0 —p O
R(—,—|=R:-Z — | =Ck—
(@) <6x-/’6y’> Voxk’ (®) C(éx-”&y’) < oxk’

o 0 -
Bl—,=—)=Bf—.
(C) <5X-/ ’O“yt) y ayk

Taking into account that Cj and Bj from (1.13) and (2.8) respectively, are
symmetric with respect to all indices, by (2.10) and (2.11) we deduce that

3.6 a) Ck=ck and (b) BX = BL
ij ij y v

However, this is not the case for R} and Rf. Indeed, by using (3.5a), (1.18a),
(2.9) and (1.6a) we obtain

(3.5)
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(3.7) (a) RY = guRjig™, (b) Ry =Ry,
where we set

Ry = gth§~
Finally, since we have (cf. Bejancu-Farran [7], p. 234)
(3.8) 'Ry =0,
by (3.7b) we see that
(3.9 ¥Ry = 0.

Now, we prove some lemmas which refer to basic properties of the geometric
objects that are investigated in the paper.

LemMmA 3.1. The adapted tensor fields R, C and B satisfy the equalities:
(a) R(AX,N) =0, (b) [[R(L,hX)[| = [IR(L, JAX)],
(3.10) (c) C(hX,L)=C(L,hX)=C(L,vX)= C(hX,N) =0,
(d) B(vX,N)= B(N,vX) = B(L,vX)= B(hX,N) =0,
for any X e U(TTM?), where || - || is taken with respect to G.

Proof. First, by (3.4), (3.5a) and (3.9) we obtain

o ;0 = O = 0
R—,y'— | = le = i lR1i'_: 0
<(5x/’y 6y’> VR ok = 9 i 5k ’
which proves (3.10a). Then, by direct calculations using (1.18a), (1.6), (2.32),
(3.5a) and (3.7) we deduce that
= Ryg" Ry = HR(L 5)

5 2
R(L-Z =
H ( ’5x‘> "0y

and thus we proved (3.10b). Finally, (3.10c) and (3.10d) are direct consequences
of (1.14) and (1.12) respectively, via (3.6). |

2

)

LemMMA 3.2. Let V and V be the Vidnceanu and Levi-Civita connections on
(TM°,G). Then we have the following equalities:

(a) VoxL = —JvX, (b) VoyN =vX, (c) VoyN =0,

1 _ 1
(d) VorL = —JoX +3R(L,0X). (e) VixL = —5R(hX,L),
(3.11)

. - 1
(f) VoxN = vX, (g) VixN =0, (h) VivX = VLUX+§R(L, UX),

(i) VaY'=VyY"=0, (j) VaY'=VyY' =0,
for any X e [(TTM?), Y e ['(TM).
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Proof. By using (2.3c) and (2.32b) we obtain

Voo (y %) Tox/ _J(W)’

which proves (3.11a). A similar reason applies for the proofs of (3.11b) and
(3.11c). Now, by using (3.10c), (3.10d) and (3.11a) into (2.14) we deduce (3.11d).
Analogously, by using (2.12), (2.13) and (2.15) we obtain the remaining formulae
in (3.11). [ |

LemmA 3.3. The covariant derivatives of R, C and B with respect to
Vrdnceanu connection on (TM°,G) satisfy the equalities:

(a) (VxR)(L,L)=0, (b) (Vy\R)(hX,vY)=R(hX,vY),
(©) (VxCO)(L, L) = (VLO)(hX, L) = (VLC)(L,vX) =0,
(3.12) (d) (VNCO)(hX,vY)=—-C(hX,vY),
(e) (VuxB)(N,N) = (VLB)(L,vX) =0,
(f) (VixB)(N,vY) = (VyB)(hX,vY) = (VyB)(vX,vY) =0,
for any X, Y e [(TTM?).
Proof. Clearly, (3.12a) is a consequence of the skew-symmetry of R. Then,

taking into account that 1_2{; from (3.7a) are positively homogeneous of degree 1
with respect to (»”) and by using (3.5a), (3.11i) and (3.11j) we obtain

o 0 —— S
R)|—.,—]= R:— | =R:—
(Vi )(5)6] ' ay’) VN( ¥ 5xk) U oxk’
which proves (3.12b). The formulae (3.12¢) and (3.12e) are deduced by direct
calculations using (3.10c), (3.10d) and taking into account that
(3.13) (a) ViL=0 and (b) VyN =N.

By similar calculations, taking into account that C,-j? and B{; are homogeneous of
degrees —1 and 0 respectively, we obtain (3.12d) and (3.12f). |

Next, for the sake of completeness, we examine the almost Hermitian
structure (G,J) on TM°. First, by using (3.2) and (2.32) we deduce that

(3.14)  QUhX,hY)=QwX,vY)=0 and Q(hX,vY)= G(hX,JvY).
Then, taking into account that G is parallel with respect to V we obtain

(3.15) do(X,Y) = %{G(K VyL) — G(X,VyL)}.

Now, from (3.11d) and (3.11e) we see that
VoxLe T(HTM®) and V,yLeT(VTM®).
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Hence (3.15) implies

(3.16) dO(hX,hY)=dO(vX,vY)=0.

Finally, by using (3.11d), (3.11e) and (2.9) in (3.15) we obtain

(3.17) dO(hX ,vY) = %{G(R(L,hX),vY) — G(R(L,vY),hX)}
—&—%G(hX, JvY) = %G(hX, JuY).
Thus as a consequence of (3.14), (3.16) and (3.17) we have

(3.18) Q(X,Y)=2d0(X,Y), VX,YeDl(TTM"),

which enables us to state the following proposition.

PrOPOSITION 3.1.  Let G be the Sasaki-Finsler metric on TM° given by (1.3)
and J be the natural almost complex structure on TM° given by (2.32). Then
(G,J) is an almost Kdihlerian structure on TM°.

Remark 3.1. The above proposition represents a generalization to Finsler
manifolds of a result of Tondeur [22] on the tangent bundle of a Riemannian
manifold. A different proof of this result was given by Hasegawa, Yamauchi
and Shimada [13]. Moreover, they proved that (G,J) becomes Kéhlerian if and
only if F” is of zero flag curvature. ]

In the remaining part of this section we present new characterizations of
special Finsler manifolds: Riemannian manifolds, Landsberg manifolds, Finsler
manifolds of constant flag curvature, by means of the geometry of (TM°,G).
First, we prove the following surprising theorem.

TaEOREM 3.1. F" is a Riemannian manifold if and only if
(3.19) (VNR)(hX,N,vY) =0, VX,Y el (TTM°).

Proof. First, by using (3.12f), (3.12d), (3.12b), (3.10a), (3.10c) and (3.10d)
in (2.26) we obtain

(3.20) R(hX,N,vY) = R(hX,N,vY) + C(hX,vY) — %R(hX, vY).

Next, by (1.5), (1.8) and (2.31) we deduce that

)
e
Also, the homogeneity of Gg and (3.11i) imply that
0
VnVs/sci == 0.

0y’
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Then, by using again (3.11i) we infer that
(3.21) R(hX,N,vY) =0.
Thus (3.20) and (3.21) imply

. 1
(3.22) R(WX,N.vY) = C(hX,vY) = sR(hX,vY).

Now, by using (3.11i), (3.11g), (3.11j), (3.22) and the homogeneity of both C,f
and R} we deduce that

s = (0 0 = (5[0 0 ~( 0 0
o8 (3358 737) =9 (R V) ) A5
. 1 0 1 0 0
— k k k k _ k
N VN{C"] _ER’]}&C" B {Cij _ERU}éxk - _2Cij5xk7
that is,

(3.23) (VNR)(hX,N,vY) = —2C(hX,vY).

As F" is a Riemannian manifold if and only if C =0, from (3.23) we obtain the
assertion of the theorem. ]

Next, we recall the following well known result on the geometry of the
tangent bundle of a Riemannian manifold.

THEOREM 3.2 (Kowalski [15]). Let (M,g) be a Riemannian manifold and G
be the Sasakian metric on TM. Then (TM, G) is locally symmetric if and only if
(M, g) is locally Euclidean.

Thus by combining Theorems 3.1 and 3.2 we obtain the following gener-
alization of Theorem 3.2 to Finsler manifolds.

THEOREM 3.3. Let F" = (M, F) be a Finsler manifold and G be the Sasaki-
Finsler metric on TM°. Then (TM°,G) is locally symmetric if and only if F™ is
locally Euclidean.

Proof. Suppose (TM°,G) is locally symmetric. Then by Theorem 3.1 we
deduce that F™ is a Riemannian manifold. Thus the remaining part of the proof
is consequence of Theorem 3.2. |

Remark 3.2. Theorem 3.3 has been stated also by Wu [24].  Unfortunately,
the proof given by Wu has some mistakes. First, formula (4.3) of that paper is
missing the v-curvature tensor field of Cartan connection whose local components
are given by (2.34f) of the present paper. Then, as a consequence of (4.3), it is
stated in Wu [24] that
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(0 ¢ 0
<5y”6y-”0yk> ’
which must be replaced by

- (0 0 0 0
R(L, 2 2 =5t 0 =
(ayr ’ ayj ’ 5);/() Skﬂ ayh

Aikou [2] has proved that F” is a Landsberg manifold if and only if the
leaves of vertical distribution are totally geodesic immersed in (TM°, G).

Now, we obtain new characterizations of Landsberg manifolds by means of
the Levi-Civita connection V on (TM°,G).

THEOREM 3.4. Let F" = (M, F) be a Finsler manifold. Then the following
assertions are equivalent:
(i) F™ is a Landsberg manifold.

(i) R(N,vY,vZ)=0, for all Y,Z e (TTM").
(iii) (VNR)(N,vY,vZ) =0, for all Y,ZeT(TTM?®).

Proof. First, by using (3.10a), (3.10c), (3.10d) and (3.12f) in (2.24) we
obtain

R(N,vY,vZ) = R(N,vY,vZ) + (V,y B)(N,vZ).
Then by (3.10d) and (3.11b) we deduce that
(VoyB)(N,vZ) = —B(vY,vZ).

Also, we have

0 0 0
( ’ayj’ay'> Y gy
Hence we infer that
(3.24) R(N,vY,0Z) = —B(vY,vZ).
Next, by using (3.24), (3.11f) and (3.11j) we obtain
_ o 0\ ¢ v O v 0
) (.55730) = 9 (B 5) + 2

Taking into account the homogeneity of B{j‘- and by using (3.11i) we deduce that

- 0
k _
Hence we proved that
(3.25) (VaR)(N,vY,0Z) = B(vY,vZ).

As F" is a Landsberg manifold if and only if B =0, the equivalence of the
assertions follows from (3.24) and (3.25). |
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Next, we want to relate the flag curvature of F” and the sectional curvature
of (TM°,G). Let (x,y) be a point of TM°, where x = (x') is a point of M and
y = (»") is a non-zero tangent vector to M at x. Suppose that X = (X') is
another tangent vector to M at x such that y and X are linearly independent
in TyM. Then, according to Bao-Chern-Shen [4], p. 68, we call the plane
II(X) = span{ y, X} the flag at x with flagpole y and transverse edge X. Con-
sider the horizontal lifts X’ = X7(§/6x") and L of X and y respectively, and give
the following definition. The flag curvature of F™ at the point x with respect to
the flag ITI(X) is the number

G(R(X",L,L), X"
AX"L)

(3.26) K(X) =

where R is the curvature tensor of Vranceanu connection on TM° and
AX" L) =GX", Xx"G(L, L) — G(x", L)

We may choose X such that X’ and L are orthogonal with respect to G (see
a discussion in Bao-Chern-Shen [4], p. 69). For other types of curvatures of
Finsler manifolds see Shen [21].

We also recall that the sectional curvature of (TM°,G) at the point (x, y)
with respect to the plane span{U, V'} is given by

GR(U,V,V),U)

(3.27) KU, V)= AT V) ,

where
AU, V) =G(U,U)G(V,V) - G(U, V)~

In order to relate K and K we prove the following theorem.

THEOREM 3.5. Let F" = (M, F) be a Finsler manifold and (TM°, G) the slit
tangent bundle of M endowed with the Sasaki-Finsler metric G. Then we have the
following equalities:

(3.28)  R(hX,L,L)=R(hX,L,L)+ %R(L, R(hX, L)) + % (VLR)(hX, L),

(329)  R(vX,L,L)=R(vX,L,L)— % (VLR)(L,vX) + %R(L, R(L,vX)),

(3.30) R(hX,N,N) =0,
(3.31) R(wX,N,N)=0,
for any X e [(TTM?).

Proof. First, by direct calculations using (3.10c), (3.10d), (3.12c) and (3.12a)
in (2.21) we obtain (3.28). Then, by using (3.10c), (3.10d), (3.12a), (3.12¢) and
(3.12e) in (2.25) we deduce (3.29). Next, we use (3.10a), (3.10c), (3.10d), (3.12b),
(3.12d) and (3.12f) in (2.26) and obtain



296 AUREL BEJANCU
R(hX,N,N) = R(hX,N,N).
Then, by using (3.11c), (3.11b) and (2.4b), we obtain
R(hX,N,N) =0,

which proves (3.30). Finally, by using (3.10c), (3.10d), (3.12e) and (3.12f) in
(2.24) we deduce that

R(vX,N,N) = R(vX,N,N).
On the other hand, we have
0 i ion O
R<W’N’N> =Y i gy =0
and thus we obtain (3.31). [ |

Now, let (x, y) be a point of TM° and X be a tangent vector to M at x such
that span{y, X} is a flag at x. Then we state the following theorem.

THEOREM 3.6. Let ¥ = (M, F) be a Finsler manifold and (TM°, G) the slit
tangent bundle of M endowed with the Sasaki-Finsler metric G. Then we have the
following equalities:

- 3R D)|1?
32 R(x" )= kKk(x) - 12\2 -2/
oo 1y LR D)
(3.33) K(X' L)= 3 AXRL)
(3.34) K(X" N)=K(X*,N)=0,
where X" and XV are the horizontal and vertical lifts of X respectively, and || - || is

taken with respect to G.

Proof. Taking into account that the last term in (3.28) is lying in T'(VTM °)
we obtain

G(R(X",L,L),X") = G(R(X", L, L), x") +§G(R(L,R<X”,L)),Xh>-
Then, by using (2.9), we deduce that
G(R(X",L,L),X") = G(R(X",L,L), X" —%G(R(X”,L),R(X’QL)),

which proves (3.32) via (3.26) and (3.27). Next, by using again (2.9) and taking
into account that the first terms in (3.29) lie in ['(HTM°) we infer that

G(R(X',L,L),X") = %G(R(L, X°),R(L, X")).

Thus, by (3.10b) we obtain (3.33). Finally, (3.30) and (3.31) imply (3.34). [ |
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By (3.34) we can state the following corollary.

COROLLARY 3.1. The tangent bundle of a Finsler manifold cannot be of
positive or negative sectional curvature with respect to G.

We call K(X" L) (resp. K(X"*, L)) the L-horizontal sectional curvature (resp.
L-vertical sectional curvature) of (TM°,G) at (x,y) with respect to X € T, M.
Then, by using (3.32) and (3.33), we obtain the following interesting corollary.

COROLLARY 3.2. The flag curvature of the Finsler manifold ¥ = (M, F) is
completely determined by the L-horizontal and L-vertical sectional curvatures of
(TM°,G) as follows:

(3.35) K(X)=K(X" L)+3K(X"L).

Remark 3.3. 1t is easy to see that (3.32) represents a generalization to
Finsler geometry of a well known formula that relates curvatures of (M, G) and
(M,g), where (M,g) is a Riemannian manifold (see Aso [3], Gudmundsson-
Kappos [12]). The latter was obtained by using a curvature formula for
Riemannian submersions due to O’Neill [19], which of course does not apply
to the Finsler case. [ |

Next, we recall that F™ is a Finsler manifold of scalar curvature K if the flag
curvature K(X) is independent of X, that is, it is a scalar function on TM°. If
moreover, K(X) is independent of both the vector X and the point (x, y), then
F" is called a Finsler manifold of constant flag curvature.

Several interesting characterizations of both classes of Finsler manifolds
are presented in the book of Bao-Chern-Shen [4], pp. 76, 313. To state one
characterization for each class we need to recall that A, given by

1
(3.36) hj = gy — tit;, where /; = Fg,-kyk7

is called the angular metric of F”. 1In our study we need the characterizations
from the next theorem (see Matsumoto [18], p. 168).

THEOREM 3.7. Let F" = (M, F) be a Finsler manifold. Then we have the
following assertions:
(i) F™ is of scalar flag curvature K if and only if

(3.37) R; = KF?h;.
ii) F is of constant flag curvature c if and only i
y
(3.38) R; = cF’hj.

Remark 3.4. We should mention that our Ry is the same as Ry, of
Matsumoto [18], and it is F? times the R; of Bao-Chern-Shen [4]. |
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Now, we state new characterizations of the above Finsler manifolds by using
geometry of (TM°,G).

THEOREM 3.8. Let F" = (M, F) be a Finsler manifold. Then we have the
following assertions:
(i) F™ is of scalar flag curvature if and only if both the sectional curvature
K(X" L) and K(X',L) of (TM°,G) are independent of X.
(i) " is of constant flag curvature ¢ if and only if the L-horizontal and L-
vertical sectional curvatures of (TM°,G) are given by

2
(3.39) R(X" L) = c—%Fz,
and

o c?
(3.40) K(X', L) :ZFz,
respectively.

Proof. Suppose that F" is of scalar curvature K. Then, by direct calcu-
lations using (1.15), (1.6), (3.37) and (3.36), we obtain
IR(X", L)|)* = K2F*A(X", L).
Thus, from (3.32) and (3.33), we deduce that

- 3 - 1
(3.41) (a) K(X" L) :K—ZKZFz, (b) K(X", L) :ZKZFZ,
that is, both K(X” L) and K(X" L) depend only on the point (x,y). Con-
versely, suppose

K(X"L)= fi(x,y) and K(X°,L)= fr(x,y).
Then, by (3.35), we obtain
K(X) = fix, y) +3%(x, p),

which completes the proof of the assertion (i). Next, we suppose that F” is of
constant flag curvature ¢. Then, by using (3.41), we obtain (3.39) and (3.40).
Conversely, suppose that K(X” L) and K(X?, L) are given by (3.39) and (3.40),
respectively. Then, by using (3.35), we deduce that K(X) = c. |

In particular, we state the following theorem.

THEOREM 3.9. Let F" = (M, F) be a Finsler manifold. Then the following
assertions are equivalent:
(i) F™ is of zero flag curvature.
(i) Both the L-horizontal and L-vertical sectional curvatures of (TM°,G)
vanish on TM°.
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(ili) The curvature tensor field R of (TM°,G) satisfies
R(hX,hY,N)=0, VX,Y el (TTM®).

Proof. The equivalence of (i) and (ii) is a direct consequence of the
assertion (i) of Theorem 3.8. Next, by using (3.11g) and (1.18b) we obtain
R(hX,hY,N)=R(hX,hY), VX,Y e (TTM®).

Thus, by using (3.38), (1.6c) and (1.7d), we obtain the equivalence of (i) and
(iii). |

Remark 3.5. From the above theorem we see that R = 0 implies K = 0. It
is interesting to note that the converse is not true. Indeed, let F” be a Finsler
manifold of zero flag curvature and non-Riemannian. Then, by (3.22), we
conclude that there exist X and vY such that R(hX,N,vY) # 0. [

4. Indicatrix bundle and curvature of F”

Let F" = (M, F) be an m-dimensional Finsler manifold and (TM°, G) be the
slit tangent bundle of M endowed with the Sasaki-Finsler metric G. For any
¢ #0 we denote by IM(c) the hypersurface of TM° given by the equation

(“.1) F(x,y) =7,

where ¢ =+1 or ¢ = —1, according to ¢ >0 or ¢ <0, respectively. We call
IM(c) the c-indicatrix bundle of ™, and note that IM(c) = IM(—c). It is easy
to check that L given by (2.29) is tangent to IM(c), while N = JL is a normal
vector field to IM(c). Then we set:

4.2) (a) E=2L, (b) /' =2N, and (c) 5= 20,

where 6 is the 1-form given by (3.3). Next, we consider on TM° the
Riemannian metric g given by

(4.3) g= &

—G
4

and denote by the same symbol g the Riemannian metric induced on IM(c).
Then both & and .4 are unit vector fields with respect to g and we have
(4.4) n(X)=g(X,&, VX eIl (TIM(c)).

Finally, for any vector field X on IM(c) we put

4.5) JX = X +n(X)N,

where J is the almost complex structure on TM° given by (2.32) and ¢X is a
vector field that is tangent to IM(c). Then we prove the following proposition.
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ProPOSITION 4.1. Let F" = (M, F) be a Finsler manifold. Then (¢,&,1,9)
is a contact metric structure on IM(c).

Proof. Since & is a unit vector field with respect to g, from (4.4) we obtain
n(¢) =1.
Also, by using (4.4) and (4.5) we deduce that
noep=0.
Then we apply J to (4.5) and obtain
(4.6) p’=—I+n®<
Next, taking into account that J is an isometry with respect to G (cf. (3.1)), and
using (4.5) we infer that
(4.7) 9(pX,9Y) = g(X, Y) =n(X)n(Y), VX,Y el(TIM(c)).
Then, according to Blair [9], p. 33, (¢,&,%,9) is an almost contact metric
structure on IM(c). Finally, we consider the 2-form
DX, Y) =g(X,0Y),

and, by using (4.5), (4.3), (3.2), (3.18) and (4.2c), we deduce that ® = dy. Thus
(p,&,m,9) is a contact metric structure on IM(c). [ |

Remark 4.1. By using the Cartan connection on F”', Hasegawa, Yamauchi
and Shimada [13], and Anastasiei [1] proved the existence of a contact metric
structure on IM(1). |

Next, we take a vector field X on M and consider its horizontal and vertical
lifts X and X on TM°, respectively. Then X is tangent to IM(c), while X is
expressed at the points of IM(c) as follows

(4.8) X' =X"+nx"hN,
where X7 represents the part of XV that is tangent to /M (c) and it is called the

tangential lift of X on IM(c) (see Boecks-Vanhecke [10] for the sphere bundle).
Taking into account (4.2b), (3.11f) and (3.11g) we deduce that

(4.9) (a) Vyt"=2X" and (b) Vyit =0.
On the other hand, we have the Weingarten formula
(4.10) VuN' =—AU, YUeT(TIM(c)),

where A4 is the shape operator of the immersion of IM(c) in (TM°,g). Thus
comparing (4.9) with (4.10) we obtain

(4.11) (a) AX'=-2X" and (b) AX"=0.

This entitles us to state the following proposition.
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PROPOSITION 4.2.  The c-indicatrix bundle has m principal curvatures equal to
0 and m — 1 principal curvatures equal to —2. Thus IM(c) is a hypersurface of
(TM?,g) of constant mean curvature

m—1

H=-2 .
2m — 1

Remark 4.2. Matsumoto [17] has considered the metric G on the indicatrix
bundle corresponding to ¢ =1 and obtain m principal curvatures 0 and m — 1
principal curvatures equal to —1. ]

In the remaining part of this section we want to show that the geometry
of the c-indicatrix bundle is deeply related to the study of Finsler manifolds of
constant flag curvature ¢. First we prove the following theorem.

THEOREM 4.1. Let F" = (M, F) be a Finsler manifold and ¢ be a non zero
real number. Then F™ is of constant flag curvature c if and only if we have
(412) RU<x> y) :ghl'j(xv y)v V(x, y) EIM(C)v

where Ry and h; are given by (1.6b) and (3.36) respectively, and e = +1 or ¢ = —1,
according to ¢ >0 or ¢ <O.

Proof. Suppose F” is a Finsler manifold of constant flag curvature ¢ # 0.
Then, by (3.38) and (4.1), we have (4.12). Conversely, suppose (4.12) is satisfied.
Thus, for any point of IM(c), we have (3.38). It remains to show that (3.38) is
still true at any other point of TM°. Let (x,y) be a point of TM°\IM(c).
Then there exists a positive number k such that F?(x, y) = k. As F? is positively
homogeneous of degree 2 with respect to y, we have

F2x,/2y) =2,
<x, kcy) c

Hence the point (x, \ /kicy> lies on IM(c) and by (4.12) we deduce that

| & &
R; (x, Ey) = &h;; (x, \/k——cy)

Then, taking into account that R; and /; are homogeneous of degrees 2 and 0
respectively, we obtain

Ry(x, y) = ckhy(x, y) = cF*(x, )hy(x, y).
Thus (3.38) is satisfied at (x, y), and therefore F"” is of constant flag curvature
c. |

CorOLLARY 4.1. F" is of constant flag curvature ¢ # 0 if and only if on
IM(c) we have
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(4.13) R = &(d — 2y'my),
where we put 1, = n(6/0x").

Proof. By direct calculations using (1.6¢), (3.36), (4.2) and (3.3) we obtain
the equivalence of (4.12) and (4.13). [ |

Next, we make the notations:
HIM(C) = HTMl?M(C) and VIM(C) = VTM‘(;M((‘)'

Also, we denote by IM(c)" the complementary orthogonal vector bundle to
span{ A"} into VIM(c). Then the tangent bundle of IM(c) admits the orthog-
onal decomposition

TIM (¢) = HIM(c) @ IM(c)".

Now, apply J to (4.8) and by using (4.5), (4.4) and taking into account that
JN =—¢ and JX' = —X" we deduce that

(4.14) X' = —pX'+n(xhe.

Thus the above decomposition becomes

(4.15) TIM (c) = span{&} @ p(IM(c)") @ IM(c)".
By applying ¢ to (4.14) and using (4.6) we obtain

(4.16) X" =X".

Finally, the integrability tensor field R of HTM® defines a vector bundle
morhpism denoted by the same symbol R and given by

(4.17) R: HIM(c) — HIM(c) : R(X") = JR(L, X ™).
By (1.6) and (4.17) we infer that
0 ;0

Now, we can state the following theorem.

THEOREM 4.2. F" = (M, F) is a Finsler manifold of constant flag curvature
¢ #0 if and only if at any point (x,y) € IM(c) and for any X € T M, one of the
following equalities is satisfied:

(4.19) pX" = eR(X" L),
(4.20) pX'=¢eR(L,X"),
(4.21) pX' = eR(pX").

Proof. Take X = (0/0x*)_ in (4.19) and, by using (1.15), (1.6), (4.5) and
(4.2b), we obtain the equivalence of (4.13) and (4.19). Next, we suppose that
(4.19) is satisfied, and by using (2.9) and (4.7) we deduce that
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gR(L, X", Y") = g(R(L, Y"), X") = —eg(pY", X")
=glepX',Y"), VY eT.M,

which proves (4.20). Conversely, suppose (4.20) is true, and by using (2.9), (4.8),
(3.10a) and (4.7) we infer that

gR(X" L), Y") = —g(R(L,X"), Y") = —g(R(L, Y' +n(Y")N"), X")
= _g(R(L7 Yt)ﬂ Xh) = _69(¢Y17 Xh) = g(Y[,E(th)
=g(epX",Y"), VY eT.M.

Thus (4.19) and (4.20) are equivalent. Finally, by using (4.17) and (4.14) we
deduce that (4.21) is equivalent to

eR(X" L) = —JpX',

which in turn, is equivalent to (4.19) via (4.5), (4.6) and (4.16). This completes
the proof of the theorem. |

Now, let I be the identity morhpism on ¢(IM(c)"). Then, by using (4.21),
we obtain the following simple characterization of Finsler manifolds of non zero
constant flag curvature.

CorOLLARY 4.2. F" is of constant flag curvature ¢ # 0 if and only if the
restriction of R given by (4.17) to o(IM(c)") is either I or —I, according to ¢ >0
or ¢ <0, respectively.

Next, let V be the Levi-Civita connection on (IM(c),g). Then, by using
Gauss formula for the immersion of IM(c¢) in (TM°,g), we obtain

(4.22) Vué=Vyé, YUeT(TIM(c)),
since by (4.11b) we have
(4.23) A¢=0.

THEOREM 4.3. F" = (M, F) is of constant flag curvature ¢ # 0 if and only if
at any point (x,y) € IM(c) and for any X € TxM, one of the following equalities is
satisfied:

(4.24) Vil = —epX ",
(4.25) Vxié=(e=2)pX".

Proof. By using (4.22), (3.11e) and (4.2a), we obtain
Vyré = —R(X", L),

which proves the equivalence of (4.24) and (4.19). In a similar way, by using
(4.22), (3.11d), (4.5) and (4.4), we deduce that
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vxrf = —2(0XI + R(L,X[).
Thus (4.25) is equivalent to (4.20). [ |

CorOLLARY 4.3. F™ is of positive constant flag curvature ¢ if and only if the
contact metric structure (¢,&,n,9) on IM(c) is a K-contact structure.

Proof. By Theorem 4.3 we deduce that F” is of positive constant flag
curvature ¢ if and only if

(4.26) Vué=—pU, YU eT(TIM(c)).

Then, by a result of Blair [8], p. 64, we see that (4.26) is just the condition for
(p,¢,m,9) to be a K-contact structure. [ ]

Remark 4.2. By Corollary 4.3 we conclude that F” is of positive constant
flag curvature c if and only if ¢ is a Killing vector field on IM(c) (cf. Bejancu and
Farran [5]). In particular, for ¢ =1 it was proved by Hasegawa, Yamauchi and
Shimada [13], and Anastasiei [1] that TM (1) admits a Sasakian structure. [ |

Now, let R and R be the curvature tensor field of V and V, respectively.
Then, by using (4.23) and (4.3) into the Gauss equation of the immersion of
IM(c) in (TM°,g) (cf. Chen [l1], p. 45), we obtain

— ec ~
for any U,V,W eT'(TIM(c)). The &-horizontal sectional curvature (resp. &-
tangential sectional curvature) of (IM(c),g) at the point (x,y) with respect to
X € T M is the sectional curvature K(X”,¢) (resp. K(X',&)) given by a similar
formula to (3.27), but with respect to g and R.

THEOREM 4.4. F" = (M, F) is a Finsler manifold of constant flag curvature
¢ #0 if and only if at any point (x,y) € IM(c) and for any X € TyM, the ¢&-
horizontal and E-tangential sectional curvatures of (IM(c),g) are given by

(4.28) K(X" &) =4e -3,
and

(4.29) K(X'¢) =1,
respectively.

Proof. By using (3.27) for both K and K and (4.27) we obtain
— 4e -
(4.30) K(x",¢) = ZR(x",0).

Next, by using (3.11i) and (3.11e) and taking into account that [A7,&] =0, we
deduce that
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(4.31) R(N,EE) = 0.
Thus, by direct calculations using (4.27), (4.8), (4.31) and (3.27) we infer that
432) R(X',¢) = RO,

Now, suppose that F” is of constant flag curvature ¢ # 0. Then, by assertion (ii)
of Theorem 3.8 and (4.1), we have

(4.33) K(x" &) = 2(4 —3) and K(X'¢) =‘Z—C on IM(c).

Thus, by using (4.30), (4.32) and (4.33) we obtain (4.28) and (4.29). Conversely,
suppose (4.28) and (4.29) be satisfied on IM(c). Then, by (4.30) and (4.32) , we
deduce (4.33). Thus the conditions in (3.39) and (3.40) are satisfied on IM(c).
Hence K(X) = ¢ at any point (x, y) € IM(c) and for any X € T, M. This means
that (4.12) is true, and therefore by Theorem 4.1 we conclude that F” is of
constant flag curvature c. ]

In particular, we obtain the following corollary.

CorOLLARY 4.4. F™ is of positive constant curvature if and only if we have
K(X" & =KX, & =1, on IM(c).

Remark 4.3. The necessity of conditions on K in this corollary can be also
deduced by using Corollary 4.3 and a general result on the curvature tensor field
of a K-contact manifold (cf. Blair [8], p. 65). [ |

REFERENCES

[1] M. AnastasiEl, A framed f-structure on tangent manifold of a Finsler space, An. Univ.
Bucuresti. Mat. Inf. 49 (2000), 3-9.

[2] T. Aikou, Some remarks on the geometry of tangent bundle of a Finsler manifold, Tensor
N.S. 52 (1993), 234-242.

[3] K. Aso, Notes on some properties of the sectional curvature of the tangent bundle, Yoko-
hama Math. J. 29 (1981), 1-5.

[4] D. Bao, S. S. CHERN AND Z. SHEN, An Introduction to Riemann-Finsler Geometry, Springer-
Verlag, New York, 2000.

[5] A. Bmancu aNnD H. R. FarrAN, Finsler geometry and natural foliations of the tangent
bundle, Reports on Math. Phys. 58 (2006), 131-146.

[6] A. Besancu aND H. R. FARRAN, Geometry of pseudo-Finsler submanifolds, Kluwer, Dor-
drecht, 2000.

[7] A. Beiancu anDp H. R. FarraN, Foliations and geometric structure, Springer, Dordrecht,
2006.

[8] D. E. BrLar, Contact manifolds in Riemannian geometry, Lecture notes in math. 509,
Springer-Verlag, Berlin, 1976.

[9] D. E. BLalR, Riemannian geometry of contact and symplectic manifolds, Birkhduser, Basel,
2001.



306
(10]

(11]
(12]

(13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

(21]
(22]

(23]
(24]

(25]

26]

AUREL BEJANCU

E. BoEckx AND L. VANHECKE, Unit tangent sphere bundles with constant scalar curvature,
Czechoslovak Math. J. 51 (2001), 523-544.

B. Y. CHEN, Geometry of submanifolds, Marcel Dekker, New York, 1973.

S. GupmunpssoN AND E. Kappos, On the geometry of tangent bundles, Expositiones
Mathematicae 20 (2002), 1-41.

1. HaseGawa, K. YAMAUCHI AND H. SHIMADA, Sasakian structures on Finsler manifolds, La-
grange and Finsler geometry (P. L. Antonelli and R. Miron, eds.), Kluwer, Dordrecht, 1996,
75-80.

S. IaNus, Some almost product structures on manifolds with linear connections, Kodai Math.
Sem. Rep. 23 (1971), 305-310.

0. KowaLskl, Curvature of the induced Riemannian metric on the tangent bundle of a
Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.

O. KowaLskl AND M. Sekizawa, On tangent sphere bundles with small or large constant
radius, Ann. Global Anal. Geom. 18 (2000), 207-219.

M. Martsumoto, Differential-geometric properties of indicatrix bundle over Finsler space,
Publ. Math. Debrecen 28 (1981), 281-291.

M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press,
Saikawa, 1986.

B. O’'NeiLL, The fundamental equations of a submersion, Michigan Math. J. 13 (1966),
459-469.

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Toéhoku
Math. J. 10 (1958), 338-354.

Z. SHEN, Lectures on Finsler geometry, World Scientific, Singapore, 2001.

PH. TONDEUR, Structure presque kdhlerienne naturelle sur le fibré des vecteurs covariants d’une
variété riemannienne, C.R. Acad. Sci. Paris 254 (1962), 407-408.

G. VRANCEANU, Sur quelques points de la théorie des espaces non holonomes, Bul. Fac.
St. Cernauti 5 (1931), 177-205.

B. Y. Wu, Some results on the geometry of tangent bundle of Finsler manifolds, Publ.
Math. Debrecen 71 (2007), 185-193.

AL. L. YampoLskl, The curvature of the Sasaki metric of tangent sphere bundles, J. Soviet
Math. 48 (1990), 108-117 (translated from Ukrainskii Geometricheskii Sbornik 28 (1985),
132-145).

K. Yano anD M. KoN, Structures on manifolds, World Scientific, Singapore, 1984.

Aurel Bejancu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
Kuwarr UNIVERSITY

P.O. Box 5969, SaraTt 13060

Kuwarr

E-mail: bejancu@sci.kuniv.edu.kw



