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Abstract

In this paper we will perturb the scalar curvature of compact Kéhler manifolds by
incorporating it with higher Chern forms, and then show that the perturbed scalar
curvature has many common properties with the unperturbed scalar curvature. In
particular the perturbed scalar curvature becomes a moment map, with respect to a
perturbed symplectic structure, on the space of all complex structures on a fixed
symplectic manifold, which extends the results of Donaldson and Fujiki on the
unperturbed case.

1. Introduction

Many works have been done on the relationship between the existence of
constant scalar curvature Kdhler metrics and stability in the sense of geometric
invariant theory. A way of seeing this relationship is through the moment map
picture of an infinite dimensional set up as done by Donaldson [7] and Fujiki
[9]. They showed that the set of all Kéhler metrics with constant scalar cur-
vature becomes the zero set of the moment map for the action of the group of
Hamiltonian symplectomorphisms on the space of all compatible complex
structures on a fixed symplectic manifold. Recall that for a Hamiltonian action
of a compact Lie group K on a compact Kédhler manifold, having a zero of the
moment map along an orbit of the complexified group K¢-action is equivalent to
the stability of the orbit of the reductive group K¢ (c.f. [8], section 6.5).
Applying this fact in finite dimensions to the infinite dimensional space of all
compatible complex structures we see a relationship between the existence of
constant scalar curvature Kéhler metrics and infinite dimensional symplectic-GIT
stability.

The purpose of this paper is to perturb the scalar curvature by incorporating
it with higher Chern classes, and show that the perturbed scalar curvature shares
many common properties with the unperturbed scalar curvature. Especially the
set of all Kéhler metrics with constant perturbed scalar curvature is the zero set
of the moment map with respect to a perturbed symplectic form on the space of
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all compatible complex structures on a fixed symplectic manifold. This extends
the earlier results of Donaldson and Fujiki in the unperturbed case.

Let M be a compact symplectic manifold with a fixed symplectic form
and of dimension 2m. Let # be the set of all w-compatible integrable complex
structures. Then for each J € ¢, (M,w,J) becomes a Kédhler manifold. For a
pair (J,7) of a complex structure J and a small real number ¢, define a smooth
function S(J,7) on M by

S(J, 1)

3 o =ci(J) A"+ ter(J) A0 " e, ()
mn

(1)

where ¢;(J) is the i-th Chern form with respect to the Kédhler structure (w,J) on
M, ie. they are defined by
i

z@) =1+tc;(J)+ -+ t"en(J),

(2) det (1 + o

O being the curvature matrix of the Levi-Civita connection. Note that S(J,0)
is equal to the trace of the Ricci curvature gYR;: which is one half of the
Riemannian scalar curvature. But since S(J,0) more often appears in the
computations in Kdhler geometry than the Riemannian scalar curvature does, we
will call S(J,0) the scalar curvature in this paper. We also call S(J,¢) the
perturbed scalar curvature. As mentioned above the main result of this paper is
to show that the perturbed scalar curvature becomes a moment map on _¢ with
respect to some symplectic structure (Theorem 2.2 in the next section).

This paper is organized as follows. In section 2, we will prove Theorem 2.2.
We will give two proofs along the lines of [7] and [21]. In section 3, we study
the analogy to extremal Kdhler metrics in our perturbed case. We will see that
the perturbed extremal Kéhler metrics are critical points of the functional on ¢
given by the squared L?-norm of the perturbed scalar curvature but not critical
points of the functional on the space of Kéhler forms given by the same integral.
In section 4 we will recall Bando’s result [1] on the obstructions to the existence
of Kéhler metrics with harmonic higher Chern classes and study the relevant
Mabuchi functional in the perturbed case. In section 5, we will give a de-
formation theory of extremal Ké&hler metrics to the perturbed extremal Kihler
metrics extending earlier results of LeBrun and Simanca [18], [19].

2. Perturbed symplectic structure on the space of complex structures

Let (M,®) be a compact symplectic manifold of dimension 2m and #
the space of all w-compatible complex structures on M. This means that J € ¢
if and only if w(JX,JY)=ow(X,Y) for all vector fields X and Y, and
o(X,JX) > 0 for all non-zero X. For later purposes it is convenient to assume
that J acts on the cotangent bundle rather than the tangent bundle. Fixing
J e ¢, we decompose the complexified cotangent bundle into holomorphic and
anti-holomorphic parts, i.e. ++v/—I-eigenspaces of J:
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(3) T'"MRC=T/M®T;"M, T;"M=T;M.
Taking arbitrary J' € ¢ we also have the decomposition with respect to J’
(4) T"MC=T;,M®T;'M, T;'M=T;M.
If J' is sufficiently close to J then 7;M can be expressed as a graph over T;'M
as
(5) TjM = {a+ (o) |0 e Tj' M}
for some endomorphism u of T;'M into T;"M:
(6) weT(End(T;'M,T;"M))
2T(TYMT;"M) =T(T)M ® T;M)

where in the last identification we used the Kihler metric defined by the pair

(w,J). This can be expressed in the notation of tensor calculus with indices as
e g up =t

where we chose a local holomorphic coordinate system (z!,... z") and wrote ®

as = \/—lg,.lfdziAd;.

Lemma 2.1.  With the above identification understood, u lies in the symmetric
part T(Sym(T;M ® T;M)) of T(T)M @ T;M).

Proof. The symplectic form o gives a natural identification between the
tangent bundle and the cotangent bundle. This identification then gives a natural

symplectic structure on the cotangent bundle, which we denote by w~!. If w is

J-invariant, then w~! is also J-invariant. For the complex structure J, o~! is
expressed in terms of the Kéahler metric of the Kéhler structure (w,J) as

= 0 0

0)71 = —V —lguf N —,

0zt 0zJ

where we used the local expression of w as above. Since w~! is J-invariant and
any l-forms o and f in T;'M are eigenvectors of J belonging to v —1, we have

o (o, p) = 0.
Similarly we have
™ (uot, 1) =0
is also J'-invariant, we also have

o (o + po, B+ ) = 0.

and, since ™!

Thus we obtain

() o™ (o, 1) = (B, por)
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which implies that ueI'(T)M ® T;M) is symmetric because in the local
expression,

(8) /‘ﬁ“i[’)j = ﬂij“iﬁj»
as desired. O

Considered infinitesimally, the tangent space 77 ¢ to # at J is a subspace of
Sym(T)M ® T)M).

Then the L’-inner product on Sym(7)M ® T)M) gives ¢ a Kihler
structure. But we perturb this Kédhler structure in the following way. Let ¢z be a
small real number. For x4 and v in the tangent space 7, ¢, we define

©) (v, ),

:J mcm<vikﬂ}\/_1 dzk/\dz/,w®l+\/—lt®,...,w®l+\/—lt®>
M 2n 2n 2n
where ¢, is the polarization of the determinant viewed as a GL(m,C)-
invariant polynomial, i.e. ¢, (4;,...,4y,) is the coefficient of ml#---¢, in
det(ty4; + - + tuA,,), where I denotes the identity matrix and ® = d(g~'dg) is
the curvature form of the Levi-Civita connection, and where wuyul should be
understood as the endomorphism of 7;M which sends 6/0z/ to uup;d/0z".
Note that

cm(A,...,A) = det A.
This is similar to the wedge product
01 At Ay
for the type (1,1)-forms «;,...,a,. For we have
aA--eAoc= det(ay) dz' AdZV A AdZ™ AdE™

when o = ZairdziAdz’f . Therefore there is a symmetry between the endo-
morphism part and the form part in the integration of (9). This symmetry will
be used in this work and was used in the work of Bando [1] quoted in the next
section.

When =0, (-,-), gives the standard L’-inner product which is anti-linear
in the first factor v and linear in the second factor u. If the real number ¢ is
sufficiently small, (-,-), is still positive definite.

Let 4 be the group of all Hamiltonian symplectomorphisms of (M,w). The
Lie algebra of ¢ is isomorphic to the Poison algebra Cj°(M) of all smooth
functions on M with average O:

CF (M) { ue C* (M) ‘ JMua)m = o}.

% acts on ¢ as holomorphic isometries.
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THEOREM 2.2. For each fixed small real number t, S(J,t)/2mn gives an
equivariant moment map on ¢ if we consider S(J,t)/2mn as an element of the dual
space of Cy*(M) by the pairing

S(J,1) J NS
S Uu) = u w™.
2mn M 2mn

The case =0 is due to Donaldson ([7]) and Fujiki ([9]), and a mildly
different proof in this case was also given in Tian’s book [21].
To prove the theorem, let us consider two operators

P.CE— T,
Q: Tff - C(S)C(M)a

where P represents the infinitesimal action of the Lie algebra Cj° on ¢ via
Hamiltonian action and Q represents the derivative of the map which associates

to Je # the perturbed scalar curvature ZLS(J ,t) of the Kéahler manifold
(M,w,J). We need to show mn

8%(P(u)a v _1ﬂ)t = <Q(:u)au>

To compute P(u), we have only to compute LyJ for a smooth vector field
X.

LemMMa 2.3.  For a smooth vector field X = X'+ X" we have

LyJ =2V—-1V/X' =2V -1V, X".
In particular, if X, is the Hamiltonian vector field of u,
P(u) =2V —-1ViX.
Proof. Since (LyJ)a = Ly(Jo) — JLya, if o is a type (1,0)-form,

(10) (LyJ)a= vV —1(Lyo — (Lyo)"® + (Lyo)™") = 2v=1(Lya)"".
On the other hand

(11) Lya=d(a(X")) +i(X)(0s2 + 0s2).
Thus

(12) (Lx2)"!' = 8,((X")) + i(X")d,0.
But

ds(a(X")) = Vj(a(X"))
= (Vja)(X") + a(V)X'") = (y2)(X") + a(V}X").
This implies

(13) Or(a(X")) +i(X")(050) = (V) X")
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From (10), (12) and (13) we get

(14) (LyJ)o = a2/ =1V)X").

Similarly, if « is a (0, 1)-form, then

(15) (LyJ)o = a( =2V =1V, X").

From (14) and (15) we get the lemma. This completes the proof. O

From this lemma we get for the real function u
(16)  R(P(u), V=Tx), = 2R(VIX,, ),

V0 _
= 2§RJ M, (u_/ky; 5 dzX adz?,
M Co4n

v—1 v—1
ORI+ ——10,....0 1 +——10].
2n 2n

Next we need to compute Q. We will do this in two ways along the lines of
[7] and [21]. First we follow the arguments of [7] just word for word.

If identify 7'M with T;’M through o+ ux+— o, this identification
induces identifications of differential forms with all degrees, which we denote by
1 Q51— Qe

LemMmA 2.4.  With the above identification we have the following.
(@) If a 1-form y=o+peT;/M @ T;"M is written also as y =o' + uo' +
B +up e TiM @ Ti'M then
B’ =B — po
up to first order in . Namely
(B +up') = f — po
up to first order in p.
(b) If a fixed 2-form y = y>° + "1 + %% € 93'0 ® Q}‘l ® Qg,z has y'"' as a
(1,1)-component with respect to J', then
1) = 0 = g - %2

up to first order in u, where we extended the operation of u to higher
degree tensors in the obvious way.

>

Hereafter we use the notation = to mean ‘“up to first order in u”.

Proof. (a) From o = o — uff’ we sce

B=p— ' =f—pu(e—up’) =p — po.



352 AKITO FUTAKI

(b) If a fixed 2-form is written also as y = (1 + w)ay A (1 + oo + (1 4+ oz A

T+ + T+ rn(T+p)p e Q" @Q) @Q)2, then a similar computa-
tion as in the proof of (a) shows

a3 APy =7 — o Ao — poy Ao — By ARy — By AP,
= M0 02

This completes the proof. ]

COROLLARY 2.5. Let E — M be a vector bundle. If V is a fixed connection
of E and V=V + V] with respect to the complex structure J, then by the
identification above V', is identified with V'] — uV', up to first order in p.

Proof of Theorem 2.2. The identification 1: Tj)M — T;'M is a Hermitian
isometry up to first order in g, and we can consider the Levi-Civita connections
V, and V, as two unitary connections on the same bundle. If J is fixed and V"
is varied by ¢ € Q"' (End(7'M)) then the connection changes by ¢ — ¢*. On the
other hand, if a connection V = V), + V7 is fixed and J varies to J' by g, then the
new V7, is identified with V] — uV/ up to first order in u by Corollary 2.5.

Now we compute V/, for a 1-form « of 7;'M, which is strictly speaking
equal to 10V” o1 '(«). But V% o1 (x) is Q) -part of d(ox+ ua) up to first
order in x#. From this and Lemma 2.4, (b), we get

(17) V)= Vot V) () — u(V)2).

On T;'M ® T;'M, u acts as a derivation. To make the notations clear we will
denote by g, (resp. u,) the action of u on the first (resp. second) factor. So, on
TYM®T;M, we have p=pu; ® 1 +1®u,. With these notations the right
hand side of (17) is equal to

(18) Vi + uVio+ (Vip)o — p(V'e) = Ve — iy Ve + (Vi)
= (V) = uVy)oa+ (Vo

By Corollary 2.5, VJ — V) is the expression under our identification of
J'-(0,1)-component of a fixed connection V,. Thus the variation of the Levi-
Civita connection is ¢ — ¢* where ¢ = V,u. Notice that ¢ must be a (0, 1)-form
with values in End(7;M). So, in local expressions

Viu= (Vju} dz")
with i column index, j row index. Since it is convenient to distinguish the
covariant derivative as the endomorphism part from the covariant exterior de-
rivative as the form part, we shall write V; to denote the covariant derivative as
the endomorphism part and d¥ to denote the covariant exterior derivative as the

form part. Thus, under the variation 0J = u of the complex structure, the
variation 0® of the curvature matrix ® is

00 = d"' (o — o).
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Its (1,1)-part is
(00) "' = d™ (Vi) = (d% (V)"

. . . . v—1
Since the exterior covariant derivative dV|ow® I+ ——1® of w®I+
v_1 2n

———t® vanishes, we have
2n

5J S0
M 2mn

= 23%J umey, —AdVJ(V}ﬂ),w®1+—”_lr@,...,w®1+;_lt®
M 2n 2n 2n

= —Z%J mey, idv?'uAV}u,w®l+—“_lt@,...,w®1+—'_lz®
M 2n 2z 2n

Now the invariant polynomial ¢, takes determinant for the endomorphism
part, and therefore we may interchange the roles of the form part and the
endomorphism part in the integration above. Thus by the vanishing of

-1 . . . .
A o®I +2—t® again we can use integration by parts for the covariant
T

derivative of the endomorphism part. Hence we have

5 WS
M 2mn

V=1 V-1 V-1
:23‘%] mcm<2—V}’dV1u/\ﬂ,w®I+?t®,...,w@]—i— t@).
M

-1
T 2n

V—l=or . . .
where the term Z—V}’dvfu/\u is expressed in local coordinates
T

—1 k i 3.l
Ll dz" A s dz”

where u; = V;Viu. This coincides with (16), completing the proof of Theorem
2.2.

Alternate proof of Theorem 2.2. We only need to show that <Q(u),u) is
equal to (16). To compute Q we take a local coordinates (x!,...,x*") with
respect to which e is the standard symplectic form on R*”, by using Darboux’s

theorem. Let J, be a family of complex structures with Jy, =J. Then we have
J—o =2V —1u—2V—-1j.

This follows because, by taking the derivative of
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Jo(o+ u(t)e) = V—1(o + u(t)a)
with £(0) = u, we have
J(a) = 2v—1pu

Let g, = wJ; be the Riemannian metric induced by J,. Then the Christoffel
symbols of g, are written as

i U i (09us | 0guok  0gujk
Oxk ox/ ox! )’

tjk — 2gz
At pe M we may assume that g;(p) =0y, dg;j(p) =0, and
o -I
J =
=7 %)

where g = ¢go. Then F,"’jk is of order ¢, and

0 0 0
Ry ke = g <Va/afoa/ax/ e VajaxiVasoxi v ﬁ)

_ 1 (azgt,pj azgt,j/ azgt,pi a2gt,il> ps
= gt,skz t

oxiox!  oxioxP  OxJox! | dxJoxp
+ quadratic terms in the first derivatives of g¢.

Taking the derivative with respect to ¢ at ¢ =0,

d 1
= Ruikr =5 Gxjic = Gje.ik = raje + Gie ji)-
d|,_, 5 \Ikj.i it i ki j it,j
Now we compute the right hand side in terms of local holomorphic
coordinates z!,...,z". The only terms involved in the integration are 97 xS

and their complex conjugates, and we also have
Thus

1. — —
Zgzﬂ(\/—l dz* ndzl = t7 V1 dz* ndz’.

Hence we get
<Q(n),up

vV—=1 o v—=1 v—=1
:23?J umcm(—dV/(V},u),a)@I—|——t®,...,w®1+—t®>.
M 2n 2n 2n

As in the last part of the previous proof this last term coincides with (16). This
completes the alternate proof.
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3. Perturbed extremal Kahler metrics

For a real or complex valued smooth function # on a Kéhler manifold
(M,g) we put

and call it the gradient vector field of u. Strictly speaking the real part of
grad’ u is the gradient vector field of u, but we identify a real vector field with its
T’ M-part.

DEerINITION 3.1. A Kdhler metric g = (gif) is said to be a perturbed extremal
Kdihler metric if the gradient vector field

erad’ 57,0 = 3 g7 S0 O

Q=1 azf 0z!
of the perturbed scalar curvature S(J,t) is a holomorphic vector field.
ProposITION 3.2.  Critical points of the functional
J— J S, 1) 0"
M
on ¢ are perturbed extremal Kihler metrics.

Proof. Let J(s) be a smooth family of complex structures such that
J(0)=J and J(0) = u. By the proof of Theorem 2.2

4
ds

J uS(J(s), )™ = 2maR(V"V"u, 1),
s=0JM

for all real smooth function u with jM uow™ =0. We take u to be v:=
S, 1) = [, S(J, )™ /[, 0™ and p to be (—v/—1)-times the infinitesimal action
of the Hamiltonian vector field of v at J. Then using the above equality and
Lemma 2.3

d

Jvﬂﬂmgzmmmvww#p
dS =0 JM

From this we get

d _— d
$3J?ﬂﬂm0w _4?magﬁ

= 4maR(V'V"u, p),.
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This shows that J is a critical point if and only if
V" grad’ S(J,1) =0,

i.e. the Kéhler metric of (M,w,J) is a perturbed extremal Kihler metric. []

Remark 3.3. In the case of unperturbed extremal Kéihler metrics when
t =0, such Kéhler metrics are also the critical points of the functional

W — J S(w) ™
M

on the space of all Kdhler forms @ in a fixed Kéhler class [wy] where S(w)
denotes the scalar curvature of the Kéhler form w, (c.f. [4]). But when 7 # 0 the
perturbed extremal Kdhler metrics are not the critical points of the functional

W — J S(w, )™
M

on the space of all Kdhler forms in a fixed Kéhler class where
S(w, 1)

(19) 2mn

0" =ci(@) A" F (@) A4 4 1" ()

:l (det<w®l+—_1t®> co’”),
t 2n

¢j(w) being the j-th Chern form with respect to c:

det<1 + 12;1@) =1+1te1(w) + -+ " ep(w).

Note that we use the notation S(w,?) instead of S(J,7) to emphasize that w is
varied now.

Proof of Remark 3.3. Let w+Jw be a variation of the Kéhler form in
a fixed Kéhler class. Then dw = v/—100¢ for some real smooth function ¢. By
(19) the variation 3S(w,?) of the perturbed scalar curvature is given by

oS(w, 1) o S(w, )
2mn 2mmn

(mcm (\/ —100p ® I + 2—_1 100,
7

w®l+;lt®,...,w®l+ 71t® — Apo™
2n 2n

A¢w171

~ | —

= McCy ;15®;W®1+;11®,,w®1+;11®
2n 2n 2n
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— . E V= Vas
+mCm< 186@@1721®,w®1+2nlt®,,C()®I+2nt®>
T

+~~~+mcm<\/155¢®1,2_1®,a)®1,...,w®1>.
T

Thus
1 2 m
%5(5(60, )" w™)
V- V-1 v—1
=2S(w, t)mey, —15®,w®1+—t®,...,w®1+—t®
2 27 27

_ V= VA VA
+2S(w, )mey, <\/—166(p®1,2n1®,w®1+2nt®,...,a)®l+ht@)

V-1

+ -+ 2S8(w, )mey, (\/—165(p®1,2n

@,w@l,...,w®l>

— — S(w, t)*Agw™.
S S (@3 1) Ao

Since 9@ = V"V'(p) we have

1 2 m
20) 5o JMS(co,t) o

VA -
= ZJ S(w, t)mey, (V;Vk(gpj)z— dz’ A dz*,
M T

v—1 v—1
o®I+——10,....0 Q[ +——10
2n 2n

. V-1
+2J S(a),t)mc,n(v—lﬁﬁgo@I,—@,
M 2n

w®1+—”_1z®,...,w®1+—”_1:®
2n 2n

v—l1
+..._|_2J I—
M 2n

S(a),t)mcm<\/—165¢®l, @,w@l,...,w@l)

1 2 m
gy Jm S(w, t)"Apw

But
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(21) Vi Vi) = V;ViV'y,
= V;V'Vig; = V;(Rio,)
= Vi Vi, = (V; Ryi)g, = Riio,;
= V;V'Vig; = (V' Ry )0, — Rijip,;

where we used the second Bianchi identity at the last equality. It follows from
(20) and (21) that

! :
22 — "
@) 50| swno

V=1

1 _
o dzF adz?,

=-2 JM S(w, tymey, ((VZVingoj - (pprR/’ijk - Rf’,j(pp/—,)

w®I+L:L&”qw®I+L:%®
2n 2n

+ 2J S(w, t)mey, (v—165¢®1,2—1®,
M T

w®l+—_lt®,...,a)®l+—_lt®
2n 2n

o2

M T

S(w, t)mey, (v—l@é(p@I,z—_l@,w@L...,w@])
—J=J5(zfA "
2mn ), @ e

But

VO Y
! dzF ndz!/ = R! vl

ik 2 kj 2m

chkAd?!:LZEG.
2

From this and integration by parts

AT
(23) 2JMS(a), Hmep, (%VPRZJ‘;( o dz" ndz’,
w®I+L:L&”Ww®I+L:L®
2n 2n
= ,LJ S(w, 1)* Apa™
- 2mn M ’ 4 '
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It follows from (22) and (23) that

L(SJ S(w,1)’w
M

2mn
= —ZJ S(w, t)mcm<<V;Vin¢j —1 dz* ndz?,
M ; 27'[
wel+Y Lo oo+ o
2n 2n
(24) +2J S(w, tymen, (R""(pp, dz* ndz’,
M 2n
V-1 V=1
OR®I+——10,..., 0 [ +——10
2r 2n
- V=1
(25) —+—2J S(a),t)mc,n(v—lﬁﬁgo@I,—@,
M 275
w®l+—_lt®,...,w —1
2n 2n
= V-1
+...+2J S(a),l)mcn,<v—166(p®1,7®,w®I,...,co@l)
M
(26) ,LJ S(w, 1)*Apw™
) ) ?
When ¢ =0 this is equal to
1 — L1
27 —0| S’0™=-2| SDpo™+2 —R
ey o JMSw JMS o’ + JMSZ_IM
1
2 o ZA m
+ J S;gonz anmS P

with D = V,V,;V'V/ where S = S(w,0) is the unperturbed scalar curvature and we
used the normal coordinates such that the complex Hessian (go[j—) is diagonalized.

The third term on the right hand side can then be computed using
T Z Em:L ) —oilr.
o Piing 27z // Pii = 27 W 4 2V

1

1
— Ap—— i__R.
(02m S—¢ 2n
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and we see from this and (27) that

1
—5J S2o™ = —2J DSpwn™.
2mn M M

This proves the fact that the critical points in the unperturbed case are the
extremal Kéhler metrics. We have seen that when =0, (24)+ (25) + (26)
vanishes. But when 7 # 0, this is not the case because we have the term with
™! only in (24)

T 2n

VA _ V1 e
ZJMS(w,t)mcm<R;’,€’gop{: o dzkAdz/,z—tG),...,—t@),

which does not always vanish. This completes the proof of Remark 3.3.

4. Kaihler metrics of harmonic Chern forms

Let M be a compact Kéhler manifold with a fixed Kéhler class [wy] and
h(M) the complex Lie algebra of all holomorphic vector fields. For any o € [w],
let cx(w) be the k-th Chern form with respect to w as in Remark 3.3. Let
Hcy(w) be the harmonic part of ¢x(w). Here the harmonic projection H is taken
with respect to the Kédhler metric . Then

cx(w) — Hep(w) = V—100F;
for some smooth real (k — 1,k — 1)-form
Fr € Q11
For a holomorphic vector field X € h(M), define f; : h(M) — C by

1

SN =0T

[ LXFk A wﬂ’l*k%’l .
JIM

THEOREM 4.1 (S. Bando [1]). The functional fi on Y(M) is independent of the
choice of w € [wo], becomes a Lie algebra character and obstructs the existence of
Kdhler metrics w in [wo] of harmonic k-th Chern form.

In [11] the author gave a larger family of integral invariants including f;’s and
obstructions to asymptotic Chow semi-stability.

Here again as in Remark 3.3 we are fixing J and varying w, instead of fixing
o and varying J. So we denote the perturbed scalar curvature by S(w,?) as

in (19). If X = grad' u=g¥ %
integration by parts that

aJa . .
o with [, uw™ =0 then we see using the

(28) LJM uS(0, ™ = —fi(X) — ((X) — - — "o (X).

2mn
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We put
F(X)=HX)+tHh(X)+ -+ t’”’lfm(X).

and call it total Bando character.

PrOPOSITION 4.2.  For fixed small te R, F, :h(M) — C is an obstruction to
to the existence of Kdhler metric € [wo] of constant perturbed scalar curvature
S(w, t). If there exists a perturbed extremal Kdihler metric and the total Bando
character vanishes, then the perturbed extremal Kdihler metric has constant per-
turbed scalar curvature.

Proof. 1f there is a Kéhler form € [wy] such that S(w,¢) is constant.
Then the total Bando character has to vanish because of (28) and the nor-
malization [, uo™ =0. If w is a perturbed extremal metric then grad’ S(w, 7) is
a holomorphic vector field and

/ _ m
F,(grad' S(w,1)) = Y- ™.

1 J ifﬁS(wl, t) 6S(wA, 1)
e oz 0z

Thus if F, vanishes then S(w,) is constant. O

Let o(f) be the topological invariant

(e (M) A for] "+ ter(M) 0] - 4 7, (M) [M]

7= ] 01]

This is obviously the average of the perturbed scalar curvature (with respect to
any Kihler form w € [wg]). For any two Kéihler forms o’ and »” we define

M0 0" = — Jl ds JM % (S(wy, t) — a(t)) oy

0 S

where w; = w + v/—100p,, 0 < s < 1, is a smooth path in [w] joining »’ and «”.
Bando and Mabuchi ([2]) observed that every coefficient of #* in .#,(w’,»"), and
thus #,(w',®"), is independent of the choice of the paths w, and satisfies the
cocycle conditions. Putting v,(w) := #,(wy, ®), we get a functional on the space
of all Kihler forms in the cohomology class [wg]. The functional vy in the
case when ¢t =0 is the so-called K-energy or Mabuchi energy. We call v, the
perturbed Mabuchi energy. It is obvious that the critical points of the perturbed
Mabuchi energy are the Kdhler metrics of constant perturbed scalar curvature.
In the case when t =0 Chen and Tian [5] proved that the Mabuchi energy is
bounded from below if there exists a Kéhler metric of constant scalar curvature,
and that the infimum of the Mabuchi energy is attained exactly on the space of
Kaéhler metrics of constant scalar curvature, extending earlier result of Bando and
Mabuchi [3] for Ké&hler-Einstein manifolds of positive first Chern class. We
hope to discuss for the perturbed case in a later paper.
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The proof of the fact that the definition of .#, is independent of the paths
follows from the fact that S(w, /)™ gives a closed 1-form on the space of Kéhler
forms. The closedness comes from the symmetry between the endomorphism
part and the form part in the definition of S(w, f)w™, as was explained between
the equation (9) and Theorem 2.2. The detailed discussion was given in [10] but
of course the original idea goes back to Bando [1].

For the identity component AutO(M ) of the group of all holomorphic
automorphisms of M, let G denote the maximal linear algebraic subgroup. The
maximal reductive subgroup K¢ of G is the complexification of a compact Lie
group K. Taking the average of the Kéhler metric by the action of K we may
assume that K acts as isometries. We denote by w the Kidhler form of the
averaged Kihler metric. Then the elements of the Lie algebra of K are Killing
vector fields of (M,w) and are thus obtained as the real parts of the gradient
vector fields of purely imaginary functions (see e.g. [l7]). Therefore as a
complex Lie algebra, the Lie algebra f¢ is isomorphic to the Lie algebra u
spanned over C by some real functions uy,...,u; with the normalization
Jyy uiw™ =0 where the Lie bracket on u is given by the Poisson bracket

7 ou 0v ;7 0v du

- i‘— i': 1]7'7‘_ ~ T
{uvp =wloi=vlu = 9" 55 55 = 9" 55 i

ProrosITION 4.3.  Let the situation be as above. If we choose w,=
o+ V—1380¢, so that ¢, = 0 and that ¢,|,_, = u for some real smooth function u in
u, then

d

vi(w,) = 2mnF,(grad’ u).
r=0

Proof. This is immediate from

[ % Wy, t) —a(t))wl
i) == | d| FS(,0) = o)

and
d

dr

V(o) = —J uS(w, ™

r=0 M

= 2mnF,(grad’ u)

where the last equality follows because u is a normalized Hamiltonian function
for a holomorphic vector field. O

This proposition shows that the perturbed Mabuchi energy is an integral form
of the total Bando character. A way of computing the unperturbed Mabuchi
energy vy without using the path integral was given in [14]. It would be in-
teresting if one can give a formula for v, without using path integral. B.
Weinkove [23] related the degree 1 and 2 terms in ¢ of .#, to Donladson’s
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functional which was used in the proof of the existence of Hermitian-Einstein
metrics on stable vector bundles [6].

We also remark that the modified Mabuchi energy to treat the extremal
metrics can be also defined in the perturbed case just as defined in [16] and [20].
One can use the proof given in [15].

The results obtained above may be interesting to compare with a results of
X. Wang [22] (see also [12]) which we summarize below.

Let (Z,Q) be a Kéhler manifold and suppose a compact Lie group K acts
on Z as holomorphic isometries. Then the complexification K¢ of K also acts
on Z as biholomorphisms. The actions of K and K¢ induce homomorphisms of
the Lie algebras f and ¢ to the real Lie algebra I'(7Z) of all smooth vector fields
on Z, both of which we denote by p. If &+inet® with & 5 e, then

p(&+in) = p(&) +JIp(n),

where J is the complex structure of Z. Suppose [QQ] is an integral class and there
is a holomorphic line bundle L — Z with ¢;(L) = [Q]. There is an Hermitian
metric & of L' such that its Hermitian connection 0 satisfies

1

Suppose we have a lifting of K¢ to L~!, so that we have a moment map
i Z — 1* because the lifting of K-action to L is equivalent to defining a moment
map (see [8], section 6.5). Let #: L~' — Z be the projection and n(p) = x with
pe L' —zero section, xe Z. Denote by I' = K¢ - x the K¢-orbit of x in Z, and
=K p be the K-orbit of p in L:l. We say that x € Z is polystable with
respect to the K¢-action if the orbit I' is closed in L~'. Consider the function
h:T — R defined by

h(y) = log|y|*.
Fundamental facts are
* h has a critical point if and only if the moment map x: Z — " has a zero
along I
* h is a convex function.
For these facts refer again to [8], section 6.5. These imply the following two
propositions.

PROPOSITION 4.4. A point x € Z is polystable with respect to the action of K¢
if and only if the moment map u has a zero along T.

PropoSITION 4.5. The set {x €I |u(x) =0} has only one component, and
the orbit Stab(x) - x of the complexification of the stabilizer at x through x is
connected even if Stab(x)¢ is not connected.

For a given x € Z we extend u(x) : £ — R complex linearly to u(x): ¥ — C.
For notational convenience we denote by K, (resp. (K¢),) the stabilizer of x in
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K (resp. K¢), and by f, and (), the Lie algebra of K, and (K¢).. Define
S+ (), — C to be the restriction of p(x) :t° — C to (f°),. Note that (K¢),, =
9(K) 9"

ProrosITION 4.6 (Wang [22]). Fix xo€ Z. Then for xe K¢ xo, fy is K-
equivariant in that f,(Y) = f(Ad(g~")Y). In particular if f; vanishes at some
x € K¢ xq it vanishes at all x € K¢ - xo. Moreover f : (f). — C is a Lie algebra
character.

X

For a proof of this proposition, see [22] and also [12]. Suppose now we are
given a K-invariant inner product on f. Then we can identify f =~ t*, and t* has
a K-invariant inner product. Consider the function ¢ : K¢ - xo — R defined by
$(x) = |u(x)]>. We say that xe K¢-xy is an extremal point if x is a critical
point of ¢.

ProposITION 4.7 (Wang [22]). Let x€ K¢-xy be an extremal point. Then
we have a decomposition

() =) @) K

>0

where 1 is J-eigenspace of ad(iu(x)), and iu(x) lies in the center of (%,)°. In
particular (£,)° = (t°), if and only if u(x) =0.

For a proof of this proposition, see [22] and also [12]. Let (M, wy,Jy) be
a compact Kdhler manifold with a fixed Kéhler form w,. Apply the above
results for finite dimensional manifold Z to the set ¢ of all w-compatible integral
complex structures J with respect to which (M, w,J) is a Kéhler manifold,
where the compact Lie group K is replaced by the group of symplectomorphisms
generated by Hamiltonian diffeomorphisms. This explains a relationship be-
tween stability and various results about extremal Kéhler metrics. For example,
Proposition 4.6 explains the total Bando character and Proposition 4.7 of course
explains Calabi’s decomposition theorem for the Lie algebras of all holomorphic
vector fields on compact extremal Kédhler manifolds [4] (see the next section).

5. Deformations of extremal Kéhler metrics

Let M be a compact complex manifold carrying a Kéhler metric. By a
(t-perturbed) extremal Kdhler class we mean a de Rham cohomology class which
contains the Kéhler form of a (s-perturbed) extremal Kédhler metric. In this
section we prove the following result which extends the results of LeBrun and
Simanca [18], [19].

THEOREM 5.1.  For an extremal Kdihler class [wy), there exists a neighborhood
U x (—¢,¢) of ([wo],2) in Hé’,%(M, R) x R such that all points of U are t-perturbed
extremal Kihler classes for all t € (—¢,e).
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The rest of this section is devoted to the proof of this theorem. We first
review well known facts on Hamiltonian holomorphic vector fields on compact
Kéhler manifolds. Let (M,g) be a compact Kdhler manifold. We define a
fourth-order elliptic differential operator L, : C& (M) — CZ (M) by

Lgu — V//*v//*vl/v//u’

where CZ (M) denotes the set of all complex valued smooth functions on
M. More precisely ..
Lgu = VJVIV]TV;L!

— A%+ R/TiVijju + vfsvfu

where S denotes the unperturbed scalar curvature. Then the kernel of L,
consists of all smooth functions u whose gradient vector fields

grad’ u := g”V u-"
ozt

are holomorphic vector fields. It is well known that such holomorphic vector
fields are exactly those which have zeros (see [18] for a comprehensive proof).
Since constant functions correspond to the zero vector field, we only consider the
subspace (ker L,), consisting of all functions u € ker L, which are orthogonal to
constant functions:
uw™ = 0.
J, et

Now we study the behavior of u e (ker L,), when the Kdhler metric g varies in
the same Kiébhler class. The following lemma was used in [13], pp. 208-209, but
we will reproduce a proof here for the reader’s convenience.

LEMMA 5.2. Let g7 = g5+ ViVio be a Kdhler metric in the same Kdhler class
as gz If ue (ker Ly )0, then @ —u+VuV,goe(kerL )o and grad; u = grad, u.

Proof. We first show the last equation.
jou 0 = Qu 0
= — G k i
grad; u = g s 9 <0 — + V*uV, V- (p) pe
= givk VeVip) 2 = Vil = grad
=g"Viulg,; + ViVip) a5 = Vg = grad, u.

It remains to see

uw? = 0.
J, 5

Let g, =g;+1ViV;p be the line segment of Kdhler metrics between g and g, and

u; = u+tV'uV,p be the corresponding functions in (ker Lj),- It is sufficient to
prove
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d
EJM uta)gf =0.

It is also sufficient to prove this at t =0. But

4
dt

J ww)' = J (VuVip + u(Ap))w)! =0,
=0 JM ) M )

where A = V'V,u denotes the complex Laplacian. This completes the proof.
O

Now let K be the identity component of the isometry group of (M,g), and
f be its Lie algebra. Hence f consists of all Killing vector fields. On a compact
Kéhler manifold ¥ can be embedded into the complex Lie algebra h(M) of all
holomorphic vector fields on M by X et 1 (X —v~1JX) eh(M). By this |
is often identified with the image in h(M) of this embedding. As was explained
in the previous section when a holomorphic vector field X is written as a gradient
vector field of a complex valued smooth function, X is a Killing vector field if and
only if the function is a purely imaginary valued function. We choose real valued
smooth functions uy, ..., u; so that the gradient vector fields of iy, ..., iuy; form a
basis of f® C. We also assume that 1,uy,...,u; form an L>-orthonormal system
(under the normalization [,, u;0™ = 0). Let us denote by J, the linear span over
C of Lup,...,ug.

Remark 5.3. Since the imaginary part of grad’ u; is a Killing vector field,
(grad’ u;)p is a real function for a K-invariant real function g.

Remark 5.4. 1f g;=g;:+ ViV7¢ is a K-invariant Kahler metric in the same
Kahler class as g, then the corresponding basis of J; consisting of real functions are
Ly =u + (grad’ u)e., ..., 4q = ug + (grad’ ug)e.

It is easy to see that they form an L2?-orthonormal system with respect to § (see
[13], Appendix 2).

Since we assume that there is an extremal Kidhler metric, the Lie algebra
h(M) has the following structure by a theorem of Calabi [4]. Namely there is a
decomposition

h(M) =1y + be
2#0
where b, is a A-eigenspace of the adjoint action of the extremal vector field
ad(grad’ S) : h(M) — b(M),

and further b, is the complexification of the Lie algebra f consisting of all Killing
vector fields on (M, g). In particular, it turns out that grad’ S lies in the center
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of . that [h,,b,] =b,,,, and that b, is a maximal reductive Lie subalgebra of
b(M).

Now we consider the set of all Kéhler metrics invariant under the identity
component of the isometry group K of (M,g) of the form

(e, ) =w+ o+ V—100p

where « is a K-invariant real harmonic (1,1)-form on (M,g) and ¢ is a
K-invariant real-valued L7 ,-function. Hence the space of such K-invariant
Kihler metrics is identified with an open subset of H'!(M;R) x L{., x where
H''(M;R) denotes the vector space of all real harmonic (1, 1)-forms on M and
Li.4 g is the vector space of all real valued K-invariant L}, functions on M.
Let I;,4 be the orthogonal complement to the subspace spanned by 1,u,...,uy
in L 4 k-

Let g be the Kdhler metric corresponding to w(a, ¢). Then we obtain, as in
Remark 5.4, L} ;-functions (1,u,...,i4s) whose gradient vector fields span the
Lie algebra f. Let Ji.3 be the hnear span of (1,#,...,44). We put @y = 1.
Then for a sufficiently small neighborhood U of g in H"!'(M;R) x L}, ¢, we
have

det(ui,ﬁj)Lz #0
for all ge U. Then it is easy to see
ker(1 —IT,)(1 — I;) = ker(1 — I )

where I, and Il; are respectively the L? projections of Lk x onto Jiyz < Lk %
and onto Jk+3 c Lk s

Hg :LI%,K - le,Kv Hg(f) = (fa )uia

M -

I : Ll%,K - Ll%,K7 Hg‘(f) (f ;).

i
o

I

Put V:= UN(H"“'(M;R) x I ,4), and take a neighborhood W of the origin
in ¥ x R such that for every point (g,¢) in W (identifying V' with the space of
Kéhler metrics) the inner product (9) makes sense so that one can consider z-
perturbed scalar curvature. Consider the map S: W — [ defined by

e(gvl):(l_ )(1_ ) (gv )

Note that S(g,0) = 0 and that S~'(0) is the set of all perturbed extremal Kihler
metrics in W. To complete the proof of Theorem 5.1, it is sufficient to show, by
the implicit function theorem, that the partial derivative

D&y 0) : Irva — Ik

at (g,0) in the direction of I 4 is an isomorphism. In the direction of € Iy.4,
the derivative of the scalar curvature is
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2 ji

and the derivative of the projection IT is

(D)(S(9),0) = 5| (S+V'Sv)

= VISV = VISV,

where the last equality follows from Remark 5.3. Combining these two
equations, we obtain

(D&),(}) = (1 — T,) (=A% — RIVV) — VISV))
= (1 - Hg)(*LgW)

If (1 — I,)(L,y) = 0, then Ly € J,. But since L, is self-adjoint, (Image L,)" =
ker L, and hence L,y =0. Since Y € [i44, this implies = 0. Thus (DG)(Q’())
is injective, which also implies that (D), is surjective since (DS), ) is self-
adjoint. This completes the proof.
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