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ON AUTOMORPHISM GROUPS OF QUATERNION
KAHLER MANIFOLDS

BY YOSHIYA TAKEMURA

It is a well-known result that the group of isometries /(M) of an n-dimen-

sional Riemannian manifold M is of dimension at most -rrn(n+l). And if

dim/(M)=-7)-w(n+l), then M is isometric to one of the following spaces of

constant curvature: (a) an n-dimensional Euclidean space Rn (b) an n-dimen-
sional sphere Sn (c) an n-dimensional projective space Pn(R)\ (d) an n-dimen-
sional simply connected hyperbolic space. In 1947, Wang [11] showed that the
group of isometries of an n-dimensional Riemannian manifold with n^4 has no

closed subgroup of dimension r for -o-n(n—ΐ)J

Γl<r<-^~n(n-}-l) (See also Yano

[13]). And in 1954, Ishihara [5] proved that in a Kahler manifold M the group
of automorphisms A(M) of a 2m-dimensional Kahler manifold M with m^3, m^4
contains no closed subgroup of dimension r for m2+2<r<w2+2ra—1. On the
other hand, recently, quaternion Kahler manifolds have been studied by several
authors (Alekseevski [1], [2], Gray [4], Ishihara [6], [7] Ishihara and Konishi
[8] and Wolf [12]). The purpose of this paper is to prove for quaternion Kahler
manifolds a theorem stated in the last part of § 5 which is similar to the Wang's
theorem for Riemannian case. If M is a 4w-dimensional quaternion Kahler
manifold, then the maximum dimension of the automorphism group A(M} is
2m2+5m+3, as will be seen in Lemma 2.1. And it is known that if the maximum
dimension of the automorphism group is attained, i. e., the isotropy subgroup is
Sp(m) Sp(ϊ)=Sp(m}xSp(ϊ)/{±l}, then M is isomorphic to one of the following
spaces: (a) a 4m-dimensional Euclidean space Qm; (b) a quaternion projective
space Pm(Q) (c) a quaternion hyperbolic space form [2].

In § 1 and § 2, we recall definitions and some properties of quaternion Kahler
manifolds and its automorphisms. In § 3, we recall some algebraic lemmas for
later use. § 4 and § 5 are devoted to prove our main results which will be stated
in § 5. Manifolds, mappings, tensor fields and other geometric objects we discuss
are assumed to be differentiate and of class C°°.

The author wishes to express his gratitude to Professor S. Ishihara who
gave him valuable suggestions.
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§ 1. Quaternion Kahler manifolds.

Let M be a differentiable manifold of dimension n and assume that there
is a subbundle V of the tensor bundle of type (1.1) over M such that V satisfies
the following condition:

(a) In any coordinate neighborhood U of M, there is a local base {F, G, H}
of V such that

F2--/, G2=-7, H2=-I,

(1.1)
GH=-HG=F, HF=-FH=G, FG=-GF=H.

I denoting the identity tensor field of type (1.1) in M. Such a local base {F, G, #}
is called a canonical local base of the bundle V in £7. Thus the bundle V is
3-dimensional as a vector bundle. Such a bundle F is called an almost quaternion
structure and the pair (M, V} an almost quaternion manifold. An almost quater-
nion manifold is orientable and of dimension n=4m (wx^l) (See [6]).

For an almost quaternion manifold (M, F), the tensor field

(1.2) Λ=F®F+G®G+H®H

of type (2.2) determines in M a global tensor field, which will be denoted also
by Λ (See [6]).

Next, let there be given an almost quaternion structure V in a Riemannian
manifold (M, g} and assume that, for any canonical local base {F, G, H] of F,
all of F, G and H are almost Hermitian with respect to g. Moreover, we suppose
that the set (M,g, F) satisfies the following condition:

(b) If φ is a cross-section of the bundle V, then Vxφ is also a cross-section
of F for any vector field X in M, where V denotes the Riemannian connection
of the Riemannian manifold (M, F). Such a set (M,g, F) is called a quaternion
Kahler manifold and the set {g, V} a quaternion Kahler structure in M.

§ 2. Q-transf ormations and automorphisms.

Let (M, F) be an almost quaternion manifold. If a transformation /: M-^M
leaves the bundle F invariant, then / is called a Q-transformation of (M, F).
Let {F, G, /f} be a canonical local base of F in a coordinate neighborhood F of
M. Moreover let (M,#, F) be a quaternion Kahler manifold. If a transformation
/: M-^M is a ^-transformation of (M, F) and at the same time an isometry of
(M, g\ then / is called an automorphism of (M, g, F). An isometry / of (M, g)
is an automorphism of (M,g, F) if and only if/leaves the tensor field Λ defined
by (1.2) invariant (See [6]).

Let A be the group of all automorphisms of (M,g, F) and AP the isotropy
subgroup for a point P of M, i. e., the subgroup consisting of all automorphisms-
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leaving P fixed. Then, as is well known, A is a Lie group and AP is a closed
subgroup of A. It is easily seen that AP leaves ΛP invariant, where ΛP denotes
the value of A at P. Thus AP is isomorphic to a subgroup of Sp(m) Sp(ϊ)=
Sp(m}xSp(ϊ)/{±l} and hence dim AP^2m2+m+3 is established. On the other
hand, we have 4w=dim M^dim A/AP and hence dim ̂ 4=dim A/AP-}-άim AP^
2m2+5m+3. Thus we have

LEMMA 2.1. Let M be a m-dimensional quaternion Kάhler manifold. Then
the maximum dimension of the group of automorphism is 2m2+5m+3.

§ 3. Algebraic preliminaries.

In the present section, we recall some algebraic lemmas for later use.
Let © be a subalgebra of the Lie algebra ©Ϊ(F) of all linear endomorphisms

of V, where V is a finite dimensional vector space^over R (real number field).
For any ^fe@, we define a linear endomorphism X on the complexification Vc

of V by

X(u+ιv)=Xu+i(Xv) u, VΪΞ V, x"2=-l .

Then the set of all such X's form a linear Lie algebra over R acting on Vc.

We denote this Lie algebra by ©. If © is irreducible (resp. reducible) on V, we

say that © is R-irreducible (resp. R-reducible). If © is irreducible (resp. reducible)
on Vc, we say that © is C-irreducible (resp. C-reducible). The ^-irreducibility
(resp. /?-reducibility) and the C-irreducibility (resp. C-reducibility) of a linear
group is defined in a similar way as above. We here state the following Lemma
3.1 without proof (See Wakakuwa [10]).

LEMMA 3.1. Let © be a subalgebra of ©ί(n, R) acting irreducibly on V=Rn

but reducibly on Vc=Cn. Then n is even. If a proper subspace V± (^{0})cFc

is ^-invariant, then V± is so. In this case, VC=V1+V1 (direct sum), dimcVι=

dimcF^-g- and @ acts on Vλ (resp. V^ irreducibly.

In Lemma 3.1, Vλ denotes the subspace of Vc obtained from VΊ by the con-
jugation σ in Vc, i.e., σ(u+iv)=u— w for any u, v<=V. Let © be a Lie algebra

satisfying conditions of Lemma 3.1, © induces a real linear Lie algebra on VΊ

(resp. Fj, which is denoted by @| V, (resp. ©| FJ. Let {PΓ(α)}α=l,2, - , -- be

a complex basis of Vlt then for any Γe@, XW^=^ΣAaβWca). The complex
a

(-5- χ-^-Ymatrix A=(Aaβ) gives, with respect to the basis {W^cα)}, an endo-

morphism induced by X on VP

1. Since {W^} is a basis of Vlf the matrix X is

of the form (Q J) with respect to {W^, W^}.
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Put TΓ(α)=Mcα)+iv(α), («(«), vc<r)S V) and A==P+iQ, where P, Q are real

(-S-X-S-Vmat rices. Then {wcα), ^Cα)} forms a basis of V and the matrix X is

of the form (Q ~p) with respect to {u^,v^}. The two matrices above are

equivalent, that is,

τ-ιfA Q\r (P —Q\ , , (E iE\1 Co Jϊ)/==(0 p) where HE «?)'
E denoting the identity matrix.

Next, we state some lemmas giving certain properties of ^-irreducible Lie
algebra. The proofs of the following Lemmas 3.2 and 3.3 are stated in [10].

LEMMA 3.2. Let © be an R-irreducible subalgebra of <δD(τx). Then, if © is
C-irreducible, it is semi-simple and, if © is C-reducible, © is semi-simple or ©—
©!+© (direct sum), where ®λ is a semi-simple ideal and (£ is the centre of ©
such that ®={bψ} (b^R, ψ*=-I).

LEMMA 3.3. Let © be an R-irreducible subalgebra of ®l(n : R), then © de-
composes into the form

@=@1+@2 (direct sum)

where ©! and ©2 are ideals of ©. We can regard that ©x is semi-simple. Then,
with respect to a suitable real basis in V, one of the following three cases can
occur:

(1) Any element X of © is, with respect to the direct sum ©=®1+®2 uni-
quely written in the form

X=XχInz+InιχX2 , nλnz=n ,

X denoting the Kronecker product, where each Xτ (i=l, 2) is a real matrix of
degree 7^ and Inι denotes the unit matrix of degree nτ. Each {Xt\X&®} forms
an R-irreducible Lie subalgebra of ©ϊ(nt : R) isomorphic to (^t.

(2) Any element X of © is, with respect to the direct sum ®=®1+®2, uni-
quely written in the form

X=X1Xln2+InιxX2+FnιxZ, n.n^n,

where Fnι is a real fixed matrix of degree nλ such that Fnι

2=—Inι and Z is a
real matrix of degree n2, the other being the same as in (1). In this case, n± is
even and the set {ZJ Z<Ξ©} forms an R-irreducible Lie algebra of the real repre-
sentation of <§>l(ml : C) (n1=^2m1) and is isomorphic to ©α.

(3) Any element Xof® is, with respect to the direct sum ®=®1+®2, uniquely
written in the form

X=X1χIn2+InιxX2+FnιxY+GnιxZ+HnιxW, nιnt=n;
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where Fnv Gnι and Hnι are real βxed matrices of degree nλ such that Fn

2=Gn

2

=Hn

2=-Inv FnιGnι=-GnιFnι=Hnι and Y,Z, W are real matrices of degree n2,
the others being the same as in (2). In this case the set {Zα|Ze©} forms an
R-irreducible subalgebra of the real representation of ®l(/Λ : (?) (quaternion general
linear Lie algebra) (nt— 4/ι), and is isomorphic to ©1Φ

§4. Subgroups of Sp(rri).

We denote by Sp(m) the real representation of the symplectic group. In
this section, we shall prove

PROPOSITION 4.1. Let G be a connected and closed proper subgroup of Sp(m).
If dimG^2m2— 3m-h4 and w^3, then G is R-reducible.

To prove Proposition 4.1, we need the following

LEMMA 4.2. Let G be a proper, connected and closed subgroup of Sp(m).
Assume that G is R-irreducible and dim G^2m2— 3m +4. // we write the Lie

algebra © of G, then © is simple as a complex Lie algebra, where © denotes

Proof. G is naturally considered to be a transformation group of a real
vector space of 4ra-dimension. Since GcSXm)cS0(4m), (®C©}>(m)c©O(4m)),
we see from Lemma 3.2 that G is semi-simple or ©— ©j-f-® (direct sum), ©i
being a semi-simple ideal where @ is the center of © and has the form 6=
{bφ\b^R} (φ2=—ΐ). Since ®c©tfm), there exist φ' and φ" in <δD(4m) such
that φ' and φ" are commutative with any element of ©p(#0 and φ/2=ψfr2=—lt

ψφ/——φ'φ=:φ''. Taking an arbitrary element bφ of C, we get (bφ)φf =φ' (bψ)
~—bφφ', because bφ belongs to @})(m). Thus 6=0, i.e., @= {0} which means
that © is semi-simple. Here, for convenience, we consider the following two
cases: (a) © is not simple; (b) © is simple.

Case (a). Let G be not simple. Then © can be written as the direct sum
of two semi-simple ideals, i.e., ©=®1+©a. Putting dim &i=rτ (z'=l,2), we can
assume r^r2 without loss of generality. Since dim@=r— ri+r2^2m2— 3m+4,
we get r1^(2m2— 3m+4)/2. If ©t consists of (mtXmt)-matrices, taking accounts
of case (3) of Lemma 3.3, we have m1m2=4m (m^2, m2^2). So we get ml>ml/2
and hence

(4.1)

On the other hand, taking account of Lemma 3.3 and ®C@Km), we get

©iC© -̂̂ ), from which r^2(-^L)2+^-=(m1

2+2m1)/8. It contradicts the

inequality (4.1). Therefore © is necessarily simple.

Case (b). Let © be simple. We denote Vl and Vl the ©-invariant subspaces

of Vc, which appeared in Lemma 3.1. The ^-irreducibility of G implies that ©
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acts irreducibly on V l f If we assume that © is not simple as a complex Lie

algebra, then © can be written in the form ©— 4>ι+4>2, where & is simple.
Since ©C©p(w), by the same way as in the case (a), we can conclude

and Φ a C Θ - - , where €>* (i=l,2) consists of (m.xmj-matrices.

In our case m1m2=2m and mα^2, m2^2. So, we get m^m and m2^m, from
which

, . ON j /& o/ mi Λ 2 . Wl i O/ ^2 λ2

(4.2) dιmc ©=2(^-2^ +~2^ \ ~ 2 /

This inequality contradicts the assumption

dimc ®^2w2-3w+4 ,

Therefore © is necessarily simple.

Proo/ of Proposition 4.1. First we assume that G is ^-irreducible. By

means of Lemma 4.2, the Lie algebra © is simple and acting on a 2m-dimensional
complex vector space. We now take account of a theorem due to E. Cartan,
in which simple complex linear Lie algebras are classified. (See E. Cartan [3]).

In Cartan's classification, we have to consider only the cases in which © is
acting on a complex vector space of even dimension 2m. If we suppose that

© is special linear or that © is symplectic, then dimc ©=4w2— 1 or dimc ©=
2m2 +m, respectively. However, since G is a proper subgroup of Sp(m), we have

dimc©<2w2+m. Therefore © can not be special linear or sympletic. Next, we

assume that © is orthogonal. Then © is the Lie algebra of all matrices of the
type

(A+iB -C+iD\
\C-iD

where A,B,C and D are real (mxm)-matrices, from which we find,

1A=-A, *£=-£, 1C=C, *D=D.

Thus

which contradicts the assumption that dim G^2m2— 3m+4.
Among the exceptional cases, we have to consider only the case 2m— 26, the

case 2ra=56 and the case 2m=248. In these three cases, we have dimc ©—52

for 2w=26, dimc©=133 for 2m=56 and dimc ©^248 for 2w=248, respectively.
On the other hand, we have /(ra)=:2w2-3m+4=303 for 2ra=26, /(w)=1488 for
2m=56 and /(ra)=30384 for 2m=:248. Therefore, because of the assumption that

dimG>/(m), i.e., dimc©>/(m), we can conclude that the exceptional cases can
not occur in our problem. Summing up, all the cases appearing in Cartan's
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classification excluded for our problem. Consequently, there is no closed proper
subgroup G of Sp(m) which is ^-irreducible in V, if dim GΞ>2m2— 3m+4 and
m^3. Therefore, G is necessarily 7?-reducible. This proves Proposition 4.1.

Next, using Proposition 4.1, we can easily prove the following.

PROPOSITION 4.3. An in Proposition 4.1, if m^3 and dim G^2m2— 3m+4,
then G is conjugate to the group of matrices of the form

where + means the direct sum of matrices.

As a corollary to Proposition 4.3, we have

LEMMA 4.4. Let © be a proper subalgebra of the Lie algebra

(direct sum) of Sp(m) Sp(ϊ), satisfying dim@>2w2-3m+7. // m^3, then πλ(G)
), where πl is the projection ©p(w)+©p(l) to the <&%(m)-part.

Proof. We denote by π2 the projection to the ©p(l)-part. Then putting

<&'=π$ and R'=π2®, we obtain

dim ©'^dim ©-dim IT >2w2-3w+7-3=2w2-3m+4 .

Thus, using Proposition 4.3, we get ®'=€>})(m), which proves Lemma 4.4.

§5. The main theorem.

First we prove the following

PROPOSITION 5.1. Let M be a ^m-dimensιonaί quaternion Kdhler manifold
and G be a proper closed subgroup in the group of automorphisms of M satisfying
2w2-f-ra+7<dim G<2m2-j-5ra+3. Then the isotropy subgroup GP of G at any
point P is conjugate to Sp(m) l or Sp(ιri) K, K being a ^.-dimensional subgroup
of Sp(ΐ).

Proof. The isotropy group GP is a subgroup of Sp(m) Sp(ϊ). Then denoting
by ©p the Lie algebra of GP, we have ©pC©p(ra)+©p(l). Using Lemma 4.4,
we see that πI®P=<&$(m) and that πz®P= {0} or $ (a certain 1-dimensional sub-
algebra of €φ(l)) If we assume that π2($P={Q}, then we have obviously GP=
Sp(m) l. Next, if we assume that π2®P=®, then we see that ξ>=π2~

1(Q) is an
ideal of ®P and so π& is an ideal of @p(m). Thus, since ©p(m) is simple, we
find 7Γι€>={0} or &$(m) when ^2©^=$.

In the case where τr2©F=^ and ^$={0}, we have C^ίO}, because we put
)̂— τr2~

1(0), which means that π2 is an isomorphism. Since $ is 1-dimensional,
this fact contradicts the assumption for the dimension. In the case where
π2($P=® and ^&=<5>$(m), we have ®P=®$(m)+R. In fact, πlξ>=^(m) and
^=πa-

1(0) implies £={(*, 0)|*e@}>(m)}. Thus ®P contains subalgebra {(X,Q)\X
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and similarly ©/» contains subalgebra {(0, X)\X^®}. Consequently,
)-f^, which means that GP—Sp(m) K. Summing up, GP is conjugate

to Sp(m)Λ or Sp(m) K, which proves Proposition 5.1.

Using Proposition 5.1, we have

THEOREM. Let M be a km-dimensional (m^3) quaternion Kάhler manifold.
Then the group of automorphisms of M contains no proper closed subgroup of
dimension r for 2m2+m+7<r<2m2+5m.

Proof. Let G be a closed subgroup of the group of automorphisms of M
such that dim G—r and GP denote the isotropy subgroup at PeM. Then, GP is
a subgroup of Sp(m) Sp(ϊ). Suppose r>2m2+m+7, then dimGP^dim G— dimM
>2w2+m-}-7-4m = 2m2-3m+7. Thus, by Proposition 5.1, GP = Sp(m^Sp(ΐ)f

Sp(m)-K (άimK=ΐ) or Sp(m) l.
Now we shall show that G is transitive on M. If Q and R are two points

of M which can be joined by a geodesic. Let P be the midpoint of this geodesic
segment and Z be the vector tangent to this geodesic at P. Then there is a
transformation / belonging to GP such that /*(Z)= — Z for any tangent vector
Z at P, because GP is, in our case, conjugate to one of Sp(m) Sp(ΐ), Sp(m)>K
and Sp(m)Λ. So, we have obviously f(Q)=R and f(R)=Q. If we take arbitrary
two points A and B in M, then we can join them by a finite number of geodesic
segments and apply the arguments above to each of these geodesic segments.
In this way, we see that there is an element of G which sends A into B. This
fact means that G is transitive.

Since G is transitive on M, we have dim G=dim M+dim GP^4m+2m2+m=
2m2+5m, which contradicts the assumption that dim G<2ra2+5ra. Thus the
theorem is completely proved.
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