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HERMITIAN MANIFOLDS WITH FLAT ASSOCIATED CONNECTION
G. GANCHEV AND O. KassaBov

Abstract

A local classification of the Hermitian manifolds with flat associated connection is
given. Hermitian manifolds admitting locally a conformal metric with flat associated
connection are characterized by a curvature identity. Locally conformal Kéhler mani-
folds as well as Hermitian surfaces with vanishing associated conformal curvature
tensor are characterized as locally conformal to a Kéhler manifold of constant holo-
morphic sectional curvatures.

1. Introduction

Let (M,g,J) be a Hermitian manifold with metric g and complex struc-
ture J.

One of the characterizations of the Chern connection D on a Hermitian
manifold is that the Chern connection is the unique natural connection (Dg =
DJ =0) with torsion T so that the symmetric connection D—%T is complex.

In this paper we prove that any symmetric connection V on a_ complex
(Hermitian) manifold admits a unique symmetric complex connection V so that
for any two holomorphic vector fields X, Y the vector field Vyx Y coincides with
the (1,0)-part of VyY. We call the connection V associated with V.

If V is the Levi-Civita connection on a Hermitian manifold, then it follows
that the associated connection V is the symmetric complex connection D —1T.

In Theorem 3.1 we precise the conditions under which a given complex
symmetric connection is holomorphically projectively flat in dimension 4. ~

Using the fact that a Hermitian manifold with flat associated connection V
admits locally special holomorphic coordinates in which the local components of
V are zero, we obtain a local classification of these manifolds. Namely, the local
components of the metric with respect to special holomorphic coordinates are
found in Theorem 5.2.

In Section 6 we show that any conformal transformation of the metric ¢
induces locally a holomorphically projective transformation (with closed 1-form)
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of the symmetric complex connection V and vice versa. Then the holomor-
phically projective tensor Py of the connection V gives rise to the associated
conformal curvature tensor W which is a conformal invariant.

In Theorem 6.4 we give the following geometric interpretation of the con-
dition W =0 in the class of locally conformal Kéhler manifolds:

Let (M,g,J) (dim M = 2n > 6) be a locally conformal Kdihler manifold with
associated conformal curvature tensor W. Then the following conditions are equiv-
alent:

(i
(1) 9 0;

(iii) there exists locally a conformal metric with flat associated connection;
(iv) the metric g is locally conformally equivalent to a Kdihler metric of con-
stant holomorphic sectional curvatures.

In Theorem 6.7 we characterize the Hermitian surfaces with vanishing asso-
ciated conformal curvature tensor:

Let (M,g,J) be a Hermitian surface with associated conformal curvature
tensor W. Then the following conditions are equivalent:

(i) w=0;

(i) there exists locally a conformal metric with flat associated connection;

(ili) the metric g is locally conformally equivalent to a Kdihler metric of con-
stant holomorphic sectional curvatures.

In Example 1 (Example 2) we give conformal Kéhler metrics with flat asso-
ciated connection.

2. Symmetric connections on a complex manifold

Let (M,J) be a complex manifold with complex structure J. The tangent
space to M at a point p e M and its complexification are denoted by 7,M and
TCM respectively. By XM and ¥°M we denote the algebras of real and
complex differentiable vector fields on M, respectively. The complex structure J
generates the standard splittings

T}’CM:%LOMC_BT}]O,IM, XCM:xl’OMC‘BxO"lM.

If dimc M =n and z',...,z" are local holomorphic coordinates in a neighbor-
hood U, then the vector ﬁelds 0y =0/0z%, a=1,...,n (resp. 07 = 8/0z*, & =
1,...,7n) form a basis for Tp1 OM (resp. TO M) at any point pe U.

In what follows Greek indices o, 8,7, ... run from 1 to n, while Latin indices
i,j,k,... run from 1 to 2n.

Throughout the whole paper the standard summation convention is assumed.

Let V be an arbitrary symmetric connection on M. Then the condition that
(M,J) is a complex manifold is equivalent to the identity

(2.1) (Vx )Y + (Vox )Y = (VyJ)IX + (Vyy )X, X,Y e XM.

The aim of this section is to prove the following statement.
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PrOPOSITION 2.1.  Let V be a symmetric connection on a complex manifold
(M,J). Then there exists a unique symmetric complex connection V on M, sat-
isfying the condition:

VyY =y X, vex"m.

Proof. Any symmetric connection V on M is determined by the equality
VyY =VyY+Q(X,Y), X,YeXM,
where Q is a symmetric tensor. Since V is complex, then we have
JO(X,Y) = Q(X.JY) = (Va) ¥
or in local holomorphic coordinates

»

(2.2) 0l = —éVxJ/;y Q= éVaJ;.

The first equality of (2.2) is equivalent to the next one

(2.3) OX,Y)+ QUX,JY) = (VxJ)JY — (V,yJ)X,

while the second equality of (2.2) is equivalent to the following one

(24) OX,Y)—-QUX,JY)+JOUJX,Y)+JO(X,JY) = (VxJ)JY + (V,xJ)Y.

Let X,Y e X"°M. Then the condition VyY = (Vx Y)l‘0 is equivalent to
the identity

(2.5) O(X,Y)— QUJX,JY)—JO(JX,Y)—JO(X,JY) = 0.
Now (2.3), (2.4) and (2.5) imply that

O(X,Y) = %{2(VXJ)JY + (VyJ)JX — (Vy )X}

Because of (2.1) the tensor Q is symmetric.
Hence, the connection V is determined by

(2.6) VyY =VyY + % {Q(VyI)TY + (VyJ)JX — (V,yJ) X}

An immediate verification shows that the connection (2.6) satisfies the con-
ditions of the proposition. QED

We call the connection V from Proposition 2.1 associated with V.
The local components of the symmetric connection V satisfy the equalities

7 __i 7 Y _i y
Faﬂ_ 2V1Jﬁ7 F“B—QV“J/;.

Hence the local components of the associated connection satisfy the conditions
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off
Then the essential components of the associated connection V (i.e. those that may
not be zero) are:

7 _ 7 _
I 0, Fab;—O.

rvo_ T
L, =Tl

An application to the Riemannian connection on a Hermitian manifold.

Let (M,g,J) be a Hermitian manifold. It is well known that Hermitian
manifolds are characterized in terms of the Levi-Civita connection V of the metric
g by the following identity (e.g. [4])

(Vix )Y =J(VxJ)Y, X,Y eXM,
which is equivalent to the identity
Va; =0

in local holomorphic coordinates. Then the equality (2.6) reduces to
~ 1
(2.7 VXY:VXY+§{(VXJ)JY+(VyJ)JX}.

Another approach to the connection V has been used in [1, 2]. Let D be
the Hermitian (Chern) connection of the manifold (M,g,J) and T be its torsion
tensor. By using the relation between V and D, it follows that

~ 1

V=D-T,
i.e. V is the unique symmetric connection having the same geodesics with the
same affine parameter as the Hermitian connection D.

The associated connection has been studied from the point of view of its
affine group of transformations in [1]. Hermitian manifolds with flat associated
connection have been treated in [3] with respect to their complex holomorphic
sectional curvatures. Hermitian manifolds with flat associated connection satis-
fying the Einstein condition with respect to the Hermitian curvature have been
investigated in [2].

3. A note on the holomorphically projective curvature tensor

Let (M,J,V) (dim M = 2n > 4) be a complex manifold with complex struc-
ture J and complex symmetric connection V. The curvature tensor of V and its

Ricci tensor are denoted by R and p, respectively. If V/ is a complex symmetric

connection on M with the same holomorphic planar curves as V, then [5]
(3.1) VyY=VyY +oX)Y +o(Y)X —o(JX)JY —o(JY)JX, X,YecXM

for some 1-form w on M. ~
A transformation of V onto V' given by (3.1) is called a holomorphically
projective transformation of V.
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The tensor
(3.2) Pyu(X,Y)Z=R(X,Y)Z—-P(Y,Z)X +P(X,2)Y
+{P(X,Y) - P(Y,X)}Z+ P(Y,JZ)JX
— P(X,JZ)JY —{P(X,JY) — P(Y,JX)}JZ,
where

1
(3.3) PX,Y)= 20 =T)
is called the holomorphically projective curvature tensor.

_If Py is the corresponding holomorphically projective tensor associated with
V', then P} = Py [6]. )

The complex manifold (M,J,V) is said to be holomorphically projectively
flat if there exists a 1-form w, so that the connection V' is flat, i.e. its curvature
tensor R’ =0. Therefore, if (M,J,V) is holomorphically projectively flat, then
its holomorphically projective tensor Py = 0.

The inverse problem is treated in [6] and [7] as follows:

Let the holomorphically projective tensor, given by (3.2) and (3.3) vanish
identically. To find a 1-form w, so that the corresponding connection V' (3.1) is
flat, is equivalent to solving the equation

(3.4) (Vxo)(Y) — o(X)o(Y) + o(JX)o(JY) = P(X, Y),

{(2n— DX, Y) + (Y, X) = pIX,JY) = (¥, JX)}

with respect to w, P being given by (3.3).
Since the integrability conditions for the system (3.4) are

(3.5) (VxP)(Y,Z) = (VyP)(X,Z), X,Y,ZeXM,

the main point is to prove that the condition Py = 0 implies (3.5). Applying the
second Bianchi identity to both sides of (3.2) and taking the two possible con-
tractions in the resulting equality, it follows that

(3.6) (VxP)(Y,Z)— (VyP)(X,Z)+ (VyP)(Z,X)
- (VZP)(YvX) + (VZP)(X’ Y) - (VXP)(Z’ Y) =0

(3.7) (2n = D[(VxP)(Y,Z) = (VyP)(X, Z)]
+ (VyP)(JY,JZ) — (Vv P)(X,JZ)
+ (VixP)(Y,JZ) - (VyP)(JX,JZ)
— (VyP)(JZ,JX) + (VizP)(Y,JX)
— (VyzP)(X,JY) + (VyP)(JZ,JY) = 0.

Here we precise the exact corollaries from the above equalities concerning
the components of the tensor (VyP)(Y,Z) — (VyP)(X,Z) with respect to local
holomorphic coordinates. From (3.6) and (3.7) we obtain
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(n— 2)(6#}/"}' - 6/fPov/) =0,

(3.8) (n+ 1)(VaPgs = VgPy3) = 0,
(I’l - 1)(?aP/);y - 6/}1)“7) =0.

Hence, the condition Py =0 implies (3.5) in dim M = 2n > 6.
Taking into account (3.8), we obtain the following statement in dim M = 4.

THEOREM 3.1.  Let (M,J V) be a complex surface with complex symmetric
connection V.  Then (M,J,V) is holomorphically projectively flat if and only if:

Py =0 and V,Pg —VgP,, =0.
Finally we consider the holomorphically projective transformations (3.1) with

closed 1-form w. We call them special holomorphically projective transforma-
tions. Since the 1-form w is closed, then the tensor

(Vxo)Y — o(X)o(Y) + o(JX)o(JY)

is symmetric and the relation between the the tensors P(X,Y) and P/(X,7Y)
implies that P'(X,Y)— P'(Y,X)=P(X,Y)— P(Y,X). From here and (3.3) it
follows that the tensor
(39) ﬁ(X7 Y)—ﬁ(Y,X), XaYGXM
is an invariant of the special holomorphically projective transformations.

Let us denote S(X,Y)=1{5(X,Y)+p(Y,X)}. Then the tensor
(3.10) PY(X,Y)Z=R(X,Y)Z—-P'(Y,Z)X + P°(X,2)Y

+P(Y,JZ2)JX — P°(X,JZ)JY

—{P"(X,JY) - P'(Y,JX)}JZ,
where
1
2(n> — 1)
is an invariant of the special holomorphically projective transformations.

The invariance of the tensor given by (3.10) is equivalent to the invariance of
both tensors given by (3.2) and (3.9).

(3.11) P(X,Y)= {(nS(X,Y) - S(JX,JY)}

4. Relations between the basic linear connections on a Hermitian
manifold

In this section we consider the relations between the connections and their
curvatures, which we deal with in the next.
Let (M,g,J) be a Hermitian manifold with fundamental form

OX,Y)=g(JX,Y), X,YeXM.
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The tensor
FX,Y,Z2)=g((Vx))Y,Z) = (Vx®)(Y,Z), X,Y,ZeXM

gives the deviation of Hermitian geometry from Kéhler geometry. The essential
components of F with respect to local holomorphic coordinates are

4.1 Fyp = Vi®up = 0,Dp; — 0pD,5.
The Lee form of the Hermitian structure (g,J) at a point p € M is given by
0(X) = —F(e;,JX,¢)g9", X eXM,

where {e;} i=1,...,2n is an arbitrary basis at p and (¢g7) is the inverse of the
matrix (g;) = (g(ei,e;)). In local holomorphic coordinates the defining equality
for 0 has the form

(42) (995 = 7ig;'ﬁF/Iot/17

where (g*") is the inverse of the matrix (g;z).
In this paper we deal with the following linear connections on (M,g,J).
1) The Levi-Civita connection V
The local components FfB of V satisfy the following relations:

i

(4.3) Uy =Valy =0, T =3F,;:9"

There are no conditions for the components I'], of V.
The Riemannian curvature tensor R is defined by

R(X,Y)Z =VyVyZ ~VyVxZ —VixyZ, X,Y,ZecXM
and the corresponding curvature tensor of type (0,4) is given by
RX,Y,Z,U)=gRX,Y)Z,U), X,Y,Z,UecXM.
The curvature tensor R has two types of essential local components:
R;ﬂ-y (or R,;5= R;/;ygm:) and Rofﬂy (or R,5= Rof/fygzo‘)'
The two Ricci tensors with respect to R at any point p € M are defined by
p(Y,Z)=g"R(e;, Y, Z,¢;), p*(Y,Z)=g"R(e;, Y,JZ, Je)),

where {¢;} i=1,...,2n is an arbitrary basis of the tangent space at p. In local
holomorphic coordinates these tensors satisfy the conditions:

Ppy = Pig> Ppy = Pyps
Piy =P Ppy = P

Further we need the trace Rj,, which is

1 *
(44) Ry =5 (0w, + ppy)-
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Applying the Ricci identity to the derivations of the fundamental form ® we
find

V,V;@,5 — V5V, @, = 2iR
Then, by virtue of (4.3) we obtain

afyd”

V,F;  —~F: Frpg

2iR oup o oyt

O{ﬂ})é_ =

After a contraction the last equality, (4.2) and (4.4) imply

1 . 1 1 .
Ry =5 gy + 1) = =5 Volp = 7 s Faapg ™
Hence

Ry + Ryp = ppy
(4.5) } , . 1 1
Raﬂy - R“}’ﬁ = pﬁ;, = 5 (V/}gy — V},Hﬁ) = 5 dH/g},.

2) The associated connection V
According to (2.7), the only essential components of the associated con-
nection V are

(4.6) I, =Tl
We denote the curvature tensor of V by R. This curvature tensor has two types
of essential local components:

pi o _ A A A A _ phk
afy = a“rﬁy - aﬂr“}’ + r;}’r‘m‘ - FZVr”/f - ;ﬁ}”
(4.7

Bi AT
Ry = =T,

The Ricci tensor p(X,Y) with respect to the associated curvature tensor R is
introduced in the standard way:

p(Y,Z)=g"R(e;, Y, Z,¢).

3) The Hermitian (Chern) connection D
This connection is the unique complex metric connection (DJ = Dg = 0)
with torsion tensor 7 satisfying the property

TJUX,JY)=-T(X,Y), X,YeXM.
The only essential local components Dzﬂ of D satisfy the relation
1

(4.8) D}y =Tl +

)
> Ly

and the essential local components of the torsion tensor are given by
(4.9) Ty = 9" (095 — Opgas)-



HERMITIAN MANIFOLDS WITH FLAT ASSOCIATED CONNECTION 289

In view of (4.9) and (4.1) the equality (4.2) becomes
(4.10) 0, =T7.
Denoting by K the curvature tensor of D, we have the following essential
local components of K:
i i
(4.11) Klﬁ-y = —0;D;,.

The Ricci tensor s associated with the Hermitian curvature tensor K is
defined in a standard way [2]:

S(X7 Y) = gin(tha Ya e/)7

or in local holomorphic coordinates

S/;'"/ = Ka/?y'
Taking into account (4.11), the relation
A Lo _popi
Kaﬁy B K}'ﬁa = DT,
implies that
(412) Sy/;, — Sﬁ'y = d@/ﬁ'

From (4.6) and (4.8) it follows that

-1
L= 5 (Dyp+ D/?o:)
and
. 1 :
A _ A A
(4.13) Raﬂ-y =5 (Ka[),y + KW).

Taking into account (4.7), (4.5), (4.12) and (4.13) we obtain the relations
between the Ricci tensor p and the basic tensors of type (0,2):

. 1 .

ﬁacﬁ +ﬁﬁo¢ = poc/}v
(4.14) . . 1
Pup = Ppa = Pap = 5 d0sp,

- . 1 1
Poj = P =5 (825 = 53) =5 A0,

From (4.14) it follows that

1
(4.15) PX.Y) = p(Y.X)=5d0(X,Y), X,YeXM.
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5. A local description of Hermitian manifolds with flat associated
connection

In this section we study the class of Hermitian manifolds with flat associated
connection V. ~
Let Fzﬁ = Fzﬁ be the essential components of V with respect to the local

holomorphic coordinates z!,...,z". The classical problem to find new holomor-
phic coordinate functions w* = w*(z!,...,z"), a =1,...,n satisfying the condi-
. = 0
tion that the components of V with respect to wl ... w" are zero (or e are
parallel with respect to V) leads to the geometric system of PDE W
?w? ow’
(5.1) =L
0z%0zF P 0z0

This system is completely integrable if R =0, ie. if
(5.2) Rl =0, 9;T; =0.

Thus we have the standard statement

Lemma 5.1. Let (M,g,J) be a Hermitian manifold with flat associated
connection V. Then any point p e M has a neighborhood with holomorphic co-
ordinates z',... z" satisfying the condition

r,=T,,=0.

We call the local holomorphic coordinates from Lemma 5.1 special holo-
morphic coordinates.

The aim of this section is to describe locally the Hermitian manifolds sat-
isfying (5.2).

According to Lemma 5.1 (5.2) implies that I'},g,5 =0, or

(5.3) ﬁag,g; + 5/ggm-, =0

with respect to special holomorphic coordinates.

Further we consider the derivative aaa,ﬁng in special holomorphic coor-
dinates. Since this derivative is symmetric in (o, f) and skew symmetric in (f, y),
then we have

02089,5 = —0x0,9g5 = =0y 0a55 = 0,089 ,5
= 08019,5 = —0p029,5 = —0x049,5-
Hence
(5.4) 020p9,5 =0 (and 05039,5 = 0).
On the other hand the derivative 616/;g),5 has the following symmetries

aaaﬁgﬁ = 6/;6“%() = axﬁﬁg(g}
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Now we can prove the basic statement in this section.

THEOREM 5.2. Let (M,g,J) be a Hermitian manifold with flat associated
connection. Then in special holomorphic coordinates z', ..., z" the metric g has
the following form

9ufp = Yojiri? Z”er 2 +b1ﬂﬁz”+haﬁ,
where Ay bam, ba/},z and ha/; are constants.
Proof. As a corollary of (5 4) we have
(5.5) 0,5 = Ay (e )+ B2,
for some anti-holomorphic functions A i Ba/? and
— 1 n
(5.6) gxl;fA;/;ﬁ(z - )Z”+B'ﬂ( ez,
for some holomorphic functions A’ , B e
Differentiating (5.5) and (5. 6) we get
059,45 = aéAa[)’)( ")zt + aoBy/;( 7"
_A//;()( 7"'azn)7
1 ji
ﬁygxl; = A“ﬁ-y(z &)
_ / ny i B 1 n
8A1ﬁ”( LzM)z +8/Baﬁ(z,...,z ).
These equalities imply ;4,5 = 0,A! 45 = const, 0;B,; = const, 0,B’ j = const.
Putting
!
a5 = ab:Aa/;? = ayAa[;(): = const,
b“ﬁ’g = aI;B“ﬁ = const,
b, = 0,8, j = const
we obtain
9uj = axﬁ-zﬁz’lz’2 + ba/?ﬁzﬁ + Cmﬂ-(zl7 )
for some holomorphic functions C ; and similarly
9uf = dufii? Aoh +b Z + C/ ( -0

for some anti-holomorphic functions C; e These equahtles give that

Coc[; = bocﬁ-/IZA + hxﬁ’
where h = const.
Hence

o = [Mzz“—l—b 2 —|—b z”—f—h QED
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The constants in the above theorem determine the tensors a;x;, bjx and hy; at
the initial point with the following properties:

ao(/j_'yti = aﬁocyé = aoc/);é_y = _ay/;’oco: = _aacéy/;”
boc/);y = b[);ocy = _by/;’oc’ boc/)_’b: = b/;oc() = _bc{é:/);7

6. Conformal invariants with respect to the associated curvature tensor

In this section we study the relation between the conformal transformations
of the metric of a Hermitian manifold and the holomorphically projective trans-
formations of the associated connection. We prove that some holomorphically
projective invariants can be considered as conformal invariants.

Let (M,g,J) be a Hermitian manifold and ¢’ = e?g be a conformal metric
on M determined by the C®-function u on M. It is well known that the
corresponding Lee forms 6 and 0" of the Hermitian structures (g,J) and (g’,J)
are related as follows:

0 =0+2(n—1) du.

Hence d0 is a conformal invariant, i.e. d0’ = do. ~
If V' is the Levi-Civita connection of the metric g’ and V’ is the connection
associated with V', then because of (4.7) we have

(6.1) T =T =T+ ud; + upd; =Ty + ud) + ugd],

where 6/ are the Kronecker’s deltas and u, = du(8/0z%).

This equality shows that the conformal transformation g’ = e?g of the
metric g generates the holomorphically projective transformation (6.1) of the
associated connection V with closed 1-form (2w = du), i.e. a special holomor-
phically projective transformation in the sense of Section 3.

Conversely, let

(6.2) T =T+ 20,0, + 2wy0,

be a special holomorphically projective transformation of V. There exists locally

a function u so that 2« = du. Then the conformal change g’ = e*g of the metric

g generates the given special holomorphically projective transformation (6.2) of the

associated connection V. Hence, the special holomorphically projective transfor-

mation (6.2) determines locally (up to a homothety) a conformal change g’ = e*g.
Thus we have the following statement.

PROPOSITION 6.1.  Every conformal transformation g' = e*g of the metric ¢
of a Hermitian manifold generates a special holomorphically projective transfor-
mation (3.1) of the associated connection V_and vice versa, every special holomor-
phically projective transformation (3.1) of V generates locally a conformal change
g’ = e*g of the metric g.
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_ Now we study conformal invariants with respect to the associated connection
V, by using their relation to the corresponding special holomorphically projective
invariants.

Taking into account (3.9), (3.10), (3.11) and Proposition 6.1 we obtain the
following statement.

ProposITION 6.2. Let (M,g,J) (dim M = 2n > 4) be a Hermitian manifold
pPX,Y) +p(Y, X)

3 , then the

with associated curvature tensor R. If S(X,Y) =
tensors

W(X,Y)Z=R(X,Y)Z
= ﬁ (8(Y,2)X — S(X,2)Y — 8(Y,JZ)JX + 8(X,JZ)J Y}
- ﬁ (S(JY,JZ)X — S(JX,JZ)Y
+S(JY,Z)JX —S(JX,Z)JY}

1 . .
-——{SX,JY)JZ-S(JX,Y)JZ
S ) (S IVIZ = S 1)2)
and
ﬁ(Xv Y) _ﬁ(YvX)
are conformal invariants.
We call the tensor W from Proposition 6.2 the associated conformal curvature
tensor.

The associated conformal curvature tensor W has two types of components
with respect to local holomorphic coordinates:

i i 7R DU B S
A _ DA By B s oy Yo A
Waﬂy_RxﬂV_n,1 ( P 0y — P 6/3)
(63) Iy S
i _ ph wf T PBu s  Pup T PRy
W= R - ( by P ax)

The components ch}fy and W;ﬁy give rise to two tensors, which are again con-
formal invariants. ~

The usual Weyl conformal curvature tensor W of the metric g and W have
a common part. Namely, taking into account (4.7) and (4.14) we obtain from
(6.3) that

2 A 1 J 2 )
upy = Ropy — 2n—1) (P05 — pw/(sﬂ) = Wapy
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Thus we have:

PrOPOSITION 6.3. Let (M,g,J) (dim M = 2n > 4) be a Hermitian manifold
with conformal curvature tensor W and associated conformal curvature tensor W.
Then the following conditions are equivalent:

i) w=0;

= A VA

(ii) Wy, =0 and W, =0

Now, let W =0. After a contraction this equality implies that p(X, Y)—
p(Y,X) =0, ie. the Ricci tensor p is symmetric. Because of (4.15) it follows
that

dO(X,Y) =0,

i.e. the Lee form 6 is closed.
Further we study the properties of the associated conformal curvature tensor
in the class of Hermitian manifolds satisfying the condition:

1

These manifolds are known as WWjs-manifolds according to the classification in
[4]. Every four dimensional Hermitian manifold (Hermitian surface) satisfies
(6.4). In dimension 2n > 6 every Wj-manifold is locally conformal Kédhler and
vice versa.

First we consider the case 2n > 6.

TueOREM 6.4.  Let (M,g,J) (dim M = 2n > 6) be a locally conformal Kdhler
manifold with associated conformal curvature tensor W. Then the following con-
ditions are equivalent:

(i) W 0;

(i) w7 =0

(iii) there exists locally a conformal metric with flat associated connection;

(iv) the metric g is locally conformally equivalent to a Kdihler metric of con-
stant holomorphic sectional curvatures.

Proof. Since (M,g,J) is locally conformal Kéihler, then it follows that
Wjﬁ =0. According to Proposition 6.3 the condition W‘/f = 0 is equivalent to
the condition W =0, which proves (i) < (ii). ’

Let W =0. This implies that  is symmetric and the holomorphically pro-
jective curvature tensor Py of the connection V vanishes. Then there exists
locally a 1-form o such that the connection V' given by (6.2) is flat. Since p
is symmetric, then  is closed, i.e. (6.2) is a special holomorphically projective
transformation. Putting locally 2w = du, it follows from Proposition 6.1 that the
metric g’ = e*g is with flat associated connection, which proves the implication
(i) = (iii). The inverse implication follows from the conformal invariance of W.
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To prove (i) = (iv), let W =0. Under the conditions of _the theorem we
can consider locally a Kéhler metric g’ conformal to g. Since W is a conformal
invariant, then the Kédhler manifold (M, g’,J) has vanishing associated conformal
curvature tensor. Taking into account that the curvature tensor of a Kéihler
manifold coincides with its associated curvature tensor and using the second
equality of (6.3) we conclude that (M, g’,J) is a Kéhler manifold of constant
holomorphic sectional curvatures, which proves the implication.

The inverse implication (iv) = (i) follows from Proposition 6.2 and the fact
that the associated conformal curvature tensor of any Kéhler manifold of con-
stant holomorphic sectional curvature vanishes. QED

Finally we shall consider the four dimensional case, i.e. Hermitian surfaces.
Let (M,g,J) be a Hermitian surface. We have the following standard for-
mulas:

Fup = i(0295 — Op925),

\Z E)oz[ﬁ’ - Z(V)’ea‘g[i{)- - V}’Hﬂgar):)’

(6.5) Riy =5 (v 0+ 50,0 )5,3 : (v O+ 5 040, )5
I I
(6.6) Ppy = — ) (V0, + V,0p) — 59/39%
.1 1
(6.7) Py =3 (Vg0 = V,0p) = ) d0py,

From (6.5), (6.6) and (6.7) it follows that

Rcﬁﬁ} = i (pﬂyé; - pa,)éﬁ%) (:D/)’yé/L pa;ﬁé)
and
1 )
(68) W;}}} = 5 (pﬁyé px,(;))

LEMMA 6.5. On a Hermitian surface the following conditions are equivalent:
(i) Wi, B 0;

(i) sy =14 do.y = 0;

(iil) Pop = Pps-

Proof. The statement follows from the equality W;ﬂ/ = W;};y and the for-

mulas (6.8), (6.7), (4.15). QED

Further we find a corollary from any of the conditions in Lemma 6.5.
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LeMMA 6.6. On a Hermitian surface the condition d8.,; =0 implies that
Vmpﬁ.}, — Vﬁpw =0.

Proof. From the given condition we have that V,03 — Vg0, = 0. Differ-
entiating (6.6) we find

1 1
Vapﬂy = _V1Vﬁ9y — Eﬁyvxﬁﬁ — Eﬂﬂvaﬂy.

Hence
1
Vapsy = Vppsy = —(VaVgly = ViVa0y) — 3 (0V.0, — 0.V40))
1
= R0, — 3 (0sV,0, — 0,V30,).
Now, taking into account (6.5), we obtain the assertion. QED

THEOREM 6.7.  Let (M, g,J) be a Hermitian surface with associated conformal
curvature_tensor W. Then the following conditions are equivalent:

(i) w=0;

(ii) there exists locally a conformal metric with flat associated connection;

(iii) the metric g is locally conformally equivalent to a Kdihler metric of con-
stant holomorphic sectional curvatures.

Proof. The condition W =0 implies that j is symmetric, which by virtue

of (4.14) gives p,z = %paﬁ. Using the equalities Fi'/} = F;ﬁ and T%, =0 we find
_ o 1
Vzp[)’/ - Vﬂpw/ = 5 (Vatpﬁy - Vﬁpw)

Applying successively Lemma 6.6 and Theorem 3.1 we obtain that there exists
locally a flat complex symmetric connection V' satisfying (3.1) or equivalently
(6.2). Since p is symmetric, then (6.2) is a special holomorphically projective
transformation. Applying Proposition 6.1 we obtain the implication (i) = (ii).
The inverse follows from the conformal invariance of w.
To prove (i) = (iii) we note that W =0 implies 6 is closed and hence the
manifold is locally conformal Kédhler. The rest of the proof is similar to the

proof of the corresponding equivalence in Theorem 6.4. QED

Theorem 6.4 and Theorem 6.7 allow us to find the metrics conformal to the
standard Kéhler metrics of constant holomorphic sectional curvatures whose asso-
ciated connections are flat.

Let (C",go,J) be the complex space with the standard complex structure J
and flat Kdhler metric go. For any Z(z!,...,z") e C" the distance function r?
from the origin in C" is given by
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:go(Z,Z):|zl|2—|— —|—|z”| z“zﬂ
where
1 if a=p,
0 5= .
B0 if o #p.

Putting dr = r, dz* + r; dz* we have

0

c<_Zr “ﬂ

and the standard Fubini-Study metric g in C” is given by

;= 2 0 : 4 Ful'; c>0
I = e+ ) " " 142" ) '

/

The local components I'j; of the Levi-Civita connection of g are

2r

A
Focﬁ 1+2

(ro(é’1 + 1g02).

Now, let ¢’ = e*g be a conformal metric with u =u(r?). If T, are the
local components of the associated connection with the Levi-Civita connection of
g', then

2r

i P p i p
Iy = T2 (ra0p + 1p0;) 4 211’ (10 + 1597

Therefore I'; =0 if and only if

, 1

=1ir & u=In(1+r*) + const.

Thus we obtained the following

Example 1. Let (C",g,J) be the complex space with the Fubini-Study
metric g. Then (C",g’,J), where g’ = (1 + r2)2g, is a locally conformal Kéhler
manifold with flat associated connection.

In a similar way we obtain

Example 2. Let (D" g,J) be the unit disc in C" with the Kéhler metric
g of constant holomorphlc sectlonal curvatures —c¢ < 0. Then the manifold
(D", g, J), where g' = (1 — r2)?g is a locally conformal Kéhler manifold with flat
associated connection.

More precisely, the holomorphic coordinates (z!,...,z") in C" are special
holomorphic coordinates in the sense of Lemma 5.1.
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