EXISTENCE OF SUPERCRITICAL PASTING ARCS FOR TWO SHEETED SPHERES

MITSURU NAKAI

Abstract

Take e.g. two disjoint nondegenerate compact continua A and B in the complex plane C with connected complements and pick a simple arc γ in the complex sphere $\hat{\bf C}$ disjoint from $A \cup B$, which we call a pasting arc for A and B. Construct a covering Riemann surface $\hat{\mathbf{C}}_{\gamma}$ over $\hat{\mathbf{C}}$ by pasting two copies of $\hat{\mathbf{C}} \setminus \gamma$ crosswise along γ . We embed A in one sheet and B in another sheet of two sheets of $\hat{\mathbf{C}}_{\gamma}$ which are copies of $\hat{\mathbf{C}} \setminus \gamma$ so that $\hat{\mathbf{C}}_{\gamma} \backslash A \cup B$ is understood as being obtained by pasting $(\hat{\mathbf{C}} \backslash A) \backslash \gamma$ with $(\hat{\mathbf{C}} \backslash B) \backslash \gamma$ crosswise along γ . In the comparison of the variational 2 capacity $\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \setminus B)$ of the compact set A considered in the open set $\hat{\mathbf{C}}_{\gamma}\backslash B$ with the corresponding cap $(A,\hat{\mathbf{C}}\backslash B)$, we say that the pasting arc γ for A and B is subcritical, critical, or supercritical according as $\operatorname{cap}(A, \mathbb{C}_{\gamma} \setminus B)$ is less than, equal to, or greater than $\operatorname{cap}(A, \mathbb{C} \setminus B)$, respectively. We have shown in our former paper [4] the existence of pasting arc γ of any one of the above three types but that of supercritical and critical type was only shown under the additional requirment on A and B that A and B are symmetric about a common straight line simultaneously. The purpose of the present paper is to show that in the above mentioned result the additional symmetry assumption is redundant: we will show the existence of supercritical and hence of critical arc γ starting from an arbitrarily given point in $\mathbb{C}\backslash A\cup B$ for any general admissible pair of A and B without any further requirment whatsoever.

1. Introduction

A nonempty compact subset A of the complex plane \mathbb{C} will be referred to as an *admissible* compact subset if $\hat{\mathbb{C}} \setminus A$ is a regular subregion of the complex sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, i.e. a relatively compact and connected open subset of $\hat{\mathbb{C}}$ whose relative boundary $\partial(\hat{\mathbb{C}} \setminus A)$ consists of a finite number of disjoint analytic Jordan curves. Thus an admissible A may or may not be connected and in general it consists of a finite number of connected components which themselves are also admissible. If B is another admissible compact subset of \mathbb{C} disjoint from A, then $A \cup B$ is again admissible. For a pair of two disjoint admissible compact subsets

²⁰⁰⁰ Mathematics Subject Classification. Primary 31A15, 31C15; Secondary 30C85, 30F15. Key words and phrases. capacity, covering surface, Dirichlet integral, Dirichlet principle, harmonic measure, modulus, two sheeted plane (sphere).

Received May 26, 2005; revised September 14, 2005.

A and B in C, a simple arc γ in $\hat{\mathbb{C}} \setminus A \cup B$ will be referred to as a pasting arc for A and B since we will paste $(\hat{\mathbb{C}} \setminus A) \setminus \gamma$ with $(\hat{\mathbb{C}} \setminus B) \setminus \gamma$ crosswise along γ . In general consider two subregions R and S in $\hat{\mathbb{C}}$ and a simple arc γ in $R \cap S$. We will use (cf. [5]) the convenient notation $(R \setminus \gamma) \boxtimes_{\gamma} (S \setminus \gamma)$ for the Riemann surface obtained from R and S by pasting $R \setminus \gamma$ with $S \setminus \gamma$ crosswise along γ . For a pair of two disjoint admissible compact subsets A and B in C and a pasting arc γ for A and B we will consider a new Riemann surface

$$\hat{\mathbf{C}}_{\gamma} := (\hat{\mathbf{C}} \backslash \gamma) \, [\times]_{\gamma} \, (\hat{\mathbf{C}} \backslash \gamma)$$

and also its subsurface

$$(1.1) W_{\gamma} := \hat{\mathbf{C}}_{\gamma} \backslash A \cup B,$$

where we understand that A (B, resp.) is embedded in the upper (lower, resp.) sheet $\hat{\mathbf{C}} \setminus \gamma$ of $\hat{\mathbf{C}}_{\gamma}$ although A and B are originally contained in the same \mathbf{C} . Hence

$$(1.2) W_{\gamma} = ((\hat{\mathbf{C}} \backslash A) \backslash \gamma) [\times]_{\gamma} ((\hat{\mathbf{C}} \backslash B) \backslash \gamma).$$

Here $\hat{\mathbf{C}}_{\gamma}$ is a covering Riemann surface $(\hat{\mathbf{C}}_{\gamma}, \hat{\mathbf{C}}, \pi_{\gamma})$ of the base surface $\hat{\mathbf{C}}$ with the natural projection π_{γ} .

Consider next the capacity $\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B)$, or more precisely the variational 2 capacity (cf. e.g. [2]), of the compact subset A in $\hat{\mathbf{C}}_{\gamma}$ with respect to the open subset $\hat{\mathbf{C}}_{\gamma} \backslash B$ of $\hat{\mathbf{C}}_{\gamma}$ containing A given by

(1.3)
$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B) := \inf_{\sigma} D(\varphi; W_{\gamma}),$$

where φ in taking the infimum in (1.3) runs over the family of $\varphi \in C(\hat{\mathbf{C}}_{\gamma}) \cap C^{\infty}(W_{\gamma})$ with $\varphi|_A = 1$ and $\varphi|_B = 0$ and $D(\varphi; W_{\gamma})$ indicates the Dirichlet integral of φ over W_{γ} defined by

$$D(\varphi; W_{\gamma}) := \int_{W_{\gamma}} d\varphi \wedge *d\varphi = \int_{W_{\gamma}} |\nabla \varphi(z)|^2 dxdy.$$

Here the second term in the above is the coordinate free expression of $D(\varphi, W_{\gamma})$ and the third term is the expression of $D(\varphi, W_{\gamma})$ in terms of local parameters z = x + iy for W_{γ} and $\nabla \varphi(z)$ is the gradient vector $(\partial \varphi(z)/\partial x, \partial \varphi(z)/\partial y)$. Clealy we have the following symmetry:

$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B) = \operatorname{cap}(B, \hat{\mathbf{C}}_{\gamma} \backslash A).$$

The variation (1.3) has the unique extremal function u_{ν} :

(1.4)
$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B) = D(u_{\gamma}; W_{\gamma}),$$

characterized by the conditions $u_{\gamma} \in C(\hat{\mathbf{C}}_{\gamma}) \cap H(W_{\gamma})$ with $u_{\gamma}|A=1$ and $u_{\gamma}|B=0$ (cf. e.g. [2]), where H(X) denotes the class of harmonic functions defined on an open subset X of a Riemann surface so that the function $u_{\gamma}|W_{\gamma}$ is usually referred to as the *harmonic measure* of $A \cap \partial W_{\gamma}$ (cf. e.g. [8]). The extremal function u_{γ} for (1.3) is also referred to as the *capacity function* for the compact subset A with respect to $\hat{\mathbf{C}}_{\gamma} \setminus B$ (cf. [7]).

We also consider the capacity $cap(A, \hat{\mathbf{C}} \backslash B)$ of the subset A in $\hat{\mathbf{C}}$ contained in the open subset $\mathbb{C}\backslash B$. Similarly as in the case of $\operatorname{cap}(A,\mathbb{C}_{\gamma}\backslash B)$ we have the symmetry $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) = \operatorname{cap}(B, \hat{\mathbf{C}} \backslash A)$ and that the capacity $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$ is given by the capacity function u for the compact subset A with respect to $\hat{\mathbf{C}} \setminus B$:

$$\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) = D(u; W) \quad (W := \hat{\mathbf{C}} \backslash A \cup B),$$

where $u \in C(\mathbf{C}) \cap H(W)$ with u|A=1 and u|B=0. Motivated by the problem to clarify when the situation $\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B) \leq \operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$ holds, which occurred in the study of the classical and modern type problem (cf. e.g. [6], [10], [8], [5], [3], among many others), the following classification problem of pasting arcs started: since the occurence of

(1.5)
$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B) = \operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$$

is very delicate in the sense that the relation is easily destroyed even if we change γ slightly, the pasting arc γ for $\hat{\mathbf{C}}_{\gamma}$ for which we have (1.5) is referred to as being critical. In contrast the situation

and also the situation

(1.7)
$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma} \backslash B) > \operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$$

are quite stable with respect to the small perturbation of γ and the pasting arc γ for which the relation (1.6) ((1.7), resp.) holds is referred to as being subcritical (supercritical, resp.). The occurrence for a pasting arc γ to be subcritical is just very common. For example, if the daiameter of γ is sufficiently small, then γ is subcritical (cf. [4]). In view of this it was expected in one time that every pasting arc γ satisfies (1.5) or (1.6) and there is no γ for which (1.7) is valid. We found, however, (1.7) can really occur in our former paper [4] when the pair of disjoint admissible compact subsets A and B are symmetric with respect to a common straight line. The purpose of the present paper is to show that without any additional condition the above is correct: for any pair of disjoint admissible compact subsets A and B in C there always exists a supercritical pasting arc γ for A and B. Hence we have

THEOREM. For any pair of disjoint admissible compact subsets A and B of C, there always exist pasting arcs γ_1 , γ_2 , and γ_3 in C for A and B starting from an arbitrarily given nonsingular point a in $\mathbb{C}\backslash A\cup B$ of the gradient of the capacity function on $\hat{\mathbf{C}}$ for A and B such that γ_1 is critical, γ_2 is subcritical, and γ_3 is supercritical.

Not only the mere existence but also the criteria for a given pasting arc γ to be subcrical are discussed in detail in [4]. For a pasting arc γ starting from a point $a \in \mathbb{C}$, we denote by γ_z for any $z \in \gamma \setminus \{a\}$ the subarc of γ starting from a and terminating at z. We have also shown in [4] that if γ is supercritical, then there are points s and c in $\gamma \setminus \{a\}$ such that γ_s (γ_c , resp.) is subcritical (critical, resp.). Hence to complete the proof of the above theorem, we only have to show the existence of a supercritical arc, which is the actual work in this paper.

2. Proof of the theorem

As mentioned in the introduction we only have to prove the existence of a supercritical pasting arc γ for an arbitrarily given general pair of disjoint admissible compact subsets A and B in the complex plane C. We set

$$(2.1) W := \hat{\mathbf{C}} \setminus (A \cup B).$$

We denote by u the capacity function on $\hat{\mathbf{C}}$ for the capacity of A with respect to $\hat{\mathbf{C}} \backslash B$:

(2.2)
$$\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) = D(u; \hat{\mathbf{C}})$$

so that $u \in C(\hat{\mathbf{C}}) \cap H(\hat{\mathbf{C}} \setminus A \cup B)$, u|A = 1, and u|B = 0. Hence u|W is the harmonic measure of $A \cap \partial W$ on W. Choose an arbitrary but then fixed non-singular point $a \in \hat{\mathbf{C}} \setminus A \cup B$ of the gradient vector field of $u : du(a) \neq 0$. There is an arc l containing a as its interior point, on which $du \neq 0$, such that

$$(2.3) *du = 0$$

along l, i.e. l is a u conjugate level arc. We pick an arbitrary interior point b in l other than a such that u(z) decreases as z traces l from a to b. We take an arbitrary but then fixed smooth Jordan curve σ encircling B and intersecting with l only once at b. We give a negative direction to σ . We denote by (σ) the region bounded by σ . Then $\overline{B} \subset (\sigma)$ and a is an interior point in the arc $l \setminus (\sigma)$. Then consider the subarc τ of l whose initial point is a and the terminal point is a. Thus a is a a conjugate level arc with the positive direction starting from a and ending at a. In general we denote by |a| the length of an arc a measured by the plane metric. For each a is a in the direction of a satisfies a in the direction of a starting from a in the direction of a satisfies a in the direction of a. Finally we consider the arc

(2.4)
$$\gamma_t := \tau + \sigma_t \quad (0 < t < |\sigma|/100).$$

Here 100 in (2.4) has no particular meaning other than suggesting the point c(t) is situated enough close to the point b since we are making $t \downarrow 0$ later.

We will show that γ_t in (2.4) is a supercritical arc if we choose $t \in (0, |\sigma|/100)$ sufficiently small:

(2.5)
$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma_t} \backslash B) > \operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$$

for sufficiently small $t \in (0, |\sigma|/100)$. For simplicity we set

$$(2.6) W_t := W_{\gamma_t} = \hat{\mathbf{C}}_{\gamma_t} \backslash A \cup B = ((\hat{\mathbf{C}} \backslash A) \backslash \gamma_t) \boxtimes_{\gamma_t} ((\hat{\mathbf{C}} \backslash B) \backslash \gamma_t)$$

and also we denote by $u_t := u_{\gamma_t}$, the capacity function on $\hat{\mathbf{C}}_{\gamma_t}$ for $\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma_t} \setminus B)$ so that $u_t \in C(\hat{\mathbf{C}}_{\gamma_t}) \cap H(W_t)$ with $u_t | A = 1$ and $u_t | B = 0$. We also consider an auxiliary surface

(2.7)
$$W_0 := ((\hat{\mathbf{C}} \backslash A \cup B) \backslash \tau) [\times]_{\tau} (\hat{\mathbf{C}} \backslash \tau).$$

We denote by δ_t (δ_{0t} , resp.) the part of W_t (W_0 , resp.) lying over $\sigma'_t = \overline{\sigma \setminus \sigma_t}$, which consists of two copies of σ'_t situated in each of two sheets of $\hat{\mathbf{C}}_{\gamma_t}$ ($\hat{\mathbf{C}}_{\tau}$, resp.). Finally we put $W'_t = W_t \setminus \delta_t$ and observe the following two and, especially the second, crucial relations in our proof:

(2.8)
$$W'_t \subset W'_s \quad (0 < s \le t < |\sigma|/100)$$

and

(2.9)
$$W'_{t} = W_{0} \setminus \delta_{0t} \quad (0 < t < |\sigma|/100).$$

The function u_t , originally defined on W_t so that on W'_t , may also be considered as being defined on $W_0 \setminus \delta_{0t}$ by (2.9) but its boundary values at δ_{0t} must be considered in the sense of Carathéodory, i.e. a single point in δ_{0t} is considered as two boundary elements in the Carathéodory compactification of $W_0 \setminus \delta_{0t}$ (cf. [10]). Let w_t be the function on \mathbf{C}_{τ} such that $w_t \in C(\mathbf{C}_{\tau}) \cap H(W_0 \setminus \delta_{0t})$ with $w_t|A = w_t|B = 0$ and $w_t|\delta_{0t} = 1$. By comparing boundary values we see that $0 \le w_s \le w_t \le 1 \ (0 < s \le t)$ on $W_0 \setminus \delta_{0t}$. Hence $(w_t)_{t \downarrow 0}$ converges to a function $w \in C(\hat{\mathbf{C}}_{\tau} \setminus \{\hat{b}\}) \cap H(W_0 \setminus \{\hat{b}\})$ with $0 \le w \le 1$ on $\hat{\mathbf{C}}_{\tau} \setminus \{\hat{b}\}$ and w|A = w|B = 0 almost uniformly on $\hat{\mathbf{C}}_{\tau} \setminus \{\tilde{b}\}\$, where \tilde{b} is the branch point of $\hat{\mathbf{C}}_{\tau}$ lying over b. By the Riemann removability theorem we see that $w \in H(W_0)$ with boundary values 0 so that w = 0 and a fortiori

$$\lim_{t \downarrow 0} w_t = 0$$

almost uniformly on $\hat{\mathbf{C}}_{\tau} \setminus \{b\}$. Clearly, by comparing the boundary values, we see that

$$|u_t - u_s| \le w_t \quad (0 < s \le t)$$

on $\overline{W}_0 \setminus \delta_{0t}$ and hence on $\hat{\mathbf{C}}_{\tau} \setminus \delta_{0t}$. Therefore, by (2.10), we see that $(u_t)_{t \downarrow 0}$ converges to a function $v \in C(\hat{\mathbf{C}}_{\tau} \setminus \{\tilde{b}\}) \cap H(W_0 \setminus \{\tilde{b}\})$ almost uniformly on $\hat{\mathbf{C}}_{\tau} \setminus \{\tilde{b}\}$ such that v|A=1 and v|B=0 and $0 \le v \le 1$ on $\hat{\mathbb{C}}_{\tau} \setminus \{\tilde{b}\}\$. Again by the Riemann removability theorem, $v \in H(W_0)$ and thus of course $v \in (\hat{\mathbb{C}}_{\tau}) \cap H(W_0)$.

Set $\alpha := A \cap \partial W_0$ and $\beta := B \cap \partial W_0$. Then we also see that $\alpha = A \cap \partial W_t$ and $\beta = B \cap \partial W_t$ for any $0 < t < |\sigma|/100$. We give the positive orientation to α and β with respect to the region W_0 and hence to W_t for every $0 < t < |\sigma|/100$. Since α and β are analytic with $u_t | \alpha = v | \alpha = 1$ and $u_t | \beta = v | \beta = 0$, u_t and v are extendable as uniformly bounded harmonic functions to a fixed vicinity of $\alpha \cup \beta$ and $(u_t)_{t|0}$ converges uniformly to v there. Hence

$$\lim_{t \downarrow 0} *du_t = *dv$$

uniformly on $\alpha \cup \beta$ in the sense that coefficients of $*du_t$ converge uniformly to the corresponding coefficients of *dv in any small parametric disc centered at any point of $\alpha \cup \beta$. Hence in particular we see that

$$\lim_{t \downarrow 0} \int_{\mathbb{R}} *du_t = \int_{\mathbb{R}} *dv.$$

Observe that, by the Stokes formula, we see

$$\operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma_t} \backslash B) = D(u_{\gamma_t}; \hat{\mathbf{C}}_{\gamma_t}) = D(u_{\gamma_t}; \hat{\mathbf{C}}_{\gamma_t} \backslash A \cup B) = \int_{\alpha} *du_{\gamma_t} = \int_{\alpha} *du_{t}.$$

Understanding this time that A and B are contained in the same one sheet $\hat{\mathbf{C}} \setminus \tau$ of $\hat{\mathbf{C}}_{\tau} = (\hat{\mathbf{C}} \setminus \tau) \boxtimes_{\tau} (\hat{\mathbf{C}} \setminus \tau)$ as in the case of W_0 , we compute the capacity $\operatorname{cap}(A, W_0 \cup A)$ of the compact subset A of $\hat{\mathbf{C}}_{\tau}$, considered as $\hat{\mathbf{C}}_{\tau} = [((\hat{\mathbf{C}} \setminus A) \setminus \tau) \boxtimes_{\tau} (\hat{\mathbf{C}} \setminus \tau)] \cup A = W_0 \cup (A \cup B) \supset A$, with respect to the open subset $W_0 \cup A = ((\hat{\mathbf{C}} \setminus B) \setminus \tau) \boxtimes_{\tau} (\hat{\mathbf{C}} \setminus \tau)$ of $\hat{\mathbf{C}}_{\tau}$ containing A. Then, since v is the capacity function for $\operatorname{cap}(A, W_0 \cup A)$, by exactly the same argument as above we see that

$$\operatorname{cap}(A, W_0 \cup A) = D(v; \hat{\mathbf{C}}_{\tau}) = D(v; \hat{\mathbf{C}}_{\tau} \backslash A \cup B) = \int_{\alpha} *dv.$$

Hence by (2.12) we deduce that

(2.13)
$$\lim_{t \downarrow 0} \operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma_t} \backslash B) = \operatorname{cap}(A, W_0 \cup A).$$

Finally we compare $\operatorname{cap}(A,W_0\cup A)$ with $\operatorname{cap}(A,\hat{\mathbb{C}}\backslash B)$. Recall that $W=\hat{\mathbb{C}}\backslash A\cup B$ and u is the capacity function for $\operatorname{cap}(A,\hat{\mathbb{C}}\backslash B)$ so that $u\in C(\overline{W})\cap H(W)$ with $u|\alpha=1$ and $u|\beta=0$, where α and β can also be viewed as being $\alpha=A\cap\partial W$ and $\beta=B\cap\partial W$ with positive directions with respect to W. Thus

$$\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) = D(u; W) = D(u; W \backslash \tau).$$

Viewing $W \setminus \tau$ is a subregion of

$$W_0 = ((\hat{\mathbf{C}} \backslash A \cup B) \backslash \tau) |\times|_{\tau} (\hat{\mathbf{C}} \backslash \tau) = (W \backslash \tau) |\times|_{\tau} (\hat{\mathbf{C}} \backslash \tau) \subset \hat{\mathbf{C}}_{\tau}$$

 $W \setminus \tau$ is a subregion R of $\hat{\mathbf{C}}_{\tau}$ whose relative boundary ∂R consists of α , β , and γ : $\partial R = \alpha + \beta + \gamma$, where γ arises from τ as a smooth Jordan curve positively oriented with respect to R by considering it in the Carathéodory compactification of R. Therefore we have

(2.14)
$$\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) = D(u; W \backslash \tau) = D(u; R).$$

By (2.3) *du = 0 along l and of course along τ so that finally along γ . Restricting v defined on $(W \setminus \tau) \bigotimes_{\tau} (\hat{\mathbf{C}} \setminus \tau) = R \cup \gamma \cup S$ to R, where $S := \hat{\mathbf{C}} \setminus \tau$, we compute the mutual Dirichlet integral D(u - v, u; R) of two functions u - v and u over R by using the Stokes formula as follows:

$$D(u-v,u;R) := \int_{R} d(u-v) \wedge *du = \int_{\alpha+\beta+\nu} (u-v) *du = \int_{\nu} (u-v) *du = 0$$

since *du = 0 along γ . Hence D(u; R) = D(v, u; R) and the Schwarz inequality yields

$$D(u; R)^{2} = D(v, u; R)^{2} \le D(v; R) \cdot D(u; R).$$

Hence we conclude that $D(u; R) \le D(v; R)$ since D(u; R) > 0. On the other hand we see that

$$\begin{split} D(v;R) &= D(v;W \backslash \tau) < D(v;W \backslash \tau) + D(v;\hat{\mathbf{C}} \backslash \tau) \\ &= D(v;W_{\tau}) = D(v;((\hat{\mathbf{C}} \backslash A \cup B) \backslash \tau) \left[\times \right]_{\tau} (\hat{\mathbf{C}} \backslash \tau)) \end{split}$$

The last term of the above is $cap(A, W_0 \cup A)$ so that, by since $D(v; \hat{\mathbf{C}} \setminus \tau) > 0$. (2.14), we obtain

$$\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) < \operatorname{cap}(A, W_0 \cup A).$$

This with (2.13) we finally conclude that

$$\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) < \lim_{t \downarrow 0} \operatorname{cap}(A, \hat{\mathbf{C}}_{\gamma_t} \backslash B)$$

and therefore we see that

$$cap(A, \hat{\mathbf{C}} \backslash B) < cap(A, \hat{\mathbf{C}}_{\nu} \backslash B)$$

for every sufficiently small $t \in (0, |\sigma|/100)$, i.e. γ_t for sufficiently small 0 < t < 1 $|\sigma|/100$ is a supercritical pasting arc for A and B in \mathbb{C} .

REFERENCES

- [1] S. AXLER, P. BOURDON AND W. RAMEY, Harmonic function theory, 2nd ed., Springer, 2001.
- [2] J. HEINONEN, T. KILPELÄINEN AND O. MARTIO, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, 1993.
- [3] M. NAKAI, Types of complete infinitely sheeted planes, Nagoya Math. Jour. 176 (2004), 181-195.
- [4] M. Nakai, Types of pasting arcs in two sheeted spheres, Potential theory in Matsue, to appear in Advanced studies in pure mathematics, 2005.
- [5] M. NAKAI AND S. SEGAWA, A role of the completeness in the type problem for infinitely sheeted planes, Complex Variables 49 (2004), 229-240.
- [6] R. NEVANNLINA, Analytic functions, Springer, 1970.
- [7] B. RODIN AND L. SARIO, Principal functions, Van Nostrand, 1970.
- [8] L. SARIO AND M. NAKAI, Classification theory of Riemann surfaces, Springer, 1970.
- [9] J. L. Schiff, Normal families, Springer, 1993.
- [10] M. TSUJI, Potential theory in modern function theory, Maruzen, 1959.

PROFESSOR EMERITUS AT: DEPARTMENT OF MATHEMATICS NAGOYA INSTITUTE OF TECHNOLOGY Gokiso, Showa, Nagoya 466-8555 Japan

MAILING ADDRESS: 52 EGUCHI, HINAGA Сніта 478-0041

E-mail: nakai@daido-it.ac.jp