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SQUARE INTEGRABLE DIFFERENTIALS

ON RIEMANN SURFACES

BY CARL DAVID MINDA

1. Introduction. Suppose R is a Riemann surface and Γ(R) is the Hubert
space of square integrable first-order differential forms on R. A rather complete
account of Γ(R) is given in [2, Chapter V] the notation and basic results
developed in [2] will be employed freely without further mention. The subspace
of semiexact differentials was generally neglected until it was employed in the
study of the Hubert space isomorphism /* : Γ(R')-^>Γ(R) induced by a quasi-
conformal homeomorphism /: R-+R' of Riemann surfaces [6]. Further evidence
of the usefulness of this subspace and its orthogonal complement are presented.
First, the relationship between semiexact differentials and dividing cycles is
explored. Then several tests for degeneracy in the classification theory of
Riemann surfaces are derived. The use of the subspace of semiexact differentials
and their orthogonal complement enables us to obtain a complete parallelism
between the important subspaces of Γ(R) and those of Γh(R\ the subspace of
harmonic differentials.

2. Semiexact differentials and orthogonal decompositions. To begin with,
let us recall a few basic facts from [6, § 1].

DEFINITION. Let R be a Riemann surface, (i) Γ1

M(R)=ίω^Γ1(R): ί ω= 0
L J d

for all dividing cycles d on Rj . Γse(R\ the subspace of semiexact differentials,

is the closure of Γ\e(R) in the Hubert space Γ(R). (ii) Γcoe(R) is the closure of
) in Γ(R).

The subspaces Γse(R} and Γfoe(R) are orthogonal complements in Γ(R) that
is, Γ(R}=ΓseφΓfoe(R}=Γfe(R)®Γcoe(R). Moreover, the following identities are
valid.

(1)
(2)
(3)
(4)

All of these results will be employed later.

Received May 27, 1974.

308



SQUARE INTEGRABLE DIFFERENTIALS 309

The definition of semiexact differentials reveals their close connection with
dividing cycles. The elements of Γ\e(R) are characterized by their periods over
dividing cycles; an analogous description of the differentials in Γse(R) is given
below. For a similar characterization of other classes of differential forms by
their periods see ([3], [4]). Recall that a statement is said to hold for almost
all curves in a family F if the subfamily Ff for which the statement is false
has infinite extremal length; that is, λ(F')=oo.

THEOREM 1. Let ω^Γ(R). A necessary and sufficient condition for ωe

Γ se(R) is that \ ω=Q for almost all dividing cycles d.
J d

Proof. First, suppose that ω^Γse and let (βOw=o be a sequence in Γ\e with
|]ω— <wn||-*0. Set pn(z)\dz\~\ωn— ω|, then ρn(z)\dz\ is a linear density on R and

A(pn) = H pl(z)dxdy=\\ωn—ω\\-+Q. By Fuglede's lemma ([3], [8, Lemma 2B, p.
J J R

128]) these is a subsequence (ωnj)7=o such that for almost all dividing cycles d

Thus, ω^liml ωn =0 for almost all dividing cycles d because ωn^Γ\e implies
Jd Jd 3 J

that ί ωn =0.
J d 3

Conversely, suppose that I ω— 0 for almost all dividing cycles d. Since
•> d

every bounding cycle is a dividing cycle, I ω~0 for almost all cycles d homo-
•* d

logous to zero. Therefore, ω^Γc(R] [3]. Now, from equation (2), Γc=Γse@Γ%m

so (o=ω8e+*ωjLm where ωse<^Γse, ωhm<^Γhm. The first portion of the proof shows

that f ωse=Q for almost all dividing cycles d. Consequently, f *ωΛm— 0 for almost
J d J d

all dividing cycles d. But this means that ( *ωΛm— 0 for all dividing cycles d
J d

because each homology class has finite extremal length and *ωΛmeJΓft. Hence,
*ωhm(ΞΓhse. Since Γh=Γhse®Γ%m, it follows that *ωΛm=0 and ω=ωse^Γse.

This shows that semiexact differentials are characterized by their periods
over dividing cycles. On the other hand, dividing cycles are typified by the fact
that every ω^Γ\e has zero period over each of them.

THEOREM 2. Let d denote a cycle, d is a dividing cycle if and only if

f ω=0 for all ω^Γ\e(R}.
J d

Proof. The necessity follows from the definition of Γ\e. Conversely, suppose

that f ω— 0 for all α)e.ΓJe. This also holds for all ω^Γl

coaΓ\e and this impliesJ a
that d is weakly homologous to zero [7, Satz III. 14, p. 92]. A finite cycle is
weakly homologous to zero if and only if it is dividing [2, Theorem 32C, p. 73].
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3. Classification results. The following inclusion diagrams will be helpful
in this section.

Γe(R)

ΓC(R) =>Γse(R) Γco(R) Π Γβ(R)

^Γh(R) IDΓ^CR) Γ*,(R) nΓhe(R) DIWR) => (O)

°
Observe the similarity between these two inclusion relationships. The second

Is obtained by intersecting each subspace in the first with Γh(R) on the other
hand, the first may be derived by taking the direct sum of each term in the
second with Γeo(R). Without the subspaces Γse(R) and Γcoe(R) this parallelism
is absent.

Let OHD, OKD, OHM denote the class of Riemann surfaces R for which Γhe(R)
=(0), Γ%se(R)r\Γhe(R)=(Q), Γhm(R)=(fy respectively. Riemann surfaces in these
classes exhibit certain types of degeneracy. Knowledge that certain of the in-
clusions in the above diagrams are not proper will enable us to assert that the
surface belongs to one of these classes. The following classification theorem is
well known [2, Theorem 11G, p. 287] it is stated for completeness because it
is the prototype for the other theorems in this section.

THEOREM 3. The following conditions on a Riemann surface R are equi-
valent:

(i) R^OHD.
(iO Γe(R)=Γeo(R\
(ii) Γh(R)=Γho(R).

(ii7) ΓC(R)=ΓCO(R\

It is possible to derive analogous theorems for OKD and 0HM. The class
OHM has not been studied extensively.

Observe that the conditions (ii) and (ii') above are clearly equivalent because
the subspaces in each are corresponding terms in the two inclusion diagrams.
A similar comment applies to (i) and (V). In other words, whenever two sub-
spaces in one diagram coincide, then the corresponding subspaces in the other
are identical. We shall make use of this observation by omitting the proof of
obvious equivalences in the following.
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THEOREM 4. The following conditions on a Riemann surface R are equi-
valent:

(i) R^OKD.
(ii) Γhe(R)=Γhm(R\

an re(R)=rcoe(R).
(iii) ΓΛo(R)=ΓJuβ(R).

(iiiO Γco(R)=Γse(R\

Proof, (i)φφ(ii). This is a simple consequence of the orthogonal decom-
position ΓΛβ=ΓΛm0(ΓjknΓAβ).

). This is evident from Γhe®Γt0=Γh=Γhm@Γte.

The equivalence of (i) and (iiO is essentially due to Roy den [9, p. 54].

THEOREM 5. The following conditions on a Riemann surface R are equi-
valent:

(i) RtΞθHM.
GO Γeo(R}=Γcoe(R\
(ii) Γh(R}=Γhse(R\

(iiO Γe(R)=Γ,β(R).
(iii) ΓΛβ(R)=

(iiiO Γe(R)=

Proof, (i)φ^(ii). This is due to the decomposition Γh=Γ%m@Γhse.
(i)^(iii). Observe that ΓΛe=ΓΛm0(Γ*en/\e).

The decomposition Γhe(R}=Γhm(R)®(ΓtSe(R}r\Γhe(R}} shows that #eOOT if
and only if R^OHMr\0KD. Therefore, Theorem 3 may be derived easily from
Theorems 4 and 5. For other characterizations of OHM see ([5], [8, Theorem 1C,
p. 202]). There is a similar result to determine whether a Riemann surface is
planar.

THEOREM 6. The following conditions on a Riemann surface R are equi-
valent:

(i) R is planar.
(ϋ) Γhse(R}=Γhe(R\

(iiO Γse(R}=Γe(R}.
(iii) ΓΛo(R)=Γhn(R).

(iiiO Γco(R)=Γcoe(R\
(iv)

(ivO

Proof. (i)<=>(ii). If 7? is planar, then every cycle is dividing so Γhe—Γhse.

Conversely, suppose that Γhe=Γhse, then Γl

e=Γ\e. Therefore, | ω— 0 for all
J d

ω<^Γl=Γle, where d is any cycle. Theorem 2 guarantees that every cycle on
R is dividing so that R is planar.
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(ii)^(iii). This is evident from Γt

(ii)<=>(iv). Notice that Γhse=Γhe®(Γhser\Γ%0) follows immediately from Γh=
Γ /TN T*

jιe\Σ/ * ho

As the final result of this type we determine a condition under which

Γhm(R)=Γho(R)r\Γhe(R\ In general, Γhm(R) is a proper subspace of Γho(R)r\
Γhe(R) the equality of the two subspaces is equivalent to the validity of the
special bilinear relation on R [1]. Clearly, this holds if and only if Γcoe(R)=
Γco(R)r\Γe(R) and Γcoe(R) is typically a proper subspace of Γco(R)r\Γe(R\
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