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CASTELNUOVO-MUMFORD REGULARITY AND CLASSICAL
METHOD OF CASTELNUOVO

CHIKASHI MIYAZAKI

Abstract

This paper investigates the Castelnuovo-Mumford regularity of generic hyperplane
section of projective curve. The classical method of Castelnuovo plays an important
role in order to study the extremal examples for the bounds for the Castelnuovo-
Mumford regularity.

1. Introduction

This paper investigates the Castelnuovo-Mumford regularity of a generic
hyperplane section of a projective curve. Let T =k[yo,...,yn11] be the
polynomial ring over an algebraically closed field k. Then we put PkN =
Proj(7T). Let C be an irreducible reduced nondegenerate projective curve in
P,iv *1 that is, the defining ideal I is generated by elements of degree >2 in T
and T/I¢ is an integral domain of dimension 2. Let X be a generic hyperplane
section of C, that is, X = CN H, where H is a generic hyperplane of P,ﬁv 1. So,
X is a zero-dimensional subscheme of P;¥ = Proj(S), where S is the polynomial
ring k[xo,...,xy]. Let I be the defining ideal of X and R be the coordinate
ring of X, that is, R=S/I. For a coherent sheaf & on P,fv and an integer
meZ, F is said to be m-regular if H' (P, #(m —i)) =0 for all i > 1. For a
projective scheme Y < P,év , Y is said to be m-regular if the ideal sheaf .7y is m-
regular. So, in this case, X is m-regular if and only if HI(P,?',JX(m —-1)) =0,
where fx is the ideal sheaf of X. The Castelnuovo-Mumford regularity of
X c P,ﬁv is the least such integer m and is denoted by reg(X). It is well-known
that X is m-regular if and only if for every p > 0 the minimal generators of the
pth syzygy module of the defining ideal 7 of X < P} occur in degree < m + p.
In this sense, it is important to study upper bounds on the Castelnuovo-Mumford
regularity for projective schemes in order to describe the minimal free resolu-

tions of the defining ideals. The following result (1.1) is a starting point of our
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research on the Castelnuovo-Mumford regularity for generic hyperplane sections
of projective curves. Throughout this paper, for a rational number n € Q, [n]
denotes the smallest integer which is not less than n.

ProposiTiON 1.1. Let X < P,év be a generic hyperplane section of a non-
degenerate projective curve. Then we have reg(X) < [(deg(X) —1)/codim(X)] + 1.

Before describing a sketch of the proof of (1.1), we explain the terms
“uniform position”, “linear general position” and “linear semi-uniform position”
for zero-dimensional schemes. Let X = P, a reduced zero-dimensional scheme
such that X spans P as k-vector space. Then X is said to be in uniform
position if Hz(7) = max{deg(Z),Hx(#)} for all 7, for any subscheme Z of X,
where Hzy and Hy denote the Hilbert function of Z and X respectively. This
condition is equivalent to saying that, for any subschemes Z; and Z, of X with
deg(Z)) = deg(Zy), W(PY,.7,,(/)) =W (PN,.7,,(¢)) for all integers /e€Z. A
reduced zero-dimensional scheme X is said to be in linear semi-uniform position
if there are integers v(i, X'), simply written as v(i), 0 <i < N such that every i-
plane L in P} spanned by linearly independent i + 1 points of X contains exactly
v(i) points of X. We say X is in linear general position if v(i) =i+ 1 for all
i > 1. Further, we note that “uniform position” implies “linear general posi-
tion”, see [7, (4.3)].

Remark 1.2. A generic hyperplane section of a nondegenerate projective
curve is in linear semi-uniform position, see [2], and in uniform position if
char(k) =0, see [1].

The property of h-vectors for zero-dimensional scheme in linear semi-uniform
position yields the proof of Proposition 1.1. Now we sketch the proof for the
readers’ convenience.

Sketch of the proof of Proposition 1.1. Let R be the coordinate ring of a
zero-dimensional scheme X = PY. Let h= h(X) = (hy,...,hs) be the h-vector
of X < P, where h; = dim[R], — dim[R], , and s is the largest integer such
that A, # 0. Note that s =reg(X) — 1. Since X is in linear semi-uniform posi-
tion, we have /fj+---+h; >ih; for all i=1,...,5s—1, that is, Hy(?) >
min{deg(X), N + 1} by [2]. Since deg(X) = ho + -+ + hy and codim(X) = h; =
N, we obtain [(deg(X) —1)/codim(X)] = [(h; +---+hs)/l] =s. Hence the
assertion is proved. O

Remark 1.3. For a nondegenarate reduced zero-dimensional scheme
X < P in linear semi-uniform position, reg(X) < [(deg(X) — 1)/codim(X)] + 1
holds from the proof of (1.1). On the other hand, when X is in linear general
position, the classical method of Castelnuovo gives the inequality, see [1, page 115]
or [4, page 95].
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We will study extremal cases for regularity bounds in Proposition 1.1. Now
we state the main theorem, which extends the results of [4, (2.4)].

THEOREM 1.4. Let X EP,?’ be a generic hyperplane section of a non-
degenerate projective curve C in P,fv 1 for N >3, Assume that deg(X) > N>+
2N + 2. If the equality reg(X) = [(deg(X) — 1)/codim(X)]| + 1 holds, then X is
contained in a rational normal curve in P,fv .

We remark here the hypothesis deg(X) > N?+2N +2 is indispensable
because of an example of a (2,2,4) complete intersection in P}, see [9].

For N =1, the curve C is defined by one equation of degree d, and we easily
have reg(X) =d. Then we have an equality reg(X) = [(deg(X) — 1)/codim(X)]
+1. For N >2, the corresponding result is obtained by the Hilbert-Burch
matrix, see [5].

ProposITION 1.5 (See [9, (2.6)]). Let X = P} be a generic hyperplane sec-
tion of a nondegenerate projective curve. Assume that X is in uniform position
and deg(X) = N*> + 2N + 2. Ifthe equality reg(X) = [(deg(X) — 1)/N] + 1 holds,
then X is contained in a rational normal curve in P} .

From (1.5) we focus on the case that X is not in uniform position. So, k
is assumed to be a field of positive characteristic. Theorem 1.4 is reduced to
Theorem 1.6.

THEOREM 1.6. Let X < P,fv be a generic hyperplane section of a non-
degenerate projective curve for N > 3. Assume that X is not in uniform position
and deg(X) > N>+ 2N +2. Then we have teg(X) < [(deg(X) —1)/N7.

What we have to prove is that HO(C()])/A\’(t)) — H%0x(1)) is surjective, that is,
H!'(sx (1)) = 0, where ¢ = [(deg(X) —1)/N] — 1.

Lemma 1.7. Under the condition of (1.6), let t= [(deg(X)—1)/N] -1
For any fixed point P € X, there exists a (possibly reducible) hypersurface F of

degree t in P such that XNF = X\{P}.

Section 2 is devoted to the proof of Lemma 1.7, which is a consequence of
Theorem 2.2. In Section 3, we study the configuration of the zero-dimensional
scheme of P? in linear semi-uniform position having the extremal bound for the
regularity. Throughout this paper, the classical method of Castelnuovo plays an
important role in order to describe the Castelnuovo-Mumford regularity for the
zero-dimensional scheme.

2. Curve in P" (n>4)

In this section, we investigate extremal bounds on the Castelnuovo-Mumford
regularity by the classical method in order to prove Lemma 1.7 for a generic
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hyperplane section of a nondegenerate projective curve C in P” (n >4). Now
we begin with a useful result of Rathmann [10] by describing a relation between
the monodromy group of the projective curve and the configuration of the generic
hyperplane section of the curve. For a generic hyperplane section X < P,ﬁv of a
nondegenerate projective curve C < P} let M = C x (PY™)* be the incidence
correspondence parametrizing the pairs (x, H) € M such that x is contained in H.
Since M is generically étale finite over P = (P!)" via the second projection, the
function field K(M) of M is separable finite over K(P). For a splitting field Q
for K(M)/K(P), we take the Galois group G¢ = Gal(Q/K(P)). Then G¢ is a
subgroup of the full symmetric group S; and is called the monodromy group of
Cc P,fv , where d = deg(C). The following classification correponds with the
transitivity of the monodromy group of the projective curve.

ProposITION 2.1 (See [10, (2.5)]). Let X < P" be a generic hyperplane
section of a nondegenerate projective curve C < P¥*! for N > 3. Let G¢ be the
monodromy group of C. If X is not in uniform position, then either of the
following holds:

(@) v(1) =3, and G¢ is exactly 2-transitive.

(b) v(1) =2, v(2) =4, and Gc¢ is exactly 3-transitive.

(c) deg(C) =11,12,23 or 24, and G¢ is the Mathieu group My, M,
Mys, My respectively.  Moreover My and My are exactly 4-transitive and N > 4
for the case. Also, My, and My are exactly S-transitive and N >5 for the
case.

Now we state the main theorem of this section.

THEOREM 2.2. Let X QP,?/ be a generic hyperplane section of a non-
degenerate projective curve C of degree d in PkN U for N>3. Assume that X
is not in uniform position and that d > N*+2N +2. For any fixed point
P e X, there exists a (possibly reducible) hypersurface F of degree t in P,ﬁv such
that XNF = X\{P}, where t=[(d—1)/N|—1. In other words, reg(X) <

[(d=1)/N].

According to the classification (2.1) we will prove (2.2) in each case sep-
arately. As for the case (c) in (2.1), since N >4 for deg(C) = 11,23 and N > 5
for deg(C) = 12,24, we see N>+ 2N +2>26. Hence there is no curves with
degree 11, 12, 23 or 24 satisfying the condition. Thus the case (c) in (2.1) is
proved. The rest of the proof of Theorem 2.2 is divided by (2.3), (2.4) and (2.5).

First we study the case (a) in (2.1).

LemmA 2.3.  Under the condition of (2.2), assume that v(1) = 3, that is, G¢
is exactly 2-transitive. For any fixed point P e X, there exists (possibly re-
ducible) hypersurface F of degree t in P such that X N\ F = X\{P}, where t =
[(d—1)/N]-1
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Proof. For the case N >4, the classical method have given the proof of
the assertion in [4, (2.2)]. So we will prove for the case N = 3 by the classical
method. Since v(1) = 3, we have v(2) > 7 and put v =v(2). For a point P of
X, we fix 2 points Q; and Q, in X\{P}. Then we take different 2-planes
Li,....L, containing the line 7 =/(Q, Q) spanned by Q; and Q, such that
the union U L; covers X. We remark that a>3. Since each 2-plane
contains exactly v points of X and the line / contains exactly 3 points of X,
we see d = a(v—3)+3. We may assume that P is contained in L,. Let b=
[(v—3)/2]. Since (X NL,)\{P,Q1,Q>} consists of exactly v—3 pomts there
are 2-planes Li,...,L; such that P ¢ L/ for i=1,...,b and the union U L’ of

2-planes covers (X NL,)\{P, 01, 0>}. By taklng F = (U‘ill L;)U (U]b IL’), we
have (X NF) = X\{P} and the degree of the union F of 2-planes is a+b 1.
Thus we have only to show that (a— 1)+ [(v—3)/2] < [((av —3a+3) — 1)/3]
—1. The inequality (¢ — 1)+ (v—3)/2 < (av—3a+2)/3—1 is equivalent to
saying that (2a —3)(v—6) =5, which is easily shown for v>7 and a>4.
Moreover, the case v =7 and a = 3 satisfies (¢ — 1) + [(v—3)/2] = [(av — 3a +
2)/3] — 1. Hence the assertion is proved. U

Next we study for the case (b) in (2.1) and N = 3.

LemMA 2.4.  Under the condition of (2.2), assume that v(1) =2, v(2) > 4 and
N =3, and G¢ is exactly 3-transitive. For any fixed point P e X, there exists
a union F of t hyperplanes Ly,...,L; in P} such that X NF = X\{P}, where

t=1[(d—1)/3] - 1.

Proof. Let us put v=v(2) >4. For the case v> 15, the proof will be
proceeded as in (2.3). For a point P of X, we fix 2 points @; and Q; in
X\{P}. Then we take different 2-planes L;,...,L, containing the line / =

Z(Q1, Q2) such that the union U L; covers X. In this case, we see that a > 2
and d =a(v—2)+2. We may assume that P is contamed in L,. Let b=
[(v—3)/2]. Then there are 2-planes L{,...,L;, such that P¢ L/ fori=1,...,b
and the union U L] of 2-planes covers (XﬂL,,)\{P, 01,0>}. By taking

F=(U" Lyu (U] | L]’) we have (XNF)=X\{P} and deg(F)=a+b— 1.
Thus the assertion is reduced to showing that (a — 1) + [(v— 3)/2] < [(av — 2a +
1)/3] — 1. The inequality (a — 1)+ (v —3)/2 < (av — 2a+ 1)/3 — 1 is equivalent
to saying that (2a — 3)(v — 5) > 4, which is easily shown for all v > 6 and a > 2
satisfying av —2a+2 >17. For the case v=>5, we see that (¢—1)+1=
[(3a+1)/3] — 1, which gives the assertion.

Next we consider the case v =4. As the notations above, d = 2a + 2 and
a>38. For a point P of X, we will take hyperplanes Ly,...,L, inductively for
some integer /| such that P¢ L; and X ﬂL,\U L; contains exactly 4 points
of X\{P}. Indeed, let V;=XN(L,U---UL)) and Z X\({P}UY;). Let us
take Q) and Q; in Z;. Then there exists a pomt Qs in of Z\{Q, 0>} such that
the 2-plane L;; = L(Q1, 02, Q3) spanned by Q;, O, and Q3 does not contain
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any point of Y;U{P} if card(Z,\{Q1, 02}) > card(Y;U{P}). Thus the 2-plane
(XN Li1)\Y; contains exactly 4 points. Therefore we have constructed a union
of hyperplanes G, = L1 U---UL, such that G, contains at least « + 1 points of
X and does not contain P. Hence we have ¢, = [(a+ 1)/4] and card(X N Gy)
= 4/).

Moreover, we will inductively construct hyperplanes L/ 1,..., Ly, for some
integer /, satisfying X\{P} = XN(LiU---ULy4p). Let Gi=LU---UL;. If
card(X\({P}UG;)) > 6, we take a hyperplane L;;; such that L;;; contains at
least 3 points of X\G; and does not contain P. For the case card(X\
({P}UG;)) =4,5,6, we can take hyperplanes which covers the remaining points
and does not contain P. Indeed we may assume that card(X\({P} U G;)) = 6.
Let X\({P}UG;) ={0Qi,...,06}. Let us take hyperplanes M| = L(Q;, Q,, P)
and M, = L(Q5,04,P). If MiNM,N{Qi,...,06} = ¢, then we may assume
that Qs ¢ M, and Q¢ ¢ M,. So, we see that P¢ L(Q1,0,,05) and P ¢ L(Qs,
04,06). I MiNM,N{O,...,0¢} # ¢, say the intersection is a point Qs, then
P¢ L(01,05,06) and P ¢ L(Q2,03,0Q4). Thus we have that 4, < [(2a+2—
4/1)/3]1 < [(a+1)/3]. Hence the proof is reduced to showing that / + 7/, <
[(d—=1)/3] — 1,namely, [(a+1)/4] + [2a+2 —4[(a+ 1)/4])/3] < [(2a+1)/3]
—1 for a = 8, which is easily verified. Hence the assertion is proved. O

Finally we study the case (b) in (2.1) and N >4. We will show the as-
sertion without using [3], although the proof proceeds as in [4] by the classical
method.

Lemma 2.5. Let X <P} be a zero-dimensional scheme of degree d >
N2 + 2N + 2 in linear semi-uniform position. ~Assume that v(1) =2, v(2) > 4 and
N > 4. For any fixed point P € X, there exists a (possibly reducible) hypersurface
F of degree t in P such that X NF = X\{P}, where t = [(d —1)/N] - 1. In
other words, reg(X) < [(d —1)/N].

Proof. First, we will show that v(i + 1) > 2v(i) for i > 2. Indeed, let us
take an i-plane G spanned by linearly independent i + 1 points of X, and take a
point 4; € XNG and a point 4, € X\(XNG). Then we put XNG={4,}U
{B1,...,Byi-1}. For any point B; € (X N G)\{A4:}, the 2-plane H = H (A1, A3,
B;) spanned by A, 4>, B; contains at least one point C; in (X NH)\(XNG)U
{4,}) for all j, because v(2) >4 and v(l) =2. Note that C; # C; for j # ;.
So, the (i + 1)-plane spanned by G and A, contains Ay, A2, By, ..., By;-1,C1,...,
Cyi)—1- Thus we have v(i+1) > 2v(i) for i>2. Let v=0(N—2) and w=
v(N —1). Since v(2) >4, we see that v(i) >2 for i >2 and w > 2v > 2N-1,

Now, we fix linearly independent N — 1 points Q;,...,Qy—1 of X\{P} such
that the (N — 2)-plane L spanned by Qi,..., Qn_; does not contain the point P.
Thus there are different hyperplanes Ly, ..., L, containing L such that the union

U;’:l L; covers X. So, we easily have that d = a(w —v) +v and a > 2. Let us
prove that a > v(2) — 1. Indeed, let us take points Qf € Li\L and Q) € L,\L.
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Then the 2-plane L' = L(Q, Qf, Q3) contains v(2) points of X, say, XNL' =
{01,01,05,05,..., Qzl;(z)q}- Since v(1) = 2, the 2-plane L; ; containing Q; are
different from each other for j=1,...,09(2) — 1. Hence we have a > v(2) — I.

We will prove the result by the induction on N. Let N >4. From the
notation above, we may assume that P is contained in L,. Since X NL, is also
in linear semi-uniform position in L,(= PY~!), by (1.3) there is a (possibly
reducible) hypersurface F’ in P} of degree [(w—1)/(N —1)] such that P ¢ F’
and F’' contains (X NL,)\{P}. Thus the union F = (U;:ll Lj))UF' covers
X\{P} and P ¢ F. Hence it suffices to prove that a — 1+ [(w—1)/(N —1)] <
[(d—1)/N]—1, that is, a+ [(w—1)/(N —1)] < [(a(lw—0v) +v—1)/N]. For
N =5, let us consider an inequality a4+ (w—1)/(N — 1) < (a(w—v) +v—1)/N,
which is equivalent to aN?> —aN — 1 < (aN —a— N)w — (N — 1)(a — 1)v. Since
aN —a— N =0, we see that (aN —a— N)w— (N —1)(a— v =2(aN —a— N)v
~(N=1)(@a—1)v=(aN —N —a—1)v=aN*—aN +1 for N>5 except for
(N,a,v) = (5,3,8) or (5,3,9), because v >2""2. For the case, since d = 3w —
20>37 and w>2v, we have 3+ [(w—1)/4] < [(3w—2v—1)/5]. Therefore
we have the desired inequality for N > 5.

Next let N =4. Let us assume that (v,w) # (4,8) as notation above.
Then we easily have an inequality a + [(w — 1)/3] < [(a(w — v) + v — 1)/4] except
for (a,v,w) = (4,5,11) or (5,4,9). For the case (a,v,w) = (4,5,11), the union
of hyperplanes L; UL, U L3 contains exactly 23(= 11 + 6 + 6) points of X and
does not contain P. Since card(X\{P}) = 28, there exists a union of 3 hyper-
planes which covers the remaining 5 points of X\{P} and does not contain P.
Thus we have done. For the case (a,v,w) = (5,4,9), the union of hyperplanes
LiU---UL4 contains exactly 23(=9+5+5+5) points of X and does not
contain P. Since card(X\{P}) = 28, there exists a union of 2 hyperplanes which
covers the remaining 5 points of X'\{P} and does not contain P. Thus we have
done.

Finally let N =4 and (v,w)=(4,8) as notations above. Note that
card(X) =d =4a+4 and a > 6. Let us take a hyperplane H; which contains
exactly 8 points of X\{P}. Then we will take hyperplanes H, ..., H, induc-

1
tively for some integer /; such that P¢ H; and (X ﬂH,)\U;ll H; contains at
least 7 points. Indeed, let ¥; = XN (H,U---UH;) and Z; = X\({P}UY;). Let
us take Q) and Q; in Z;. Then we take a point Q3 in of Z\{Qi, 0>} such
that the 2-plane L = L(Q;, Q2,Q3) does not contain any point of Y;U{P}
if card(Z\{Qi, Q2}) > card(Y;U{P}). Thus the 2-plane L contains exactly 4
points Qp,...,Q4 of Z;. Then there exists a point Qs of Z;\L such that the
hyperplane M spanned by Qs and L contains at least two other points Qg, Q7 of
ZA\L and does not contain P if card(Z;\L) > card(Y;) +3. Thus we can take
H,; .1 = M which satisfies the condition. Therefore we have constructed a union
of hyperplanes G, = H;U---UH, such that G, contains at least (d —8)/2 =
2a — 2 points of X and does not contain P, and ¢, < [(2a — 3)/7|. Moreover,
we will inductively construct hyperplanes Hyi1,...,H,., for some integer />
satisfying X\{P} =XN(H,U---UH,,). Let Gi=H U---UH;. If card(X'\
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({P}UG;)) > 6, we take a hyperplane H,; such that H,. contains at least 4
points of X\G; and does not contain P. For the case card(X\({P}UG;)) =
3,4,5,6, we can take hyperplanes which covers the remaining points and does
not contain P, see the proof of (2.4), and for the case card(X\({P}UG;)) = 1,2,
we can take one hyperplanes as desired. Thus we see that £, < [(d — (2a —2) +
2)/4] = [(a+4)/4]. Hence the proof is reduced to showing that £ + ¢/ <
[(d—1)/4] — 1, namely, [(2a —3)/7] + [(a +4)/4] < a for a > 6, which is easily
verified. Hence we have proved the case N =4. O

3. Curve in P’ and zero-dimensional scheme in P>

In this section, we investigate extremal bounds on the Castelnuovo-Mumford
regularity by the classical method of Castelnuovo for nondegenerate reduced zero-
dimensional scheme of P,f in linear semi-uniform position. If a generic hyper-
plane section X of a space curve is in uniform position, there is an arithmeti-
cally Cohen-Macaulay smooth curve C’' = P,i such that X = C'N H. This gives
detailed information of a free resolution of the defining ideal Iy over k[xo, x;, x7)
by the Hilbert-Burch matrix, see [6]. Instead, we will go ahead with a classical
method, since a generic hyperplane section of a space curve is in linear semi-
uniform position.

THEOREM 3.1. Let X be a nondegenerate reduced zero-dimensional scheme of
sz of degree d. Assume that X is in linear semi-uniform position and d > 10. If
the equality reg(X) = [(d —1)/2] 4+ 1 holds, then either (i) X is contained in a
conic, or (i) X ={P}YUY, where Y is contained in a conic.

Example 1. Let X be a reduced zero-dimensional scheme in a conic of P}
of degree d > 3. Then we easily have reg(X)=[(d—1)/2]+1, and A(X) =
(1,2,...,2) or (1,2,...,2,1).

Example 2. Let P be a point in P} and Y be a reduced zero-dimensional
scheme in a conic of P} with P¢ Y. Let X = {P}UY. Assume that X is in
a linear general position and d = deg(X) > 10. Then we easily have reg(X) =
[(d—1)/2]+ 1, and A(X) = (1,2,3,2,...,2) or (1,2,3,2,...,2,1). In this case,
X is not of decreasing type, see [6, page 3139] for the definition of “‘decreasing
type”. According to [5, (1.1)], the zero-dimensional scheme X cannot be a
generic hyperplane section of a space curve.

In case X is in uniform position, the equality reg(X)=[(d—1)/2]+1
implies that X is in a conic of P by [9, (2.5)]. Therefore, the proof of Theorem
3.1 is reduced to (3.2) and (3.3).

LemmA 3.2.  Under the condition of (3.1), assume that X is not in general
linear position. For any fixed point P e X, there exists a union F of t lines
Ly,...,L; in P? such that X NF = X\{P}, where t = [(d —1)/2] — 1.
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Proof.  Since X is in linear semi-uniform position by [2], the line spanned by
any two points of X is contains exactly v(1) points. Since X is not in general
linear position by assumption, we have v = v(1) > 3.

First we consider the case v > 4. For a point P of X, let us take a point Q
in X\{P}. Then we take different lines /,...,#, through the point Q such that
the union U;l:l ¢; covers X. Each line contains the point Q and the other v — 1
points of X. Thus we see d =av—a+ 1. We may assume that P is contained
in 4,. Then we take L} =¢,,...,L,—1 = ¢,—1. Since (X N¢,)\{P, Q} consists of
exactly v — 2 points, we can easﬂy take v—2 lines L,,...,L,.,_3 such that
the union UaH 3L contains (X NZ,)\{P,Q} and P ¢ L; for any i. Since X N
(Uja+b 'L L)=X \{P} the assertion is reduced to showing that a+v—3 <
[(av—(a—1)—=1)/2] =1 for d =av— (a— 1) > 10. Note that a > v. Indeed,
let us take a point P; from (X N¢)\{P,Q} for each i=1,2. Then we see
Py # P,. Since the line /(P;, P,) spanned by P, and P, contains (v — 2) points
Ps,...,P, in X\(/4U?,), the points Ps,...,P, construct different lines /; =
((P3,0Q),...,. =((P,,Q) through Q. Since we have at least v lines 7,5,
/3,...,0) through Q, we see a >v. The inequality a+v—3<a(v—1)/2—-11s
equivalent to saying that (a —2)(v—3) > 2, which is easily shown for ¢ and v
with @ > v > 4. Hence the assertion is proved.

Next we consider the case v=3. As the notations above, we see that
card(X ) d=2a+1 and a>5. For a point P of X, we will take lines
Ly,..., L, inductively such that L,\U L contains exactly 3 points of X and
P¢L; fori=1,...,/. Indeed, let Y; = Xﬂ(U L;) and Z; = X\({P}U Y;).
Let us take a point Q€ Z;. Then there exists a pomt Q' € Z; such that the line

Ly =/(Q,Q') spanned by Q and Q' does not contain any points of Y;U {P}
if card(Y;) < card(Z;) —2. Thus U/‘ Lj)NX consists of at least « — 1 points
and /; = [(a—1)/3]. Moreover, we w111 take lines Ly 41,...,Ls, for some 4>
inductively such that (X NL;) \U L; contains at least 2 points for i =/ +
l,...,0 +/,—1 and X\{P} = Xﬂ (U/IHZL ). Thus we see that / < [(d—
1— 3/1) /2]. Therefore the assertion is reduced to showing that [(a —1)/3]+
[(2a —3[(a—1)/3])/2] <a—1, because [(d —1)/2] =a. For a=5,6,7,8, the
inequality holds. Since 2a — 3{(61 —1)/3] <a+ 1, the proof of the inequality is
reduced to showing that [(«¢ — 1)/3] + [(a+ 1)/2] < a — 1, which is easily shown
for a > 9. Hence the assertion is proved. O

LemMA 3.3.  Under the condition of (3.1), assume that X is in general linear
position and not in uniform position. Assume that X is not in the case (ii) in (3.1).
For any fixed point P € X, there exists a (possibly reducible) plane curve F of
degree t in P} such that X NF = X\{P}, where t=[(d —1)/2] — 1.

Proof. Let P be a point of X. Since X is not in uniform position, X is
not contained in a conic of P? by [8]. So there are a conic C; with P ¢ C
containing at least 5 points of X. For the case d =10, there exsits a conic
C, with P ¢ C, containing X\(X N C}), since the point P and the 4 points
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X\(XNC) is not in a line. By taking F = C;UC,, we have FNX = X\{P}
and deg(F) =4=[(d —1)/2] — 1. Hence the assertion is proved.

So we may assume that ¢ > 11. We have only to show that there are 2
conics C; and C, with P ¢ C; and P ¢ C; such that (C; U C;) N X contain at least
10 points of X. Indeed, if there are such conics, the number of the remaining
points of X\({P}U(C;U C,)) is m, where m = [(d — 11)/2]. Since X is in linear
general position, there are m lines Ly,...,L,, where m = [(d — 11)/2], satisfy-
ing that (C;UCy)U(LiU---UL,))NX =X\{P}. By taking F=(C,UC,)U
(LyU---UL,), we have deg(F) =4+ m = [(d —1)/2] — 1, which yields the as-
sertion.

Now we will show that there are conics C; and C, satisfying the above
condition. First let us take a conic C; with P ¢ C; containing at least 5 points
of X, since X is not in a conic. If C; contains more than 5 points of X, then we
can easily take C, with P ¢ C, such that C, contains at least 4 points of X.
Thus we are done. So we may assume that C; contains exactly 5 points of X.
Or, if there is another conic C, with P ¢ C, which contains at least 5 points of
X\(XNCy), then the assertion is proved.

Now we have to consider the case that X N C; consists of exactly 5 points
and the conics containing X'\(X N C;) always contain the point P. So let us
take a conic C’ with P e C’ containing at least 5 points of X\(X N C}). Then
we will show that the conic C’ contains all the points of X\(X N C;). If not,
there is a point P’ € X\(X N C}) is not contained in C’. Then the points P’ and
4 fixed points Qy,..., Q4 of (X NCH\((X N Cy)U{P}) give a conic C” containing
these points. Then the conic C” always contains P from the assumption. Since
the conics C’ and C” contains the 5 points P, Q1,...,0Q4 not in a line, we see
C'" = C”, which contradicts P’ ¢ C’. Thus we have that the conics C; and C’
cover X.

Now let 7 = card(X\(XNC")). Note that 2 <7< 5, since =1 yields the
case (ii) in (3.1). Let us take a point P; with Py ¢ C’. The conic C” through
P and (XN Cy)\{P;} does not contain XN C’. In fact, XNC’' = C" gives X'\
{P1} = C’, which contradicts > 2. So there is a point P, of X N C’ such that
P, ¢ C”. Then the conic C| through P, and (X N C;)\{P} does not contain
P, since Pe C| gives C{ = C’. Let us fix 4 points P3,...,Ps from (X NC")\
{P, P»}. Then the conic C} through P, P3, P4, Ps, Ps does not contain P, since
P e Cj gives C; = C’. Thus we see that C{ U C} contains at least 10 points with
P¢ C{UC;. Hence the assertion is proved. O
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