SCHWARZ'S LEMMA IN H_p SPACES

By Shōji Kobayashi

§ 1. Introduction.

Let R be a Riemann surface and let $t \in R$ be any fixed point. For $0 , let <math>H_p(R)$ denote the class of all functions f analytic on R for which the subharmonic function $|f|^p$ has a harmonic majorant. We put for any $f \in H_p(R)$

(1)
$$||f||_p = (u(t))^{1/p}$$
,

where u is the least harmonic majorant of $|f|^p$ on R. Then, for $1 \le p < \infty$, $H_p(R)$ is a Banach space with the norm $\| \|_p$, and for $0 , <math>H_p(R)$ is not a Banach space but a Fréchet space with the metric $d(\cdot, \cdot)$ defined by $d(f, g) = \|f-g\|_p^p$ $(f, g \in H_p(R))$. Although the "norm" $\| \|_p$ defined by (1) depends on the choice of t, the induced topology does not ([11]). Let $H_\infty(R)$ be the Banach algebra of all functions which are analytic and bounded on R, with the uniform norm $\| \|_\infty$. These H_p spaces, which generalize the classical Hardy classes in the unit disc, were introduced by Parreau [10] and independently by Rudin [11].

In this paper we are concerned with the problem of maximizing |f'(t)| under the restrictions $f \in H_p(R)$, f(t) = 0 and $||f||_p \le 1$. Let H_p^0 denote the class which consists of all $f \in H_p(R)$ such that f(t) = 0 and $||f||_p \le 1$. We put for 0

$$\alpha_p = \sup_{f \in H_p^0} |f'(t)|.$$

We shall investigate some properties of α_p as a function of p on $(0, \infty]$. It is easily shown by the normal family argument that there exists a function $f \in H_p^0$ for which $f'(t) = \alpha_p$. Such a function is called an extremal function for H_p^0 and denoted by f_p . If $1 , then the uniform convexity of <math>H_p(R)$ implies that f_p is unique for any Riemann surface. It is well known that for any plane region there is a unique extremal function f_∞ for H_∞^0 ([5]). In this paper we shall also investigate the convergence of f_p as p approaches to some p_0 with $1 < p_0 \le \infty$. In Section 5, we shall consider another extremal problem similar to the above one.

I would like to express my deep gratitude to Professor N. Suita for his constant encouragement and helpful suggestions.

Received May 4, 1974.

§ 2. Some lemmas on L_p .

We begin with three lemmas on L_p spaces. Lemma 1 is easily proved by applying Holder's inequality, and Lemma 2 by Fatou's lemma. Lemma 3, which is a generalization of Clarkson's result, is proved by the same method as his ([2], p. 403).

LEMMA 1. Let $(X, d\mu)$ be a measure space with total mass 1. If $0 < r < s \le \infty$ and $f \in L_s(d\mu)$, then $f \in L_r(d\mu)$ and

$$||f||_{r} \leq ||f||_{s}.$$

Equality holds in (2) if and only if |f| = const. a. e. on X.

LEMMA 2. Let $(X, d\mu)$ be a measure space with total mass 1, and let $0 . If <math>f \in L_q(d\mu)$ for all q < p, then

(3)
$$||f||_p = \lim_{q \uparrow p} ||f||_q.$$

In the case that $f \in L_p(d\mu)$, the left side of (3) should be interpreted as $+\infty$.

LEMMA 3. Let $(X, d\mu)$ be a measure space and let $1 < a < b < \infty$. Then, for any positive number ε , there exists a positive number δ such that if $a \le p \le b$, $f, g \in L_p(d\mu)$, $||f||_p$, $||g||_p \le 1$ and $||1/2(f+g)||_p \ge 1 - \delta$, then $||f-g||_p < \varepsilon$.

Remark. Since we can regard $H_p(R)$ as a subspace of $L_p(C, (1/2\pi)d\theta)$, where C is the unit circle and $(1/2\pi)d\theta$ is the normalized Lebesgue measure on C ([11], p. 51), the above three lemmas are also valid for $H_p(R)$.

§ 3. Continuity of α_p and convergence of f_p .

THEOREM 1. α_p is nonincreasing and left-continuous on $(0, \infty]$.

We need a lemma.

LEMMA 4. Let $0 and <math>g_k \in H_p(R)$ for $k=1,2,\cdots$. If g_k converges to some g uniformly on every compact subset of R, then

$$||g||_p \leq \lim_{k \to \infty} ||g_k||_p.$$

In the case that $g \in H_p(R)$, the left side of (4) should be interpreted as $+\infty$.

Proof. Let $\{R_m\}$ be a regular exhaustion of R such that $t \in R_1$. Let μ_m denote the harmonic measure for t on the boundary ∂R_m of R_m . It is known that for 0 and for any function <math>f analytic on R

(5)
$$||f||_{p} = \lim_{m \to \infty} \left(\int_{\partial R_{m}} |f|^{p} d\mu_{m} \right)^{1/p},$$

where the sequence of the right side is nondecreasing in m and the limit does not depend on the choice of $\{R_m\}$. In the case that $f \in H_p(R)$, the left side of (5) should be interpreted as $+\infty$ ([10], p. 137).

If $p < \infty$, then we see by (5)

$$\begin{split} \|g\|_{p} &= \lim_{m \to \infty} \left(\int_{\partial R_{m}} |g|^{p} d\mu_{m} \right)^{1/p} \\ &= \lim_{m \to \infty} \lim_{k \to \infty} \left(\int_{\partial R_{m}} |g_{k}|^{p} d\mu_{m} \right)^{1/p} \\ &\leq \lim_{k \to \infty} \|g_{k}\|_{p} \,. \end{split}$$

If $p=\infty$, then the assertion of the lemma is almost trivial.

Proof of Theorem 1. It is evident from Lemma 1 that α_p is nonincreasing on $(0,\infty]$. Let $p_0 \in (0,\infty]$. Since $\{f_p; c forms a normal family, where <math>0 < c < p_0$, we can choose a sequence $\{p_k\}$ which converges increasingly to p_0 so that f_{p_k} converges to some g uniformly on every compact subset of R as $k \to \infty$. It is easily shown that g(t) = 0 and $g'(t) \ge \alpha_{p_0}$. By Lemma 4, we see

$$\|g\|_p{\le} {\varinjlim_{k \to \infty}} \|f_{p_k}\|_p{\le} {\varinjlim_{k \to \infty}} \|f_{p_k}\|_{p_k}{=} 1$$
 ,

for any $p < p_0$. Then, by Lemma 2, we see that $g \in H^0_{p_0}$, and hence g is an extremal function for $H^0_{p_0}$ and $\lim_{p \uparrow p_0} \alpha_p = \alpha_{p_0}$.

COROLLARY 1. If $1 < p_0 < \infty$, then f_p converges to f_{p_0} uniformly on every compact subset of R as $p \uparrow p_0$.

Theorem 2. If
$$1 < p_0 < \infty$$
, then $\lim_{p \uparrow p_0} ||f_p - f_{p_0}||_p = 0$.

Proof. Let $a=1/2(p_0+1)$ and $b=p_0$. Let ε be any positive number. Applying Lemma 3, we can find a positive number δ such that if $a \le p \le b$, $f, g \in H_p(R)$, $\|f\|_p$, $\|g\|_p \le 1$ and $\|1/2(f+g)\|_p \ge 1-\delta$, then $\|f-g\|_p < \varepsilon$. Since f_p converges to f_{p_0} uniformly on every compact subset of R as $p \uparrow p_0$ by Corollary 1, we see by (5) and Fatou's lemma

$$\begin{split} \lim_{p \, \uparrow \, p_0} & \left\| \frac{1}{2} (f_p + f_{p_0}) \right\|_p \geq \lim_{p \, \uparrow \, p_0} \left(\int_{\partial R_m} \left| \frac{1}{2} (f_p + f_{p_0}) \right|^p d\mu_m \right)^{1/p} \\ & \geq \left(\int_{\partial R_m} |f_{p_0}|^{p_0} d\mu_m \right)^{1/p_0}, \end{split}$$

for any m. Letting $m \rightarrow \infty$, we have

$$\underline{\lim_{p \, \uparrow \, p_0}} \Big\| \underline{\frac{1}{2}} (f_p + f_{p_0}) \Big\|_p \! \ge \! \|f_{p_0}\|_{p_0} \! = \! 1 \; .$$

Therefore we can find p_1 such that $||1/2(f_p+f_{p_0})||_p \ge 1-\delta$ for $p_1 \le p < p_0$. Thus we have $||f_p-f_{p_0}||_p < \varepsilon$.

THEOREM 3. If $1 < p_0 < \infty$, then the following conditions are equivalent:

- (a) α_p is continuous at p_0 .
- (b) $\lim_{p\downarrow p_0} ||f_p f_{p_0}||_{p_0} = 0.$

Proof. Suppose that (a) holds. Since $\{f_p; p>p_0\}$ forms a normal family, we can find a sequence $\{p_k\}$ which converges decreasingly to p_0 so that f_{p_k} converges to some g uniformly on every compact subset of R. Applying Lemma 1 and 4, we see $\|g\|_{p_0} \le 1$. Since α_p is continuous at p_0 , we see $g'(t) = \alpha_{p_0}$. Then the uniqueness of f_{p_0} implies that $g = f_{p_0}$ and that f_p converges to f_{p_0} uniformly on every compact subset of R as $p \downarrow p_0$. Applying Lemma 4, we see

$$\lim_{\frac{p_1+p_0}{p_1+p_0}} \left\| \frac{1}{2} (f_p + f_{p_0}) \right\|_{p_0} \ge \|f_{p_0}\|_{p_0} = 1 ,$$

and hence the uniform convexity of $H_{p_0}(R)$ implies (b).

Next we assume that (b) holds. Then we see

$$\lim_{p \downarrow p_0} \alpha_p = \lim_{p \downarrow p_0} f'_p(t) = f'_{p_0}(t) = \alpha_{p_0}.$$

THEOREM 4. Let $0 < p_0 < \infty$. If $H_p(R)$ is dense in $H_{p_0}(R)$ for some p with $p_0 , then <math>\alpha_p$ is continuous at p_0 .

Proof. Let $\{g_k\}$ be a sequence of functions in $H_p(R)$ such that $\lim_{k\to\infty} \|g_k - f_{p_0}\|_{p_0} = 0$. Since $\alpha_r \ge |g_k'(t)| / \|g_k - g_k(t)\|_r$ for any r with $p_0 < r \le p$, we see

$$\lim_{r \downarrow p_0} \alpha_r \ge \lim_{r \downarrow p_0} |g_k'(t)| / ||g_k - g_k(t)||_r = |g_k'(t)| / ||g_k - g_k(t)||_{p_0},$$

for any k. Letting $k\to\infty$, we have $\lim_{r\to p_0} \alpha_r \ge \alpha_{p_0}$.

COROLLARY 2. If D is a regular region (i.e. D is bounded by a finite number of disjoint analytic simple closed curves) in the extended complex plane, then α_p is continuous on $(0, \infty]$.

Proof. By Lemma 3.4 of Rudin's paper ([11], p. 57), $H_{\infty}(D)$ is dense in $H_{p}(D)$ for any $p \in (0, \infty]$.

Remark. It is known that for 0

$$O_p \subseteq \bigcap_{q>p} O_q$$
,

where O_p denotes the class of all Riemann surfaces R for which $H_p(R)$ contains no functions but the constants ([7], p. 34). Therefore we see that there is a Riemann surface for which α_p is not necessarily continuous.

THEOREM 5. If D is a regular region in the extended complex plane, then $\lim \|f_r - f_{\infty}\|_p = 0$ for any p with 0 .

Proof. Since f_{∞} is analytic on \overline{D} and $|f_{\infty}|=1$ on ∂D ([1], [5], [6]), we see

that $\|f_{\infty}\|_p=1$ for $0< p<\infty$. Then, applying Lemma 1 and 4, we have $\lim_{r\to\infty}\|f_r\|_p=1$ for $0< p<\infty$. Since we may assume $1< p<\infty$, the uniform convexity of $H_p(D)$ implies $\lim_{r\to\infty}\|f_r-f_{\infty}\|_p=0$.

Remark. We do not know whether Theorem 5 is valid or not for general regions.

§ 4. Condition for $\alpha_1 = \alpha_{\infty}$.

THEOREM 6. If there are r and s such that $0 < r < s \le \infty$ and $\alpha_r = \alpha_s$, then $\alpha_r = \alpha_\infty$.

Proof. Since $f_s \in H_r^0$ by Lemma 1, we see

$$\alpha_s = \alpha_r \ge f_s'(t) = \alpha_s$$
.

Thus, again by Lemma 1, we have $f_s \in H^0_{\infty}$, and hence $\alpha_r = \alpha_{\infty}$.

THEOREM 7. Let $1 . If <math>H_p(R)$ is dense in $H_1(R)$ and if $\alpha_p = \alpha_r$ for some r with $p < r \le \infty$, then $\alpha_1 = \alpha_\infty$.

Proof. We can regard $H_p(R)$ as a subspace of $L_p(C,(1/2\pi)d\theta)$ as we stated in the remark after Lemma 3. By Hahn-Banach theorem and the conjugate relation between L_p and L_q , where 1/p+1/q=1, we can find a function $g\in L_q(C,(1/2\pi)d\theta)$ such that $\|g\|_q=\alpha_p$ and

$$f'(t) = \frac{1}{2\pi} \int_C f(e^{i\theta}) g(e^{i\theta}) d\theta$$

for any $f \in H_p^0$. Applying Lemma 1, we see that $|g| = \alpha_p$ a.e. on C. Since there are $g_k \in H_p(R)$, $k=1,2,\cdots$, such that $\lim_{n \to \infty} \|g_k - f_1\|_1 = 0$,

$$\alpha_1 = f_1'(t) = \lim_{k \to \infty} g_k'(t) = \lim_{k \to \infty} \frac{1}{2\pi} \int_{\mathcal{C}} g_k(e^{i\theta}) g(e^{i\theta}) d\theta$$

$$\leq \lim_{k \to \infty} \alpha_p \|g_k\|_1 = \alpha_p.$$

Hence, by Theorem 6, we obtain $\alpha_1 = \alpha_{\infty}$.

COROLLARY 3. Let D be a regular region in the extended complex plane. If there are r and s such that $0 < r < s \le \infty$ and $\alpha_r = \alpha_s$, then $\alpha_1 = \alpha_{\infty}$.

Remark. It is known that for 0

$$\bigcup_{q < p} O_q \subseteq O_p$$
 ,

where O_p is as we stated in the remark after Theorem 4 ([7], p. 34). Then we see that there is a Riemann surface for which $\alpha_r=0$ if $p \le r \le \infty$ but $\alpha_r>0$ if 0 < r < p.

§ 5. Another extremal problem.

In this section we consider a similar extremal problem without the restriction f(t)=0, that is, consider the problem of maximizing |f'(t)| under the restrictions $f \in H_p(R)$ and $||f||_p \le 1$. Let H_p^1 denote the unit ball of $H_p(R)$, and we put

$$\beta_p = \sup_{f \in H_p^1} |f'(t)|$$

for $0 . A function <math>f \in H_p^1$ for which $f'(t) = \beta_p$ (such a function always exists) is called an extremal function for H_p^1 . It is evident that $\alpha_p \le \beta_p$ for $0 , and it is well known that <math>\alpha_\infty = \beta_\infty$ ([1]).

We can prove by a similar way the same propositions for this extremal problem as all the theorems and the corollaries before mentioned.

LEMMA 5. $\alpha_2 = \beta_2$.

Proof. Let f be the extremal function for H_2^1 , and we put g(z)=f(z)-c, where c=f(t). Then we see by (5)

$$\begin{split} \|g\|_{2}^{2} &= \lim_{m \to \infty} \int_{\partial R_{m}} |g|^{2} d\mu_{m} \\ &= \lim_{m \to \infty} \int_{\partial R_{m}} (|f|^{2} - \bar{c}f - c\bar{f} + |c|^{2}) d\mu_{m} \\ &= \|f\|_{2}^{2} - |c|^{2} \leq 1 , \end{split}$$

and hence $\alpha_2 = \beta_2$.

Combining Corollary 3, $\alpha_{\infty} = \beta_{\infty}$ and Lemma 5, we have the following theorem:

THEOREM 8. Let D be a regular region in the extended complex plane. Then the following conditions are equivalent:

- (a) $\alpha_1 = \alpha_{\infty}$.
- (b) There are r and s such that $0 < r < s \le \infty$ and $\alpha_r = \alpha_s$.
- (c) $\beta_1 = \beta_{\infty}$.
- (d) There are r and s such that $0 < r < s \le \infty$ and $\beta_r = \beta_s$.

Remark. By Rudin's result ([11], p. 63), the conditions of Theorem 8 are also equivalent to the following condition:

(e) The critical points of Green's function G(z,t) for D, with pole at t, coincide, including multiplicity, with the zeros of f_{∞} except t.

He also showed that for any ring domain D there is a point $t \in D$ for which $\alpha_1 = \alpha_{\infty}$. And he posed a problem whether there is such a point, if the connectivity of D is greater than 2 ([11], p. 64). The following example, which was given by the author and Suita [9], partially presents an affirmative answer to the problem.

Example. Let k be any positive integer and let

$$E_i = \{z; |z - e^{i(2\pi j/k)}| \leq \varepsilon\},$$

for $j=0,1,\cdots,k-1$, where ε is such a small positive number that E_j are pairwise disjoint. Let D be the domain obtained by removing $\bigcup_{j=0}^{k-1} E_j$ from the extended complex plane, and let t=0. Then it is easily shown, by the symmetry of D and the uniqueness of G(z,0) and f_{∞} , that both the critical points of G(z,0) and the zeros of f_{∞} except 0 are placed at ∞ with multiplicity k-1. Therefore the condition (e) in the previous remark is satisfied, and hence $\alpha_1=\alpha_{\infty}$.

§ 6. Simply-connected region.

Theorem 9. Suppose that R is a simply-connected hyperbolic Riemann surface, then

- (i) α_p is constant on $(0, \infty]$;
- (ii) f_p is unique and the same for 0 .

Proof. Since the problem is conformally invariant, we may assume that R=U and t=0. It is easily shown by Cauchy's integral formula that $\alpha_p=1$ and $f_p(z)=z$ for $1 \le p \le \infty$. Let 0 and let <math>g be any extremal function for H_p^0 . We put

(6)
$$h(z) = z(g(z)/B(z))^{\frac{1}{2}p}.$$

where B(z) is the Blaschke product formed by the zeros of g. By the canonical factorization theorem ([3], p. 24, [9], p. 67), we see $h \in H_2^0$. On the other hand

$$|h'(0)| = \lim_{z \to 0} |h(z)/z| = |g'(0)/B_1(0)|^{\frac{1}{2}p} \ge \alpha_p^{\frac{1}{2}p},$$

where $B_1(z)=B(z)/z$. Hence we have that $\alpha_p=1$, B(z)=z and $h(z)=f_2(z)=z$. Thus, by (6), we obtain g(z)=z.

Remark. Theorem 9 is not true for the other extremal problem considered in Section 5. In fact, if R=U, t=0 and $f(z)=1/2(z+1)^2$, then we easily see that $\|f\|_1=1$ and f'(t)=1. Since $\beta_p=1$ on $[1,\infty]$ by Theorem 8 and 9, f is an extremal function for H_1 , which distincts from f_∞ . Then, by Lemma 1, $\|f\|_p<1$ for 0< p<1, since $|f|\neq const.$ on C. Thus $\beta_p>\beta_1=\beta_\infty$ and β_p is strictly decreasing on (0,1).

THEOREM 10. Let D be a regular region in the extended complex plane. If $\alpha_{p_0} = \alpha_1$ for some p_0 with $0 < p_0 < 1$, then D is conformally equivalent to the unit disc U.

Proof. By Theorem 6 we have $\alpha_1 = \alpha_{\infty}$, and hence the condition (e) in the remark after Theorem 8 is satisfied. Let k be the connectivity of D and we

assume $k \ge 2$. Let G = G(z,t) be Green's function for D, with pole at t, and put P = G + iH, where H is the harmonic conjugate of G. Let t_1, \cdots, t_{k-1} be the critical points of G, that is, the zeros of P'dz. It is well known that \widehat{D} can be completed, by symmetrization, to a closed Riemann surface \widehat{D} , which is called the double of \widehat{D} . There is given an involutory, indirectly conformal mapping of \widehat{D} onto itself which leaves every point on ∂D fixed, and the image of $z \in \widehat{D}$ is denoted by \widehat{z} . Let $\widehat{\delta}$ be the divisor defined by $\widehat{\delta} = t_1 \cdots t_{k-1} \widehat{t}_1 \cdots \widehat{t}_{k-1} t^{-1} \widehat{t}^{-1}$. If two or more of $t_1 \cdots t_{k-1}$ coincide, we must modify the representation. But nothing in our proof is affected by such a change. Let \mathcal{L} be the complex vector space consisting of all functions meromorphic on \widehat{D} which are multiples of $\widehat{\delta}^{-1}$, and \mathcal{B} be that of all Abelian differentials on \widehat{D} which are multiples of $\widehat{\delta}$. By Riemann-Roch theorem [12], we see

(7)
$$\dim \mathcal{L} = \dim \mathcal{B} + (2(k-2)+1-(k-1)) = \dim \mathcal{B} + k-2$$
,

since the order of δ is 2(k-2) and the genus of \hat{D} is k-1. As usual, we can extend P' to a function meromorphic on \hat{D} , which is again denoted by P'. For any $\omega \in \mathcal{B}$, $h=\omega/(P'dz)=\mathrm{const.}$ on \hat{D} , since h has no poles on \hat{D} , and hence $\dim \mathcal{B}=1$. Then, by (7), we have $\dim \mathcal{L}=k-1$. Therefore there exists a non-constant function $\psi \in \mathcal{L}$. If we put $g_1(z)=(\psi(z)+\overline{\psi(\widetilde{z})})/2$ and $g_2(z)=(\psi(z)-\overline{\psi(\widetilde{z})})/2i$ for $z\in \overline{D}$, then at least one of them, say g_1 , is non-constant on \overline{D} . It is evident that g_1 is meromorphic on \overline{D} , real-valued on ∂D and multiple of δ_1^{-1} , where δ_1 is the divisor defined by $\delta_1=t_1\cdots t_{k-1}t^{-1}$. Let $\phi(z)=(g_1(z)+K)/K$, where K is such a large positive number that $\psi \geq 0$ on ∂D , and let $f(z)=\phi(z)f_{\infty}(z)$. So we have

$$\begin{split} \|f\|_1 &= \frac{i}{2\pi} \int_{\partial D} |\phi(z) f_{\infty}(z)| \, P'(z) dz \\ &= \frac{i}{2\pi} \int_{\partial D} \phi(z) P'(z) dz = \phi(t) = 1 \, , \end{split}$$

since $|f_{\infty}|=1$ and $\phi \ge 0$ on ∂D . It is easily shown that $f'(t)=\alpha_1$ and f(t)=0, that is, f is an extremal function for H^0_1 . Since ϕ is non-constant on ∂D , we see $||f||_{p_0} < 1$ by Lemma 1, and hence $\alpha_{p_0} > \alpha_1$. This contradiction shows k=1, and hence D is conformally equivalent to U.

Remark. If D is a regular region in the extended complex plane, then the set of all extremal functions for H_1^0 can be imbedded in \mathbb{R}^{k-1} as a convex compact subset with non-empty interior, where k is the connectivity of D ([9]).

REFERENCES

- [1] AHLFORS, L. V., Bounded analytic functions. Duke Math., 14 (1947), 1-11.
- [2] CLARKSON, J.A., Uniformaly convex spaces. Trans. Amer. Math. Soc., 40 (1936), 396-414.

- [3] Duren, P.L., Theory of H^p spaces. Academic press New York (1970).
- [4] FISHER, S.D., Rational functions, H^{∞} and H^{p} on infinitely connected domains. Illinois J. Math., 12 (1968), 513-523.
- [5] FISHER, S.D., On Schwarz's lemma and inner functions. Trans. Amer. Math. Soc., 138 (1969), 229-240.
- [6] GARABEDIAN, P.R., Schwarz's lemma and Szegö kernel function. Trans. Amer. Math. Soc., 67 (1949), 1-35.
- [7] Heins, M., Hardy classes on Riemann surfaces. Lecture Notes in Math., 98, Springer-Verlag, Berlin and New York (1969).
- [8] HOFFMAN, K., Banach spaces of analytic functions. Prentice-Hall, New Jersey (1962).
- [9] Kobayashi, S. and Suita, N., On H_1 extremal value. (Japanese) Sūgaku, 26 (1974), 347-349.
- [10] PARREAU, M., Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Annales de l'Inst. Fourier, 3 (1951), 103-197.
- [11] RUDIN, W., Analytic functions of class H_p . Trans. Amer. Math. Soc., 78 (1955), 46-66.
- [12] WEYL, H., Die Idee der Riemannschen Fläche. Teubner, Stuttgart (1955).

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.