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MAXIMAL WILD HYPERSURFACE BUNDLES
OVER TORIC VARIETIES

HirosHr Sato*

Abstract

In this paper, we investigate when a smooth complete toric variety of positive
characteristic has a maximal wild hypersurface bundle over it. In particular, we de-
termine the possibilities for toric varieties with Picard number at most three and for
toric Fano varieties of dimension at most four. Moreover, we construct maximal wild
hypersurface bundles over almost all of them.

1. Introduction

The existence of wild hypersurface bundles is a peculiar phenomenon in
positive characteristic (see Definition 3.1). Only few examples of wild hyper-
surface bundles are known. Saito [13] completely determined when a smooth
Fano 3-folds with Picard number 2 has a wild conic bundle structure. As a
generalization of this result, Mori and Saito [10] showed the following:

THEOREM 1.1 (Mori-Saito [10]). Let f: X — S be a wild hypersurface bundle
of degree p, d = dim S and dim X =2d — 1. If S is isomorphic to a direct product
of projective spaces, then one of the following holds:

(i) S~P? and X is a smooth divisor of bidegree (1,p) in P¢ x P.

(i) p=2, S~®PYHY and X is a smooth divisor in Y =Ps(Os®

@I.dzlp;‘(ﬁpl (1)) such that X ~ 2&, where p; : S — P! is the i-th projection
and & is the tautological line bundle of Y — S.

It is known that dim X <2dim S —1if f: X — S is a wild hypersurface bundle.
We call a wild hypersurface bundle f : X — S maximal, if dim X =2 dim S — 1
(see Definition 3.3).

In this paper, we investigate when a smooth complete toric variety S of
positive characteristic has a maximal wild hypersurface bundle f:X — S.
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Using the technique in Mori-Saito [10], we completely determine possible S’s
when the Picard number of S is 2 or 3 (see Section 4) and when S is a toric
Fano d-fold with d <4 (see Section 5). Moreover, we construct maximal wild
hypersurface bundles for almost all of these S’s.

The content of this paper is as follows: Section 2 is a section for prep-
aration. We review the concepts of primitive collections and relations, and
explicitly describe the fans for toric projective space bundles over toric vari-
eties. In Section 3, we review the definition of wild hypersurface bundles. The
combinatorial version of the key result in Mori-Saito [10] is given. In Section 4,
we consider the case where the Picard number of S is 2 or 3. There exist two
new classes of toric varieties with these Picard numbers which have maximal wild
hypersurface bundle structures. In Section 5, we consider the case where S is a
toric Fano variety. In particular, we determine the toric Fano d-folds which have
maximal wild hypersurface bundle structures for d < 4. These Fano varieties are
interesting from the viewpoint of the birational geometry (see [14]).

The author would like to thank Professor Natsuo Saito for introducing the
author to this problem and giving useful comments. The author also would like
to thank Professors Shihoko Ishii, Masanori Ishida and Osamu Fujino for advice
and encouragement.

2. Preliminaries

In this section, we explain some basic facts of the toric geometry. See
Batyrev [2], [3], Fulton [7], Oda [11] and Sato [14] for the detail.

Let ¥ be a nonsingular complete fan in N := Z¢, M := Homz(N,Z) and
S = Sy the associated smooth complete toric d-fold over an algebraically closed
field k. Let G(X) be the set of primitive generators of 1-dimensional cones in .
A subset P < G(X) is called a primitive collection if P does not generate a cone in
¥, while any proper subset of P generates a cone in £. We denote by PC(X) the
set of primitive collections of £. For a primitive collection P = {xj,...,xn},
there exists the unique cone ¢(P) in X such that x; 4+ --- + x,, is contained in its
relative interior since X is complete. So, we obtain an equality

(1) X1+ X =b1yr 4+ buyn,

where yi,...,y, are the generators of o(P), that is, s(P)NG(Z) = {»1,..., Yu}
and by, ...,b, are positive integers. We call this equality the primitive relation of
P. By the standard exact sequence

0— M — Z25® — Pic(S) — 0
for a smooth toric variety, we have
A;(S) ~ Homy (Pic(S), Z) ~ Homz(ZS® /M, Z) ~ M* = Homz(Z°®), Z),

where A;(S) is the group of l-cycles on S modulo rational equivalences, and
hence
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A1(S) =4 (by) ey € Homz (2%, Z)

Thus, by the equality x; + -+ x, — (biy1 + -+ byy,) =0, we obtain an ele-
ment r(P) in A;(S) for each primitive collection P e PC(X). We define the
degree of P as deg P:= (—Ks-r(P))=m— (b1 +---+by).

ProposITION 2.1 (Batyrev 2], Reid [12]). Let S = Sz be a smooth projective
toric variety. Then, the Mori cone of S is described as

NE(S) = > Ruor(P) = 4(S)®R.
PePC(Z)

A primitive collection P is said to be extremal if r(P) is contained in an extremal
ray of NE(S). The following is well-known:

PROPOSITION 2.2. Let P be an extremal primitive collection and C ~P' a
torus invariant curve contained in the extremal ray spaned by r(P). If P has the
equality (1), then the normal bundle N¢;s of C in S has an isomorphism

Ness = 0c(1)®" 2 @ 02" @ 0c(~b1) @ -+ @ Oc(~by).

Explicit examples of wild hypersurface bundles are constructed in toric
projective space bundles. We describe here the fan corresponding to a toric
projective space bundle over a toric variety.

Let S=Sy be a smooth complete toric d-fold, £ a fan in N =27
G(X)={xy,...,x;} and Dy,...,D; the torus invariant prime divisors corre-
sponding to Xxi,...,Xx;, respectively. For torus invariant divisors

/ i
Ey = g c,iDi, ..., E, = E ¢r,iDj,
i=1 i—1

the vector bundle £ of rank r+ 1 is defined by
E=0®0s(E) @ ® Os(E,).

We construct the fan £ in N := N @ Z" corresponding to the P’-bundle Pg(E)
over S.
Let {e,...,e,} be the standard basis for Z". The elements of G(Z) are

yr=e1,..., YV i= €y, Yre1 = —<€1+"'+€r>,

r r
X1 = x1 + E C,',lei,...,)NC/ = X7+ E i 1.
i=1 i=1

For a maximal cone o =Rsox; + -+ Rxsox;, in X, put 6:=RyoX; +---+
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Bzoxid cN®R. Put % :=Rsoy+- - +Rogyii + Roopivi + -+ Rxoyrn =
N®R for 1 <i<r—+1. The set of maximal cones in X is

{6+7;|0 is a maximal cone in X, 1 <i<r—+1}.

The tautological line bundle ¢ for Pg(E) — S is Opyg)(Fr4+1), where F,iy is the
torus invariant prime divisor corresponding to ;.

3. Wild hypersurface bundles

In this section, we review the definition of a wild hypersurface bundle and
some results in Mori-Saito [10]. From now on, we work over an algebraically
closed field k of characteristic p > 0.

DEFINITION 3.1 (Mori-Saito [10]). Let X and S be smooth algebraic varieties
over k, and f: X — S a projective flat morphism with a relatively very ample
divisor H on X, that is, X is embedded in n: Pg(E) — S for E = f,H. We call
f a wild hypersurface bundle of degree p if E is locally free and, for any s € S, the
geometric fiber f~!(s) = Ps(E;) is defined by x” = 0 for some non-zero x € Ej.

Let & be the tautological line bundle of Pg(E). Then, there exists a Cartier divisor
L on S such that X ~ pé + n*L in Pic Ps(E). X is defined by p € H(S,E? ® L)
such that Ogp is a subbundle of E” ® L. In the above, E? := F*E, where
F:S — S is the Frobenius morphism.

THEOREM 3.2 (Mori-Saito [10]). ¢ induces a surjective Os-homomorhism
o:Ts — E? ®q, L/Usp, where Ts is the tangent bundle of S. In particular,
dim X is less than or equal to dim S — 1 then o is an isomorphism.

DermNiTioN 3.3, Let f: X — S be a wild hypersurface bundle and
d=dim S. Then, we call f: X — S a maximal wild hypersurface bundle if
dim X =2d — 1.

Throughout this paper, we deal with maximal wild hypersurface bundles. In this
case, we have the exact sequence

(2) 0—0s—EP®QL— Ts— 0,

by Theorem 3.2. This exact sequence makes the study of maximal wild hyper-

surface bundles much easier.
The following is a slight generalization of Proposition 5 in Mori-Saito [10].

ProposITION 3.4. Let f: X — S be a maximal wild hypersurface bundle of
degree p and C a smooth rational curve on S such that

2
Ts®0c~ @ Oc(i)®.

I=—0
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Then, the following hold.
(i) If the restriction of the exact sequence (2) on C does not split, then a, =1
and a; > 0 implies that i — 1 is divisible by p for i < 1.
(ii) If the restriction of the exact sequence (2) on C splits, then p =2 and
a; > 0 implies that i is even.

Proof. First, suppose that the restriction of the exact sequence (2) on C
does not split. In this case, we have

1=—00

—1
EPRQL® Oc ~ (@ (QC(Z-)@ui) @ @é@ao ® @C(1)®(al+2) @ @C(z)(@(az*l).

Note that the degrees of the components of E? ® (¢ are multiples of p. Hence,
Oc(1)cEP®L® Oc (as a component) implies that deg L =1 (mod p).
Therefore, Oc(i) =« E? ® L ® O¢ (as a component) implies that i =1 (mod p).

On the other hand, if the restriction of the exact sequence (2) on C splits, we
have

-1
EPQL® O¢ ~ ( P (Qc(i)@”’) ® 02 @ 0c(1)®" @ 0c(2)%".

1=—00

We remark that a; > 0, since Tc ~ Oc(2) = Ts ® Oc (as a component). Thus,
we have deg L =2 =0 (mod p). Therefore, we have p =2 and 0Oc(i) c E? ®
L® Oc (as a component) implies that i =0 (mod 2). q.e.d.

We apply this result for the case where S is a toric variety.

THEOREM 3.5. Let S = Sy be a smooth complete toric d-fold and f: X — S
a maximal wild hypersurface bundle of degree p. For an extremal primitive
relation

xl+"'+xm:b1yl+"'+bnyna

where {Xi,...,Xm, Y1y, Yu} < G(X) and by, ..., b, are positive integers, one of
the following holds.

(i) m+n=d+1 and b;+ 1 is divisible by p for any i

(i) p=2, m=2 and b; is an even number for any i

Proof. Let C be a smooth rational curve corresponding to the extremal
primitive relation x; + -+ + x,, = b1y1 + -+ b,y,. We have
N¢ys ~ @c(l)®<m72) ® C”(C%(CFHHIH) @D Oc(—b)®--- D Oc(—by)
by Proposition 2.2. Then, the exact sequence
0— Tc~0c(2) = Ts®0c— Neys— 0
implies that Ts ® Oc ~ N¢/s @ Oc(2) since Extl(NC/S, Tc) =0. Thus, we have
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Ts ® Oc ~ N¢ys @ Oc(2)
=~ Oc(=b) @ - ® Oc(~by) ® 02"V ® 0c(1)®"* ® 0c(2).

Now, we can apply Proposition 3.4.
Suppose that the case (i) in Proposition 3.4 occurs. Then, —b; — 1 is di-
visible by p for any i and m+n=d +1 since Ts ® O¢ can not contain Oc.
On the other hand, suppose that the case (ii) in Proposition 3.4 occurs.
Then, p =2, —b; is an even number for any i/ and m = 2 since Ts ® (¢ can not
contain O¢(1). g.e.d.

4. Toric varieties with Picard number 2 or 3

In this section, we treat the case where S is a smooth complete toric d-fold
with Picard number 2 or 3. We construct some examples of maximal wild
hypersurface bundles by using the notion of homogeneous coordinate rings of toric
varieties (see Cox [5]).

(I) First, we consider the case when the Picard number of S is two. In this
case, we suppose d > 3.

ProposITION 4.1. Let S be a smooth complete toric d-fold with Picard
number 2. If there exists a maximal wild hypersurface bundle f :X — S, then
p=2 and S is isomorphic to

de—l (Cnpd—l @ @Pd—l (2a - 1)),

where a is a positive integer.

Proof. S is a P"-bundle over P“™" by the classification of complete toric
varieties with Picard number 2 (see Kleinschmidt [8]). Let xj+---+ x4 =0
be the extremal primitive relation corresponding to the projection S — P9
Since S # P, this extremal primitive relation is not of type (i) in Theorem
3.5. So, we have r=1 by the case (ii) in Theorem 3.5. Thus, p =2 and
S >~ Ppii1(Opi1 @ Opai(a)) for a non-negative integer o. Thus, the extremal
primitive relations of X are

X1+x =0 and x34 -+ x40 = 0x;.

Since d > 3, the extremal primitive relation x3 + --- + xz42 = ax] is not of type
(ii) in Theorem 3.5. Therefore, o is an odd number by the case (i) in Theorem
3.5. q.e.d.

Example 4.2. We construct a maximal wild hypersurface bundle of degree
2 for the above case. So, let S :=Ppii1(Opi1 @ Opa1(2a—1)) for a positive
integer ¢ and X the associated fan. Then, the primitive relations of X are

(@) xi+--+xs=Q2a—1)xy1 and (b) x411 + X442 =0,
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where G(X) = {xy,...,xq12}. Let Dy,..., D442 be the torus invariant prime
divisors corresponding to xp,...,Xxz.2, respectively. We may assume that
{xX1,...,X4-1,Xq441} 1s the standard basis for N. By considering the divisors of
the rational functions corresponding to the dual basis for xi,...,xs_1, Xqsy1, We
have Dy =--- =Dy and Dy, = (2a—1)Dy + Dy in Pic S. Let C; and C, be
the torus invariant curves corresponding to the extremal primitive relations (a)
and (b), respectively. Then, (D;-Cy) =1, (Dgy1-Ci1) =—2a—-1), (D;-C) =0
and (Dg41 - C) =1. Put

E=02"® Us((a—1)Dy + Dgy1) and L= Us(Dy).

Then, we can easily check that E and L satisfy the conditions
E*®@L® (¢, = ¢ (-1)®0c,(1)% and E*Q@L® Uc, = 02" @ 0, (2).

In fact, we can construct a maximal wild hypersurface bundle for these £ and L
as follows.

Let ¥ be the fan corresponding to Y =Ps(E). We use the same
notation as in Section 2. The primitive relations of Y are Xgr1 + Xa2 = V1,

yi+-+ yay1 =0 and

Ra—DxXg+y2+-+yi ifa=1

xl+"‘+xd:{(2a—1)id+(a—2)y1 otherwise,

where G(E) = {)~€17 ey Xda2y Ve ey yd+1}. Let Dy,...,Dy.0, F1,...,Fy.1 be the
torus invariant prime divisors corresponding to X1, Xd42, V1s--o) Vdtls respec-
tively. Then, we have D1 =Dy, Dyir = (2a — I)Dd + Dy, Fr= =
Fyi1 and Fypy = (a— 1)D1 + Dd+1 + F; in Pic Y. Since the tautologlcal l1ne
bundle ¢ for n:Y — S is Oy(F.11), we have X ~2&+7n*L =2F; +D, =
Dy + Dyip +2F,. Thus, for example, the smooth hypersurface X in Y defined
by the equation

Xon Xa2 YP+ X1 Y7+ + X, Y], =0

is a maximal wild hypersurface bundle of degree 2 over S, where Xi,..., X442,
Yi,..., Yqy1 are the homogeneous coordinates of Y corresponding to Dy, ...,
Dyo, Fy,...,Fyy, respectively. We can easily check the smoothness of X, so

we leave the details to readers.

(II) Now, we consider the case when the Picard number of S is three. In
this case, we suppose d > 4.

Batyrev [2] classified smooth projective toric d-folds with Picard number 3
using the notion of primitive relations.

THEOREM 4.3 (Batyrev [2]). Let S = Ss be a smooth projective toric d-fold
with Picard number three. Then, one of the following holds.
(i) PC(Z) = {Pi, P>, P3}, and for any distinct elements P;, P;e PC(Z), we
have P;N\P;=0. Moreover, up to change of the indices, we have
(Pl) ﬂG( ) e P2 UP3, O'(Pz) ﬂG(Z) (= P3 and O'(P3) =0.
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(ii) #PC(Z) =5, and there exists (po, p1, P2, p3, pa) € (Z=o)® such that
Po+ p1+ p2+ p3+ pa=d+3 and the primitive relations of T are

Vit U v+
=4y, + (i + D+ 4 (b, + 1)y,
N+t vyttt =4+,
izt ety =0,
ittty ftur+tuy, =y 4+ +y,  and
Uy 4 Fup, F01 4, =22 A2, b1+ byt

where
GE) ={v1,- s Upg, Vi ooy Yp1r Zls oo o0 Zpay ts ooy by UL, oo U, }
and ¢3,...,¢p,,b1,...,by, are non-negative integers.

For positive integers ¢ and b, let £%(a, b) be the fan whose primitive relations
are

x|+t Xy = (261 — l)xd + (Zb — 1)xd+2,
Xa+Xa11 =0 and xg42 + X443 =0,

where G(X%(a,b)) = {x1,...,x443}, and let W9(a,b) be the associated toric
d-fold with Picard number 3. The following proposition holds.

PROPOSITION 4.4.  Let S be a smooth complete toric d-fold with Picard number
3. If there exists a maximal wild hypersurface bundle f : X — S, then the set of
primitive relations of X is one of the following:
() xi+x2+-+xs=(pa—xqi2, X2+ +Xg+Xge1 = Xa13, Xar1+
Xit2 =0, Xg12 + Xa43 = X2+ -+ 4+ Xg, Xay3 + X1 = (pa — 2)Xa42,
(i) x1+x2=2ax4, X2+xX3=X5+ -+ +Xg43, X3+x4=0, Xa+x5+---+
Xa43 = X2, X5+ -+ Xay3 + X1 = (2a — 1)xq,
(i) x1 4+ xg-1 = 2a — Dxg + (2b — D)xy12, Xg + Xg41 = 2¢X442, Xq+2+
X413 =0, and
(iV) X1+ +x5.1 = (ch — l)xd + (2b — 1)xd+2, Xg + Xg11 = 2¢Xq13, Xqi2+
X443 =0,
where a >0, b >0 and ¢ >0, and G(X) = {x1,...,xq13}. In the cases (ii), (iii)
and (iv), we have p =2. Especially, in the cases (iii) and (iv), if ¢ =0, then
S~ Wi (a,b).

Proof. Suppose #PC(X) =5, that is, the case (ii) in Theorem 4.3. We use
the same notation as in Theorem 4.3. First, we remark that the first, second
and fourth primitive relations are extremal. Moreover, the second and fourth
primitive relations must be of type (i) in Theorem 3.5. So, by Theorem 3.5,
we have py+pr+pa=p3s+ps+pr=d+1. Thus, 2d+6=2(po+ p1 + p2+
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p3+ pa) =2d 42+ 2po + p2 + p3, and 2po + p + p3 =4 means py = pr = p3 =
1. If the first primitive relation is of type (i) in Theorem 3.5, then p; =d — 1
and ps = 1. This is the case (i). Otherwise, we have pj =1 and ps=d — 1.
This is the case (ii), and in particular, we have p = 2.

Next, suppose #PC(X) = 3. In this case, for at least one primitive relation,
the associated contraction morphism is a Fano contraction. Therefore, we may
assume that there exists a primitive relation x;,, + xz.3 = 0 by Theorem 3.5 and
(i) in Theorem 4.3. In particular, p =2. Put the other primitive relations be

XpF b Xy = a4y sy and s Xy A Xapn = ity Ao by oy,

where G(Z) = {x1,...,Xd4+3}, S1,---sSus 1,5 tn, € G(Z) and ay, ..., ay, by,...,
b,, are positive numbers. Since d > 4, we may assume that m > 3, that is, the
primitive relation xj + --- + X, = @181 + - - + @y, Sy, 1s of type (i) in Theorem 3.5.
Thus, m+n; =d+ 1. Suppose that x,41+---+xg01 =biti +---+byty, 18
also of type (i) in Theorem 3.5. Then, we have d—m+1+n,=d+1.
n=d—m+1 and nmy=m mean that {s;,...,s;,} & {¥mt1,..., X411} and
{t1,.. .yt } & {x1,...,xn}. This contradicts (i) in Theorem 4.3. Therefore,
Xl + 0+ Xgp1 = b1ty + -+ + byyty, 1s also of type (ii) in Theorem 3.5. Thus,
m=d—1 and ny =2. By applying (i) in Theorem 4.3, we have the cases (iii)
and (iv). g.e.d.

COROLLARY 4.5. Let S be a smooth toric Fano d-fold with d > 3. Suppose
that the Picard number of S is 3. If there exists a maximal wild hypersurface
bundle f:X — S, then p=2 and S is isomorphic to either P! x P! x P! or
W (a,b) with d >2(a+b)— 1.

Proof. 1If d >4, the assertion follows easily from Proposition 4.4 and
Proposition 5.1.

So, let d = 3. For the case #PC(X) = 5, we can apply the argument in the
proof of Proposition 4.4. If #PC(X) =3, then for any primitive relation P, we
have #P = 2. Since S is Fano, for any primitive collection {x;,x;}, its primitive
relation is of type (ii) in Theorem 3.5 and x; + x; = 0 by Proposition 5.1 in the
next section. Thus, S ~P! x P! x P!, A q.e.d.

Example 4.6. Let S = Wd(a,b) and Dy,...,D;.3 be the torus invariant
prime divisors corresponding to xi,...,Xx4.3, respectively. Put
E~ 02V ® 0s((a—1)Dy + Dyy1) ® Os((b — 1)Dy + Dyyy) and L ~ Os(Dy).

We can construct a maximal wild hypersurface bundle for these £ and L similarly
as in the case (I). .
Let ¥ be the fan corresponding to ¥ = Pg(E). The primitive relations of
are Xy + Xq41 = Y1, X2+ Xa43 = Y2, y1+---+ yar1 =0 and
X4+ X = 2a— D)%+ (2b — DEg2 + (@— Dy

+(b=1Dy2+y3+-+ yar
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if a=1 or b =1, otherwise

X+t X = Qa— DX+ (20 — D)Xa2 + (@ = 2)y1 + (b = 2) 2,
where G(i):{)21,...,)Ed+3,y1,...,yd+1}. Let Dy,...,Dy.3, Fi,...,Fs1 be

the torus invariant prime divisors corresponding to Xi,...,Xg43, Vi,---, Vd+l,
respectively. Then, we have Dy =--- =Dy, Dyi1 = (2a — 1)Dy + Dy, Dgy3 =
(2b —1)Dy + Dyy2, F3=---=Fy1 and Fy 1 = (a—1)D1 + Dy + Fy = (b—1)D,

+Dgy2 +F, in Pic Y. Since the tautological line bundle ¢ for n: Y — S is
Oiy(FH_]), we have X ~2f+7n*L = 2F; .1 +Dy =Dy + Dy + 2F = Dgir+
Dyy3 4+ 2F,. Thus, for example, the smooth hypersurface X in Y defined by the
equation

XaXun Y+ Xapo X3 Yo + X Y7+ + Xy Y7, =0

is a maximal wild hypersurface bundle of degree 2 over S, where Xi,..., X4;3,
Yi,..., Yqy1 are the homogeneous coordinates of Y corresponding to Dy, ...,
Dy, Fy,..., Fy., respectively. We can easily check the smoothness of X, so

we leave the details to readers.

5. Toric Fano varieties

In this section, we consider the case where S is a toric Fano d-fold. A Fano
variety is a Gorenstein projective variety S whose anti-canonical divisor —Ky is
ample. We can check easily whether a given smooth projective toric variety is
Fano or not by the following proposition.

ProrosITION 5.1 (Batyrev [3], Sato [14]). Let S = Sy be a smooth projective
toric variety. S is a Fano variety if and only if deg P > 0 for any primitive
collection P € PC(X).

Smooth toric Fano d-folds are classified for d < 4. Actually, it was done
by Batyrev [1] and Watanabe-Watanabe [15] for d = 2 and d = 3, and by Batyrev
[3] and Sato [14] for d = 4. So, we determine the possibilities for these classified
toric Fano varieties and construct maximal wild hypersurface bundles over them.

PropPoSITION 5.2. Let f: X — S be a maximal wild hypersurface bundle over
a toric Fano d-fold S =Sy and d > 3. If there exists an extremal divisorial
contraction ¢ : S — S, then

S~ PP:I—I (@qu ® @P:H (20 — 1))
for a positive integer a.
Proof. By Theorem 3.5, the image of the exceptional divisor of ¢ is a point.

So, there exist exactly two cases by Bonavero’s classification of toric divisorial
contractions to points (see Bonavero [4]): (a) The Picard number of S is two, or
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(b) the Picard number of S is three and #PC(X) = 5. However, the case (b) does
not occur by Corollary 4.5. Thus, we complete the proof by Proposition 4.1.
g.e.d.

COROLLARY 5.3. Let f: X — S be a maximal wild hypersurface bundle over
a toric Fano d-fold S = Ss and d > 3. Then, one of the following holds:

(i) S=~P

(i) S~ PH.

(iif) S ~ Ppa-1(Opi-t @ Opa-1(2a — 1)) for a positive integer a.

(iv) Every extremal contraction of S is either a Fano contraction whose fiber is
isomorphic to P! or a small contraction. Moreover, at least one of them
is a small contraction.

Proof.  See Mori-Saito [10] for the cases (i) and (ii), and see the case (I) in
Section 4 for the case (iii). So, suppose that S is none of them. For the case (i)
in Theorem 3.5, we have n > 2 by Proposition 5.2. For the case (ii) in Theorem
3.5, we have n = 0 and the associated extremal contraction is a Fano contraction
whose fiber is isomorphic to P! since S is a Fano variety. q.e.d.

(I) First, we consider the case dim S = 2.
There exist exactly five toric del Pezzo surfaces

P2, P'xP!| Ppi(Op ®Cpi(l)), Ss and Sy,

where S¢ and S; are the toric del Pezzo surfaces of degree 6 and 7, respectively.
For any toric del Pezzo surface S, there exists a maximal wild hypersurface bundle
over S. In fact, for S¢ and S;, maximal wild hypersurface bundles are con-
structed similarly as Examples 4.2 and 4.6. These are given in the following
examples with using the same notation as in Examples 4.2 and 4.6. We omit the
precise calculation for these constructions.

Example 5.4. Let S = Sy be the del Pezzo surface S;7 of degree 7 over k with
char k = 2. The primitive relations are x; + x; = x3, x| + x5 = 0, x5 + x4 = Xs,
x3+x4 =0 and x3 + x5 = x;. Put

E = 0Us ® Os(D3) ® Us(Ds) and L = Og(D>).
The primitive relations of T are X + % = x; + Vo V3, X1+ X5 =y, Xop+ X4 =

Xs+ 1+ y3, X3+X=y, X3+Xs=X+y1+y2 and y+ >+ y3=0. The
hypersurface X in Y = Ps(E) defined by the equation

XXy Y2+ X1 Xs Y7+ Xa Y2 =0
is a maximal wild hypersurface bundle of degree 2 over S.
Example 5.5. Let S = Sy be the del Pezzo surface S of degree 6 over k with
char k = 2. The primitive relations are x; +x5s=0, x3+x3 =0, x; + x5 =0,

X3+ Xg = X1, X3+Xs=X2, X|+X2=2X3, Xs+X¢=2xg, X2+X4=xs5 and x;+
X4 = X6. Put
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E=0s® @S(D5 — D6) &) @S(—Dz + D4) and L= @S(Dz + D3).

The primitive relations of 3 are X+ X5 = Vi, X3+ Xq4= )2, Xo+X6= Y3,
X34+ Xo = X1+ Y2+ ¥3, X3+ X5 = Xo + Y1+ 2, X1 + X0 = X3+ Y1+ p3, X5+ X =
Xa+ 1+, o+ Xg=Xs+ 2+ y3, X1 +Xg=X¢+y1+y2 and y1+ y2+ y3 =
0. The hypersurface X in ¥ =Pg(E) defined by the equation

XiXsYE4+ X3X4Y5 + Xo XY =0

is a maximal wild hypersurface bundle of degree 2 over S.

(II) Next, assume dim S = 3.

There does not exist a small contraction from any smooth toric Fano 3-fold.
Therefore, if there exists a maximal wild hypersurface bundle over S, then S is
isomorphic to one of the following by Corollary 5.3:

P, P'xP!'xP! and Pp:(Cp> @ Op2(1)).

(III) Finally, assume dim S = 4.
By the results of Section 4, there exists a maximal wild hypersurface bundle
over S if S is isomorphic to one of the following:

PY P! x P! xP!'x P!, Ppi(Ops ® Ups(1)) and Pps(Ups @ Ops(3)).

So, suppose S is not one of them, that is, the case (iv) in Corollary 5.3. By
the classification of smooth toric Fano 4-folds, there exist exactly four possi-
bilities:
() S~ w11,
(i) S is the toric Fano 4-fold of type M; (see Batyrev [3] and Sato [14]),
(iii) S is the 4-dimensional pseudo del Pezzo variety V* (see Ewald [6]) and
(iv) S is the 4-dimensional del Pezzo variety V'* (see Klyachko-Voskresenskij
19)).
The first case is studied in Exapmle 4.6. We can construct maximal wild
hypersurface bundles for the other cases similarly as Example 4.2 and Example
4.6. We omit the precise calculation for these constructions, and use the same
notation as in Example 4.2 and Example 4.6.

Example 5.6. Let p =2 and let S = Sy be the toric Fano 4-fold of type M.
The primitive relations are x| +x3 =0, x4 +x5 =0, x¢ +x7 =0, x| + x3 + x3
= X4 + X6, X4+ X+ Xg =X+ X3, X2+ X3+ X5 = Xg+ Xg and x; +x3+x7 =
X4 + xg. Put

E=05® 0s® Os(Dg) ® Os(Dy4) ® Us(Dg) and L = Us(D3).

The primitive relations of ¥ are X + X = yi, X4+ X5 = y2, X6+ %7 = »3,
X1+ X2 + X3 = X4 + X6 + Y1 + Y4+ ys, X4+ X6+ Xg =X+ X3+ y1+ y2+ 3,
X2+ X3+ X5 = X6+ Xg + y2+ ya+ ys, Xo+ X3+ X7 = X4 +Xs + y3+ ya + ys and
Y1+ Y2+ y3+ ya+ ys=0. The hypersurface X in Y = Pg(E) defined by the
equation
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XiXs Y24+ XaXs Y7 + Xe X7 Y+ X0V + X3Y2 =0

is a maximal wild hypersurface bundle of degree 2 over S.

Example 5.7. Let p=2 and let S = Sy be the 4-dimensional pseudo del
Pezzo variety V4. The primitive relations are x4 + x9 = 0, x| + x5 = 0, x> + X¢
=0, x3+x7=0, X1 +x2 + X9 = X7+ X3, X] + X3+ X9 = X6+ Xg, X2+ X3+ Xg =
X5+ X8, X1 +X2+xX3=Xx4+X3, Xq4+ X5+ Xg=X2+ X3, Xq4+ X¢+ Xg = X1+ X3,
X4+ X7+ X3 = X1 + X2, X5+ Xg+Xg=X3+ X9, X5-+X7+ X3 =X+ X9 and xg -+
X7+ Xg = X1 + x9. Put

E = (95 &) (QS(DI) &) (QS(DZ) &) @’S(D3) &) @S(D9) and L= @S(Dg).

The primitive relations of T oare X4+ Xo = V4, X1+ Xs=y1, Xo+Xe= ya,
X3+ X7 =y3, X1 +Xp+Xo=2X7+Xs+ Y1+ Y2+ Y4, X1+ X3+ Xo=X6+ X5+ )1
+y3tya, X+ X3+ Xo=Xs+Xg+ 2+ 3+ Y4, Xi+HXo+ X3 =X+ Xg+ y1+
Va3, X4+ Xs+Xg=Xp+ X3+ Y1+ ya+ys, Xa+Xe+Xg =X+ X3+ 2+ y4
+ys, Xa+X7+Xg=X1+X2+ Y3+ Ya+ys, Xs+Xg+Xg=2X3+ X9+ y+ 2+
V5, X5+ X7+ Xg = X2+ Xo+ Y1+ Y3+ Vs, Xg+X7+Xg =X+ Xo+ y2+ y3+ s
and y;+ y2+ y3+ ya+ ys = 0. The hypersurface X in ¥ = Pg(E) defined by
the equation

XiXsYE+XoXe Y3+ X3 X7 Y+ XaXo Y74+ X3 Y2 =0

is a maximal wild hypersurface bundle of degree 2 over S.

Example 5.8. Let p=2 and let S =Sy be the 4-dimensional del Pezzo
variety V4. The primitive relations are x4 + x19 =0, x; + x5 =0, x2 + x5 = 0,
X3+x7=0, xg +x9=0, x1 +X2+Xx10=X7+ X3, X| + X3+ X10= X¢+ X3, X2+
X3+ X10=X5+Xg, X|+X2+X3=X4+Xg, X|+X9+Xj0=Xe6+ X7, X2+ X9+
X10 = X5+ X7, X3+ Xo+Xj0=X5+Xs, X +X2+X9=x4+X7, X|+X3+X9=
X4+ X6, X2+ X3+ Xg=X4+ X5, X4+ X5+ X¢= X3+ X9, Xq4+ X5+ X7 = X2+ Xo,
X4 + X + X7 = X1 + X9, X5+ X + X7 = X9 + X10, X4 + X5 + X3 = X2 + X3, X4 + X+
Xg = X1 + X3, X4 + X7 + X3 = X1 + X2, X5 + X6 + X3 = X3 + X10, X5 + X7 + X3 = X2+
x10 and xg + X7 + xg = X1 + x19. Put

E=0s® 0s(D1 — Dg) ® Os(Dy — Dy) @ Os(D3 — Dy) ® Os(D1p — D9g) and
L = Os(Ds + Dy).

The primitive relations of Y are X4+ X10 = Y4, X1+ X5s=y1, Xo+X¢= )2,
X3+ X7 =3, Xg+Xo=ys, X1 + X2+ X10=X7+Xs+ y1 + y2 + ya, X1 + X3+ X10
=Xe+Xg+ Y1+ 3+ y4, o+ X3+ X0 =Xs+Xg+ 2+ 3+ ya, X1 +X+ X3 =
X4+ Xg+ Y1+ Y2+ y3, X1+ Xo+ Xig = X6+ X7+ Y1+ Ya+ s, Xo+Xo+Xio =
X5+ X7+ Y24+ ya+ ys, X3+ Xo+ X10 = X5 + X6 + y3+ ya+ ys, X1 + X2 + Xo = X4
+X7+ Y1+ Y2+ Ys, X1 +X3+Xo=Xa+ X6+ Y1+ Y3+ Vs, Xo+ X3+ Xg=X4+
Xs+ Y2+ Y3+ s, Xg+Xs+X6=X3+Xo+ Y1+ Y2+ ya, Xa+Xs+ X7 =X+ Xo
+ Y1+ Y3+ Y4, Xa+Xe+ X=X +Xo+ Y2+ y3+ ya, X5+ X+ X7 =Xo+ X0+
Vit I+, Xa+Xs+X3=X2+X3+ 1+ Y4+ Vs, Xa+ Xe+ Xs = X1+ X3+ 1
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+ya+ys, Xa+X7+Xg=X1+Xo+ 3+ ya+ys, Xs+Xg+Xg=X3+ X0+ y1 +
Va+ys, Xs+Xp+Xg=Xo+ X0+ 1+ 3+ s, Xe+ X7+ Xg =X+ X0+ 32+
y3+ys and y1+ ya+ y3+ ya+ ys =0. The hypersurface X in Y = Pg(E)
defined by the equation

XiXsYE 4+ XoXs Y3 + X3 X7 Y7+ Xy X0 Y] + X Xo Y2 =0

is a maximal wild hypersurface bundle of degree 2 over S.
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