H. MIZUMOTO

KŌDAI MATH. SEM. REP.
27 (1976), 257-270

ON HARMONIC DIFFERENCE FORMS ON A MANIFOLD

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Hisao Mizumoto

Introduction.

In the present note we aim to obtain an orthogonal decomposition theorem of difference forms on a polyangulation of a 3 -dimensional manifold which is analogous to de Rham-Kodaira's theory on a Riemannian manifold.

In the previous paper [6], we concerned ourselves with the problem of constructing a theory of discrete harmonic and analytic differences on a polyhedron and the problem of approximating harmonic and analytic differentials on a Riemann surface by harmonic and analytic differences respectively, where our definition of a polyhedron differs from the ordinary one based on a triangulation and admits also a polygon and a lune as 2 -simplices (cf. § 1.1 of [6]). In order to set the definitions of a conjugate difference, we introduced concepts of a conjugate polyhedron and a complex polyhedron. In the present note, we shall also introduce similar concepts of a conjugate polyhedron and a complex polyhedron (cf. §1.3) on a 3-dimensional manifold, and we shall show that on such a complex polyhedron a theory of harmonic difference forms analogous to de Rham-Kodaira's theory on Riemannian manifold is obtained.

§ 1. Foundation of topology.

1. Polyangulation. Let E^{3} be the 3-dimensional euclidean space. By a euclidean 0 -simplex we mean a point on E^{3}. By a euclidean 1 -simplex we mean a closed line segment or a closed circular arc. By a euclidean 2 -simplex we mean a closed polygon on a hyperplane or a convex surface, surrounded by a finite number ($\geqq 2$) of segments and circular arcs. A lune (biangle) and a triangle are also admitted as a euclidean 2 -simplex. By a euclidean 3 -simplex we mean a closed convex polyhedron surrounded by a finite number ($\geqq 2$) of such polygons (euclidean 2 -simplices). A dihedron and a trihedron (closed convex polyhedra surrounded by two polygons and three ones respectively) are also admitted as a euclidean 3 -simplex.

Let F be a 3 -dimensional orientable manifold. By an n-simplex $s^{n}(n=0,1$, 2,3) on F we mean a pair of a euclidean n-simplex e^{n} and a one-to-one bi-

Received April 30, 1974,
continuous mapping ϕ of e^{n} into F. We shall write $s^{n}=\left[e^{n}, \phi\right](n=0,1,2,3)$. The image of e^{n} under ϕ is called the carrier of s^{n}, and is denoted by $\left|s^{n}\right|$; that is, $\phi\left(e^{n}\right)=\left|s^{n}\right|$. The images of the faces, edges and vertices of a euclidean 3 -simplex e^{3} by ϕ are called faces, edges and vertices of $s^{3}=\left[e^{3}, \phi\right]$. Each face, each edge and each vertex of s^{3} is a 2 -simplex, a 1 -simplex and a 0 -simplex respectively. We say that a point p belongs to s^{n} when $p \in\left|s^{n}\right|(n=0,1,2,3)$.

Let us suppose that a collection K of 3 -simplices is defined on F in such a way that each point p on F belongs to at least one 3 -simplex in K and such that the following conditions (i), (ii), (iii) and (iv) are satisfied:
(i) if p belongs to a 3 -simplex s^{3} of K but is not on a face of s^{3}, then s^{3} is the only 3 -simplex containing p and $\left|s^{3}\right|$ is a neighborhood of p;
(ii) if p belongs to a face s^{2} of a 3 -simplex s_{1}^{3} in K but does not belong to an edge of s_{1}^{3}, there is exactly one other 3 -simplex s_{2}^{3} in K such that $\left|s^{2}\right| \subset\left|s_{1}^{3}\right|$ $\cap\left|s_{2}^{3}\right|, s_{1}^{3}$ and s_{2}^{3} are the only 3 -simplices containing p, and $\left|s_{1}^{3}\right| \cup\left|s_{2}^{3}\right|$ is a neighborhood of p;
(iii) if p belongs to an edge s^{1} of a 3 -simplex s_{1}^{3} in K but is not a vertex of s_{1}^{3}, there are a finite number of 3 -simplices $s_{1}^{3}, \cdots, s_{k}^{3}(\kappa \geqq 2)$ such that each successive pair of 3 -simplices $s_{j}^{3}, s_{j+1}^{3}\left(j=1, \cdots, \kappa\right.$; $\left.s_{k+1}^{3}=s_{1}^{3}\right)$ have at least one face in common, $s_{1}^{3}, \cdots, s_{k}^{3}$ are the only 3 -simplices containing p, and $\left|s_{1}^{3}\right| \cup \cdots \cup\left|s_{k}^{3}\right|$ forms a neighborhood of p, where it is permitted that some pair of 3 -simplices have two or more faces in common;
(iv) if p is a vertex of s_{1}^{3}, there are a finite number of 3 -simplices $s_{1}^{3}, \cdots, s_{\nu}^{3}$, ($\nu \geqq 2$), each having p as a vertex, $s_{1}^{3}, \cdots, s_{\nu}^{3}$ are the only 3 -simplices containing p, and $\left|s_{1}^{3}\right| \cup \cdots \cup\left|s_{\nu}^{3}\right|$ forms a neighborhood of p.
Then, K is called a polyangulation of F or a polyhedron ${ }^{11}$, and F on which a polyangulation is defined, is called a polyangulated manifold.

Let Ω be a compact bordered subregion of F whose boundary consists of faces (2 -simplices) of a polyangulation K. Then the collection of 3 -simplices of K having their carriers in Ω is called a compact bordered polyhedron. If F is closed (open resp.), then K is said to be closed (open resp.).

Let K and L be two polyhedra. If every 3 -simplex of L is a 3 -simplex of K, then L is called a subpolyhedron of K and K is said to contain L.
2. Homology. On a polyhedron we can define a homology in the same manner as the case of a triangulated polyhedron. An ordered n-simplex ($n=$ $0,1,2,3$) is defined in a similar way. An ordered n-simplex ($n=0,1,2,3$) is denoted by the same notation s^{n} as an n-simplex. The orientation of simplices induces an orientation of the manifold F.

For a fixed dimension $n(n=0,1,2,3)$ a free Abelian group $C_{n}(K)$ is defined by the following conditions (i) and (ii):
(i) all ordered n-simplices are generators of $C_{n}(K)$;
(ii) each element c^{n} of $C_{n}(K)$ can be represented in the form of finite sum

1) Throughout the present paper, the terminology "polyhedron" will be taken in this sense.

$$
c^{n}=\sum_{j} x_{\rho} s_{\partial}^{n},
$$

where $x_{\text {, }}$ are integers. Each element of $C_{n}(K)$ is called an n-dimensional chain or an n-chain.

The boundary ∂ of an n-simplex $s^{n}(n=1,2,3)$ is defined by

$$
\partial s^{n}=s_{1}^{n-1}+\cdots+s_{\kappa}^{n-1} \quad(\kappa=2 \text { if } n=1 ; \kappa \geqq 2 \text { if } n=2,3),
$$

where $s_{1}^{n-1}, \cdots, s_{n}^{n-1}$ are vertices, edges and faces of s^{n} in the cases of $n=1,2,3$, respectively, with the orientation induced by the orientation of s^{n}. The boundary ∂s^{0} of a 0 -simplex s^{0} is defined as $0 ; \partial s^{0}=0$. The boundary of an n-chain $c^{n}=\Sigma_{\jmath} x_{j} s_{j}^{n}(n=0,1,2,3)$ is defined by

$$
\partial c^{n}=\sum_{j} x_{j} \partial s_{j}^{n} .
$$

An n-chain whose boundary is zero, is called a cycle.
3. Complex polyhedron. If two open or closed polyangulations K and K^{*} of a common manifold F satisfy the following conditions (i) and (ii), then K^{*} (K resp.) is called the conjugate polyhedron of K (K^{*} resp.):
(i) To each 0 -simplex s^{0} of K and K^{*}, there is exactly one 3 -simplex s^{3} of K^{*} and K respectively such that $\left|s^{0}\right| \in\left|s^{3}\right|$. Then, s^{3} and s^{0} are said to be conjugate to s^{0} and s^{3} respectively, and the conjugate simplices of s^{0} and s^{3} are denoted by $* s^{0}$ and $* s^{3}$ respectively;
(ii) To each 1 -simplex s^{1} of K and K^{*}, there is exactly one 2 -simplex s^{2} of K^{*} and K respectively such that $\left|s^{1}\right|$ intersects $\left|s^{2}\right|$ at only one point. If the oriented 1 -simplex s^{1} runs through the oriented 2 -simplex s^{2} from the reverse side to the front side, then s^{2} and s^{1} are said to be conjugate to s^{1} and s^{2} respectively, and the conjugate simplices of s^{1} and s^{2} are denoted by $* s^{1}$ and $* s^{2}$ respectively.
By the definition, we have always $* * s^{n}=*\left(* s^{n}\right)=s^{n}$ for $n=0,1,2,3$.
The pair of K and K^{*} is called a complex polyangulation of F or a complex polyhedron, and is denoted by $K=\left\langle K, K^{*}\right\rangle$. A manifold F on which a complex polyangulation is defined, is called a complex polyangulated manifold. If F is open or closed, then $K=\left\langle K, K^{*}\right\rangle$ is said to be open or closed respectively. Let L be a compact bordered subpolyhedron of K and L^{*} be the sum of 3 -simplices of K^{*} having their carriers in $|L|$. Let us suppose that L^{*} is not vacuous and is connected. Then L^{*} is the maximal compact bordered subpolyhedron of K^{*} under the condition $\left|L^{*}\right| \subset|L|$. The pair $L=\left\langle L, L^{*}\right\rangle$ is called a compact bordered complex polyhedron.

Let $\boldsymbol{K}=\left\langle K, K^{*}\right\rangle$ and $\boldsymbol{L}=\left\langle L, L^{*}\right\rangle$ be two complex polyhedra. If L and L^{*} are subpolyhedra of K and K^{*} respectively, then L is called a complex subpolyhedron of \boldsymbol{K}.

By an n-chain $X(n=0,1,2,3)$ of a complex polyhedron \boldsymbol{K}, we mean a formal sum $X=X_{1}+X_{2}$ of an n-chain X_{1} of K and an n-chain X_{2} of K^{*}. Here we
agree that if \boldsymbol{K} is compact bordered then the conjugate 2 -simplex $* s^{1}$ of each 1 -simplex $s^{1} \in \partial K$ and the conjugate 1 -simplex $* s^{2}$ of each 2 -simplex $s^{2} \in \partial K$ is admitted as a generator of $C_{2}\left(K^{*}\right)$ and that of $C_{1}\left(K^{*}\right)$ respectively, and thus X_{2} is precisely an n-chain of $K^{*}+\left\{* s^{1}, * s^{2} \mid s^{1}, s^{2} \in \partial K\right\}$. The boundary ∂X is defined by $\partial X=\partial X_{1}+\partial X_{2} . \quad X$ is said to be homologous to zero, denoted by $X \sim 0$, if and only if $X_{1} \sim 0$ and $X_{2} \sim 0$.
4. Complex boundary. Let $\boldsymbol{K}=\left\langle K, K^{*}\right\rangle$ be a compact bordered complex polyhedron. Now we shall try to define a new polyhedron K^{*+} such that $K^{*} \subset K^{*+}$ and $\left|K^{*+}\right|=|K|$. Let s^{2} be an arbitrary 2 -simplex of ∂K. Then the carrier $\left|* s^{2}\right|$ of the conjugate 1 -simplex $* s^{2}$ is divided into two portions by the point $p=\left|s^{2}\right| \cap\left|* s^{2}\right|$. We divide $* s^{2}$ into two 1 -simplices s_{1}^{1} and s_{2}^{1} whose carriers are the portions of $\left|* s^{2}\right|$ lying on the reverse side and the front side of s^{2} respectively. Then s_{1}^{1} is called the conjugate half 1 -simplex of s^{2} with respect to ∂K and is denoted by $\not \approx s^{2}$. The terminal vertex of s_{1}^{1}, whose carrier lies on $\left|s^{2}\right|$, is called the conjugate 0 -simplex of s^{2} on ∂K and is denoted by $* s^{2}(\partial K)$.

Let s^{1} be an arbitrary oriented 1 -simplex of ∂K. Then there exist exactly two oriented 2 -simplices σ_{1}^{2} and σ_{2}^{2} of ∂K such that s^{1} is a common edge of σ_{1}^{2} and σ_{2}^{2}, where s^{1} is assumed to have the orientation induced by the orientation of σ_{2}^{2} and thus of $-\sigma_{1}^{2}$. Let $s_{1}^{3}, \cdots, s_{\kappa}^{3}(\kappa \geqq 1)$ be the collection of 3 -simplices of K having s^{1} as their common edge such that σ_{1}^{2} and σ_{2}^{2} are the faces of s_{1}^{3} and s_{κ}^{3} respectively, and such that each successive pair s_{j}^{3}, s_{j+1}^{3} of 3 -simplices has a common face s_{j}^{2} with the edge s^{1}, where s_{j}^{2} is assumed to be oriented so that the orientation of s_{ρ}^{2} induces that of s^{1}. Here if $\kappa=1$, then σ_{1}^{2} and σ_{2}^{2} are the faces of the common 3 -simplex $s_{1}^{3}=s_{\kappa}^{3}$, and $\left.\left\{s_{j}^{2}\right\}\right\}_{j=1}^{\kappa-1}=\emptyset$. Let σ_{1}^{0} and σ_{2}^{0} be the terminal vertices of $※ \sigma_{1}^{2}$ and $※ \sigma_{2}^{2}$ lying on σ_{1}^{2} and σ_{2}^{2} respectively. We define a new 1 simplex σ^{1} with $\partial \sigma^{1}=\sigma_{2}^{0}-\sigma_{1}^{0}$ whose carrier $\left|\sigma^{1}\right|$ is a line segment lying on $\left|\sigma_{2}^{2}\right|$ $\cup\left|\sigma_{1}^{2}\right|$ and intersects $\left|s^{1}\right|$ at only one point. The 1 -simplex σ^{1} is said to be conjugate to s^{1} on ∂K and is denoted by $* s^{1}(\partial K)$. Furthermore we define a new 2 -simplex σ^{2} such that

$$
\begin{equation*}
\partial \sigma^{2}=-* s^{1}(\partial K)-※ \sigma_{1}^{2}+\sum_{j=1}^{\kappa-1} * s_{j}^{2}+※ \sigma_{2}^{2} . \tag{1.1}
\end{equation*}
$$

The 2 -simplex σ^{2} is called the conjugate half 2 -simplex of s^{1} with respect to ∂K and is denoted by $\approx s^{1}$.

Let s^{0} be an arbitrary 0 -simplex of ∂K. Let $s_{1}^{1}, \cdots, s_{\nu}^{1}(\nu \geqq 2)$ be the collection of 1 -simplices of K whose common initial vertex is s^{0}, and let $s_{1}^{1}, \cdots, s_{\mu}^{1}(\mu \leqq \nu)$ be the collection of those lying on ∂K. Then we define a new 2 -simplex σ^{2} with $\left|\sigma^{2}\right| \subset|\partial K|$ such that

$$
\partial \sigma^{2}=\sum_{j=1}^{\mu} * s_{j}^{1}(\partial K) .
$$

The 2 -simplex σ^{2} is said to be conjugate to s^{0} on ∂K and is denoted by $* s^{0}(\partial K)$. Furthermore we define a new 3 -simplex σ^{3} such that

$$
\begin{equation*}
\partial \sigma^{3}=* s^{0}(\partial K)+\sum_{j=1}^{\mu} * s_{j}^{1}+\sum_{j=\mu+1}^{\nu} * s_{j}^{1}, \tag{1.2}
\end{equation*}
$$

where if $\mu=\nu$, then the last term of (1.2) is vacuous. The 3 -simplex σ^{3} is called the conjugate half 3 -simplex of s^{0} with respect to ∂K and is denoted by $※ s^{0}$.

The (simple) boundary $\partial \boldsymbol{K}=\left\langle\partial K, \partial K^{*}\right\rangle$ of \boldsymbol{K} is defined by the sum of the 1 -chains ∂K and ∂K^{*}. Next, by K^{*+} we denote the new polyhedron defined as the sum of all 3 -simplices of K^{*} and the conjugate half 3 -simplices of all 0 simplices $s^{0} \in \partial K$ with respect to ∂K. Then $\left|K^{*+}\right|=|K|$. The sum of ∂K and ∂K^{*+} is called the complex boundary of \boldsymbol{K} and denoted by $\partial \boldsymbol{K}=\left\langle\partial K, \partial K^{*+}\right\rangle$, where ∂K^{*+} is the 2 -chain defined as the sum of $* s^{0}(\partial K)$ for all $s^{0} \in \partial K$. Throughout the present paper we shall preserve these notations.

§ 2. Differences on a polyhedron.

1. Difference calculus. Let $\boldsymbol{K}=\left\langle K, K^{*}\right\rangle$ be an arbitrary complex polyhedron.

By an n-th order difference or n-difference φ^{n} on $\boldsymbol{K}(n=0,1,2,3)$, we mean the complex valued function φ^{n} on the set of oriented n-simplices of \boldsymbol{K} such that φ^{n} has a value $\varphi^{n}\left(s^{n}\right)$ for each oriented n-simplex s^{n} and $\varphi^{n}\left(-s^{n}\right)=-\varphi^{n}\left(s^{n}\right)$. A zero order difference φ^{0} on \boldsymbol{K} is also called a function on \boldsymbol{K}.

We assume that differences of arbitrary order satisfy the linearity property:

$$
\left(c_{1} \varphi^{n}+c_{2} \psi^{n}\right)\left(s^{n}\right)=c_{1} \cdot \varphi^{n}\left(s^{n}\right)+c_{2} \cdot \psi^{n}\left(s^{n}\right) \quad(n=0,1,2,3),
$$

where φ^{n} and ψ^{n} are n-differences on \boldsymbol{K}, and c_{1} and c_{2} are complex constants.
The multiplication of a 2 -difference ψ^{2} with a 0 -difference φ^{0} is defined as a 2 -difference satisfying the condition

$$
\varphi^{0} \psi^{2}\left(s^{2}\right)=\psi^{2} \varphi^{0}\left(s^{2}\right)=\frac{1}{2}\left\{\varphi^{0}\left(s_{1}^{0}\right)+\varphi^{0}\left(s_{2}^{0}\right)\right\} \psi^{2}\left(s^{2}\right)
$$

for each 2 -simplex $s^{2} \in \boldsymbol{K}$, where s_{1}^{0} and s_{2}^{0} are the 0 -simplices such that $\partial * s^{2}=$ $s_{2}^{0}-s_{1}^{0}$. The multiplication of a 3 -difference ϕ^{3} with a 0 -difference φ^{0} is defined as a 3 -difference satisfying the condition

$$
\varphi^{0} \psi^{3}\left(s^{3}\right)=\varphi^{0}\left(* s^{3}\right) \psi^{3}\left(s^{3}\right) \quad \text { for each 3-simplex } s^{3} \in \boldsymbol{K} .
$$

The exterior product of a 1-difference φ^{1} and a 2-difference ψ^{2} is defined as a 3 -difference satisfying the condition

$$
\varphi^{1} \psi^{2}\left(s^{3}\right)=\psi^{2} \varphi^{1}\left(s^{3}\right)=\frac{1}{2} \sum_{j=1}^{\kappa} \varphi^{1}\left(* s_{j}^{2}\right) \psi^{2}\left(s_{j}^{2}\right)
$$

for each 3 -simplex $s^{3} \in \boldsymbol{K}$, where $s_{1}^{2}, \cdots, s_{\kappa}^{2}$ are the 2 -simplices such that $\partial s^{3}=$ $s_{1}^{2}+\cdots+s_{\kappa}^{2}$.

The complex conjugate $\bar{\varphi}^{n}$ of an n-difference $\varphi^{n}(n=0,1,2,3)$ is defined by $\bar{\varphi}^{n}\left(s^{n}\right)=\overline{\varphi^{n}\left(s^{n}\right)}$.

The difference of an n-difference $\varphi^{n}(n=0,1,2)$ is defined as an $(n+1)$ difference $\Delta \varphi^{n}$ satisfying the condition

$$
\Delta \varphi^{n}\left(s^{n+1}\right)=\sum_{j=1}^{\kappa} \varphi^{n}\left(s_{j}^{n}\right) \quad \text { for each }(n+1) \text {-simplex } s^{n+1} \in \boldsymbol{K},
$$

where $s_{1}^{n}, \cdots, s_{k}^{n}$ are the n-simplices such that $\partial s^{n+1}=s_{1}^{n}+\cdots+s_{n}^{n}$. The difference of a 3 -difference φ^{3} is defined as $0 ; \Delta \varphi^{3}=0$. If $\Delta \varphi^{n}=0(n=0,1,2,3)$, then φ^{n} is said to be closed. If for an n-difference $\varphi^{n}(n=1,2,3)$ there exists an ($n-1$)difference ψ^{n-1} such that $\varphi^{n}=\Delta \psi^{n-1}$, then φ^{n} is said to be exact. Obviously, if φ^{n} is exact, then φ^{n} is closed. We can easily verify that the partial difference formula

$$
\begin{equation*}
\Delta\left(\varphi^{0} \psi^{2}\right)=\left(\Delta \varphi^{0}\right) \psi^{2}+\varphi^{0} \Delta \psi^{2} \tag{2.1}
\end{equation*}
$$

holds for a 0 -difference φ^{0} and a 2 -difference ψ^{2}.
2. Summation of differences. We can define the sum of an n-difference ($n=0,1,2,3$) over an n-chain. Let $c^{n}=\Sigma, x_{j} s_{j}^{n}$ be an n-chain ($n=0,1,2,3$) of a complex polyhedron \boldsymbol{K}. The sum of an n-difference φ^{n} over c^{n} is defined by

$$
S_{c n} \varphi^{n}=\sum_{\jmath} x_{j} \varphi^{n}\left(s_{j}^{n}\right) \quad(n=0,1,2,3)
$$

The basic duality between a chain and a difference

$$
\begin{equation*}
S_{c n} \Delta \varphi^{n-1}=\int_{\partial c n} \varphi^{n-1} \quad(n=1,2,3) \tag{2.2}
\end{equation*}
$$

is obvious, where c^{n} is an n-chain and φ^{n} is an n-difference. The formula for partial summation

$$
\begin{equation*}
S_{c^{3}}\left(\Delta \varphi^{0}\right) \psi^{2}=\int_{\partial c s^{3}} \varphi^{0} \psi^{2}-\int_{c 3} \varphi^{0} \Delta \psi^{2} \tag{2.3}
\end{equation*}
$$

follows from (2.1) and (2.2).
The following two criteria are also obvious:
An n-difference $\varphi^{n}(n=0,1,2)$ is closed if and only if $S_{c n} \varphi^{n}=0$ for every cycle c^{n} that is homologous to 0 ;

An n-difference $\varphi^{n}(n=1,2,3)$ is exact if and only if $S_{c n} \varphi^{n}=0$ for every cycle c^{n}.

If an n-difference $\varphi^{n}(n=0,1,2)$ is closed, then the period of φ^{n} along an n-cycle c^{n} is defined by $S_{c n} \varphi^{n}$, which depends only on the homology class of c^{n}.

Now we shall define the sum of 3 -difference over a complex polyhedron $\boldsymbol{K}=\left\langle K, K^{*}\right\rangle$. If \boldsymbol{K} is compact bordered or closed, then the sum of a 3-difference φ^{3} over \boldsymbol{K}

$$
S_{K} \varphi^{3}
$$

is defined as the sum of φ^{3} over the 3-chain \boldsymbol{K} because \boldsymbol{K} is itself a 3-chain. If \boldsymbol{K} is open, then we can set

$$
\begin{equation*}
S_{K} \varphi^{3}=\lim _{c^{3} \rightarrow K} S_{c^{3}} \varphi^{3} \tag{2.4}
\end{equation*}
$$

provided that the limit exists, where c^{3} is a 3 -chain of \boldsymbol{K} such that $c^{3} \subset \boldsymbol{K}$.
3. Conjugate differences. Let $\varphi^{n}(n=0,1,2,3)$ be an n-difference on a complex polyhedron \boldsymbol{K}. Then the conjugate difference $* \varphi^{n}$ of φ^{n} is defined as a ($3-n$)-difference satisfying the condition

$$
* \varphi^{n}\left(* s^{n}\right)=\varphi^{n}\left(s^{n}\right) \quad(n=0,1,2,3)
$$

for each n-simplex $s^{n} \in \boldsymbol{K}$. Then we can easily see that

$$
\begin{align*}
* * \varphi^{n} & =\varphi^{n} \quad(n=0,1,2,3), \tag{2.5}\\
* \varphi^{n} * \varphi^{3-n} & =\varphi^{n} \psi^{3-n} \quad(n=0,1,2,3) . \tag{2.6}
\end{align*}
$$

An n-difference $\varphi^{n}(n=1,2)$ is said to be harmonic if φ^{n} and $* \varphi^{n}$ are both closed. By (2.5) and the definition, φ^{n} and $* \varphi^{n}$ are simultaneously harmonic. Let u be a function (0-difference) on $\boldsymbol{K} . u$ is called a harmonic function on \boldsymbol{K} if the difference Δu is harmonic. A function u is harmonic on \boldsymbol{K} if and only if

$$
u\left(s^{0}\right)=\frac{1}{\kappa} \sum_{j=1}^{\kappa} u\left(s_{j}^{0}\right)
$$

for every 0 -simplex s^{0} of \boldsymbol{K} whose carrier $\left|s^{0}\right|$ is in the interior of $|K|$, where $\partial s_{j}^{1}=s_{j}^{0}-s^{0}(j=1, \cdots, \kappa)$ and $s_{1}^{1}, \cdots, s_{\kappa}^{1}$ are all 1 -simplices having s^{0} as a vertex.

§ 3. The Hilbert space of differences.

1. The inner product. Let φ^{n} and $\psi^{n}(n=0,1,2,3)$ be two n-differences on a complex polyhedron $K=\left\langle K, K^{*}\right\rangle$. We shall define the inner product $\left(\varphi^{n}, \psi^{n}\right)=$ $\left(\varphi^{n}, \psi^{n}\right)_{\boldsymbol{K}}$ of φ^{n} and ψ^{n}. If \boldsymbol{K} is closed, then it is defined by

$$
\left(\varphi^{n}, \psi^{n}\right)_{\boldsymbol{K}}=\sum_{s^{n} \in \boldsymbol{K}} \varphi^{n}\left(s^{n}\right) \overline{\psi^{n}\left(s^{n}\right)} \quad(n=0,1,2,3)
$$

If \boldsymbol{K} is compact bordered, then it is defined by

$$
\begin{aligned}
\left(\varphi^{0}, \psi^{0}\right)_{\boldsymbol{K}}= & \sum_{s^{3} \in \boldsymbol{K}} \varphi^{0}\left(* s^{3}\right) \overline{\psi^{0}\left(* s^{3}\right)}, \\
\left(\varphi^{n}, \psi^{n}\right)_{\boldsymbol{K}}= & \sum_{s^{n} \in K-\partial K} \varphi^{n}\left(s^{n}\right) \overline{\psi^{n}\left(s^{n}\right)}+\frac{1}{2} \sum_{s^{n} \in \partial K} \varphi^{n}\left(s^{n}\right) \overline{\psi^{n}\left(s^{n}\right)} \\
& +\sum_{s^{3-n} \in K-\partial K} \varphi^{n}\left(* s^{3-n}\right) \overline{\psi^{n}\left(* s^{3-n}\right)} \\
& +\frac{1}{2}{ }_{s^{3}-n \in \partial K} \varphi^{n}\left(* s^{3-n}\right) \overline{\psi^{n}\left(* s^{3-n}\right)} \quad(n=1,2), \\
\left(\varphi^{3}, \psi^{3}\right)_{\boldsymbol{K}}= & \sum_{s^{3} \in \boldsymbol{K}} \varphi^{3}\left(s^{3}\right) \overline{\psi^{3}\left(s^{3}\right)} .
\end{aligned}
$$

If \boldsymbol{K} is open, then it is defined by the limit process

$$
\left(\varphi^{n}, \psi^{n}\right)_{K}=\lim _{L \rightarrow K}\left(\varphi^{n}, \psi^{n}\right)_{L} \quad(n=0,1,2,3),
$$

provided that the limit exists, where $L=\left\langle L, L^{*}\right\rangle$ is a compact bordered complex polyhedron such that $\boldsymbol{L} \subset \boldsymbol{K}$.

If \boldsymbol{K} is closed or open, then we can easily see that

$$
\left(\varphi^{n}, \psi^{n}\right)_{\mathbf{K}}=S_{\mathbf{K}} \varphi^{n} * \bar{\psi}^{n} \quad(n=0,1,2,3)
$$

If \boldsymbol{K} is compact bordered, then we can easily verify that

$$
\begin{aligned}
\left(\varphi^{n}, \psi^{n}\right)_{\boldsymbol{K}}= & \int_{\boldsymbol{K}} \varphi^{n} * \bar{\psi}^{n} \quad(n=0,3) \\
\left(\varphi^{1}, \psi^{1}\right)_{\boldsymbol{K}}= & S_{\boldsymbol{K}} \varphi^{1} * \bar{\psi}^{1}+\frac{1}{2} \sum_{s^{1} \in \partial K} \varphi^{1}\left(s^{1}\right) \overline{\psi^{1}\left(s^{1}\right)} \\
& +\frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \varphi^{1}\left(* s^{2}\right) \overline{\psi^{1}\left(* s^{2}\right)}, \\
\left(\varphi^{2}, \psi^{2}\right)_{\boldsymbol{K}}= & \int_{\boldsymbol{K}} \varphi^{2} * \bar{\psi}^{2}+\frac{1}{2} \sum_{\{\in \partial K} \varphi^{2}\left(* s^{1}\right) \overline{\psi^{2}\left(* s^{1}\right)} \\
& +\frac{1}{2}{ }_{s^{2} \in \partial K^{*}} \varphi^{2}\left(s^{2}\right) \overline{\psi^{2}\left(s^{2}\right)} .
\end{aligned}
$$

By the definition of the inner product, for every case of \boldsymbol{K} and for $n=0,1,2,3$, we have

$$
\begin{align*}
& \left(* \varphi^{n}, * \varphi^{n}\right)=\left(\varphi^{n}, \varphi^{n}\right), \tag{3.1}\\
& \left(\varphi^{n}, \psi^{n}\right)=\left(\bar{\psi}^{n}, \bar{\varphi}^{n}\right) . \tag{3.2}
\end{align*}
$$

Let φ^{n} be an n-difference ($n=0,1,2,3$) on a complex polyhedron \boldsymbol{K}. Then the norm $\left\|\varphi^{n}\right\|=\left\|\varphi^{n}\right\|_{K}$ of φ^{n} is defined by

$$
\begin{equation*}
\left\|\varphi^{n}\right\|_{\boldsymbol{K}}=\left(\varphi^{n}, \varphi^{n}\right)_{\mathbf{K}}^{1 / 2} \quad(n=0,1,2,3) . \tag{3.3}
\end{equation*}
$$

Let us denote the Hilbert space of all n-differences φ^{n} on \boldsymbol{K} with $\left\|\varphi^{n}\right\|<\infty$ by Γ, for a fixed $n=1$ or $n=2$. Furthermore, we define the closed subspaces of Γ as follows:

$$
\begin{aligned}
& \Gamma_{c}=\left\{\varphi^{n} \mid \varphi^{n} \text { is closed, } \varphi^{n} \in \Gamma\right\}, \\
& \Gamma_{e}=\left\{\varphi^{n} \mid \varphi^{n} \text { is exact, } \varphi^{n} \in \Gamma\right\}, \\
& \Gamma_{n}=\left\{\varphi^{n} \mid \varphi^{n} \text { is harmonic, } \varphi^{n} \in \Gamma\right\}, \\
& \Gamma_{c}^{*}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is closed, } \varphi^{n} \in \Gamma\right\}, \\
& \Gamma_{e}^{*}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is exact, } \varphi^{n} \in \Gamma\right\}, \\
& \Gamma_{n}^{*}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is harmonic, } \varphi^{n} \in \Gamma\right\} .
\end{aligned}
$$

Then it is obvious that $\Gamma_{n}^{*}=\Gamma_{h}, \Gamma_{e} \subset \Gamma_{c}, \Gamma_{h}=\Gamma_{c} \cap \Gamma_{c}^{*}$.
2. The definition of φ^{n} on ∂K^{*+}. Let $\partial K=\left\langle\partial K, \partial K^{*+}\right\rangle$ be a complex boundary of a compact bordered complex polyhedron $K=\left\langle K, K^{*}\right\rangle$. We shall define an n-difference $(n=0,1,2)$ on ∂K^{*+}.

Let φ^{0} be a 0 -difference on \boldsymbol{K}. Then φ^{0} is defined on ∂K^{*+} by

$$
\begin{equation*}
\varphi^{0}\left(\sigma^{0}\right)=\frac{1}{2}\left\{\varphi^{0}\left(s_{1}^{0}\right)+\varphi^{0}\left(s_{2}^{0}\right)\right\} \quad \text { for each } 0 \text {-simplex } \sigma^{0} \text { of } \partial K^{*+}, \tag{3.4}
\end{equation*}
$$

where $\partial * s^{2}=s_{2}^{0}-s_{1}^{0}, s^{2}$ is the 2 -simplex of ∂K with $\sigma^{0}=* s^{2}(\partial K)$ and φ^{0} is assumed to be defined at s_{2}^{0}.

Let φ^{1} be a 1 -difference on \boldsymbol{K}. Then φ^{1} is defined on ∂K^{*+} by

$$
\varphi^{1}\left(\sigma^{1}\right)=-\frac{1}{2} \varphi^{1}\left(* \sigma_{1}^{2}\right)+\sum_{j=1}^{\kappa-1} \varphi^{1}\left(* s_{j}^{2}\right)+\frac{1}{2} \varphi^{1}\left(* \sigma_{2}^{2}\right)
$$

for each 1 -simplex σ^{1} of ∂K^{*+}, where

$$
\partial \sigma^{2}=-\sigma^{1}-※ \sigma_{1}^{2}+\sum_{j=1}^{\kappa-1} * s_{j}^{2}+※ \sigma_{2}^{2},
$$

σ^{2} is the conjugate half 2 -simplex of s^{1} with respect to $\partial K, s^{1}$ is the 1 -simplex of ∂K with $\sigma^{1}=* s^{1}(\partial K)$, and $\sigma_{1}^{2}, \sigma_{2}^{2}$ and $s_{j}^{2}(j=1, \cdots, \kappa-1)$ is the notations defined in (1.1).

Let φ^{2} be a 2 -difference on \boldsymbol{K}. Then φ^{2} is defined on ∂K^{*+} by

$$
\varphi^{2}\left(\sigma^{2}\right)=-\frac{1}{2} \sum_{j=1}^{\mu} \varphi^{2}\left(* s_{\jmath}^{1}\right)-\sum_{j=\mu+1}^{\nu} \varphi^{2}\left(* s_{j}^{1}\right)
$$

for each 2 -simplex σ^{2} of ∂K^{*+}, where

$$
\partial \sigma^{3}=\sigma^{2}+\sum_{j=1}^{\mu} ※ s_{j}^{1}+\sum_{\jmath=\mu+1}^{\nu} * s_{\jmath}^{1},
$$

σ^{3} is the conjugate half 3 -simplex of s^{0} with respect to $\partial K, s^{0}$ is the 0 -simplex of ∂K with $\sigma^{2}=* s^{0}(\partial K)$ and $s_{\jmath}^{1}(\jmath=1, \cdots, \nu)$ is the notations defined in (1.2).

The multiplication of a 2 -difference ψ^{2} with a 0 -difference φ^{0} on $\partial \boldsymbol{K}=\langle\partial K$, $\left.\partial K^{*+}\right\rangle$ is defined as a 2 -difference on $\partial \boldsymbol{K}$ satisfying the condition

$$
\varphi^{0} \psi^{2}\left(s^{2}\right)=\psi^{2} \varphi^{0}\left(s^{2}\right)=\varphi^{0}\left(s^{0}\right) \psi^{2}\left(s^{2}\right) \quad \text { for each 2-simplex } s^{2} \in \partial \boldsymbol{K},
$$

where if $s^{2} \in \partial K$ then $s^{0}=* s^{2}(\partial K)$ and if $s^{2} \in \partial K^{*+}$ then $s^{2}=* s^{0}(\partial K)$.
The exterior product of two 1-differences φ^{1} and ψ^{1} on $\partial K=\left\langle\partial K, \partial K^{*}\right\rangle$ is defined as a 2 -difference $\varphi^{1} \psi^{1}$ satisfying the condition

$$
\varphi^{1} \psi^{1}\left(s^{2}\right)=-\frac{1}{2} \sum_{j=1}^{\kappa} \varphi^{1}\left(\sigma_{j}^{1}\right) \psi^{1}\left(s_{j}^{1}\right) \quad \text { for each 2-simplex } s^{2} \in \partial \boldsymbol{K},
$$

where $\partial s^{2}=s_{1}^{1}+\cdots+s_{\kappa}^{1}$, and if $s^{2} \in \partial K$ then $\sigma_{j}^{1}=* s_{j}^{1}(\partial K)$ and if $s^{2} \in \partial K^{*+}$ then $s_{j}^{1}=-* \sigma_{j}^{1}(\partial K)$.

For an arbitrary 1-difference φ^{1}, we shall agree to define

$$
\begin{equation*}
\Delta \varphi^{1}\left(* s^{1}\right)=0 \quad \text { for each } 1 \text {-simplex } s^{1} \in \partial K . \tag{3.5}
\end{equation*}
$$

3. Fundamental theorem.

Theorem 3.1. If a complex polyhedron \boldsymbol{K} is compact bordered or closed, then we have

$$
\begin{equation*}
\left(\Delta \varphi^{n-1}, \psi^{n}\right)_{\boldsymbol{K}}=\int_{\theta \mathbf{K}} \varphi^{n-1} * \bar{\psi}^{n}+\left(\varphi^{n-1}, \delta \psi^{n}\right)_{\boldsymbol{K}} \quad(n=1,2,3) \tag{3.6}
\end{equation*}
$$

where δ is the operator $(-1)^{n} * \Delta *$ for an n-difference, and if \boldsymbol{K} is closed then the first term of the right-hand side vanishes.

Proof. The case of $n=1$: By the definition of the inner product and (2.3), we see that

$$
\begin{aligned}
\left(\Delta \varphi^{0}, \psi^{1}\right)_{\mathbf{K}}= & \int_{\boldsymbol{K}} \Delta \varphi * \bar{\psi}+\frac{1}{2} \sum_{s^{1} \in \partial K} \Delta \varphi\left(s^{1}\right) \overline{\psi\left(s^{1}\right)}+\frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \Delta \varphi\left(* s^{2}\right) \overline{\psi\left(* s^{2}\right)} \\
= & \left(S_{\partial K} \varphi * \bar{\psi}+\frac{1}{2} \sum_{s^{1} \in \partial K} \Delta \varphi\left(s^{1}\right) \overline{\psi\left(s^{1}\right)}+\frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \Delta \varphi\left(* s^{2}\right) \overline{\psi\left(* s^{2}\right)}\right) \\
& -\int_{\mathbf{K}} \varphi \Delta * \bar{\psi} \\
= & \left(S_{\partial K} \varphi * \bar{\psi}+\frac{1}{2} \sum_{s^{2} \in \partial \partial K^{*}}\left\{\varphi\left(s_{1}^{0}\right)+\varphi\left(s_{2}^{0}\right)\right\} * \overline{\psi\left(s^{2}\right)}\right. \\
& \left.+\frac{1}{2} \sum_{s^{1} \in \partial K} \Delta \varphi\left(s^{1}\right) \overline{* \psi\left(* s^{1}\right)}+\frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \Delta \varphi\left(* s^{2}\right) * \overline{*\left(s^{2}\right)}\right) \\
& +(\varphi, \delta \psi)_{K},
\end{aligned}
$$

where $\varphi=\varphi^{0}$ and $\psi=\psi^{1}$, and $\partial * s^{2}=s_{2}^{0}-s_{1}^{0}$. Here if we note that

$$
\begin{aligned}
S_{\partial K^{*}} \varphi * \bar{\psi} & ={ }_{s 0} \sum_{\Delta \in K} \varphi\left(s^{0}\right) \overline{* \psi\left(* s^{0}(\partial K)\right)} \\
& =\sum_{s^{2} \in \partial K^{*}} \varphi\left(s_{2}^{0}\right) \overline{* \psi\left(s^{2}\right)}+\sum_{s 1 \in \partial K} \Delta \varphi\left(s^{1}\right) \cdot \frac{1}{2} \overline{* \psi\left(* s^{1}\right)},
\end{aligned}
$$

then we obtain (3.6).
The case of $n=3$ can be easily reduced to the case of $n=1$.
The case of $n=2$: By the definition of the inner product, we see that

$$
\begin{align*}
\left(\Delta \varphi^{1}, \psi^{2}\right)_{\mathbf{K}}= & \sum_{s^{2} \in K-\partial K} \Delta \varphi\left(s^{2}\right) \overline{* \psi\left(* s^{2}\right)}+\frac{1}{2} \sum_{s^{2} \in \partial K} \Delta \varphi\left(s^{2}\right) \overline{* \psi\left(* s^{2}\right)} \tag{3.7}\\
& +\sum_{s^{1} \in K-\partial K} \Delta \varphi\left(* s^{1}\right) \overline{* \phi\left(s^{1}\right)}+\frac{1}{2} \sum_{s^{1} \in \partial K} \Delta \varphi\left(* s^{1}\right) \overline{* \phi\left(s^{1}\right)},
\end{align*}
$$

where $\varphi=\varphi^{1}$ and $\phi=\psi^{2}$. By the definition (3.5) the last term of the right-hand side of (3.7) is equal to zero, and further we have

$$
\begin{aligned}
& \sum_{s^{2} \in K-\partial K} \Delta \varphi\left(s^{2}\right) \overline{* \psi\left(* s^{2}\right)}+\frac{1}{2} \sum_{s^{2} \in \partial K} \Delta \varphi\left(s^{2}\right) \overline{* \psi\left(* s^{2}\right)} \\
&=\sum_{s^{1} \in K-\partial K} \varphi\left(s^{1}\right) \overline{\Delta * \phi\left(* s^{1}\right)}+\sum_{s^{1} \in \partial K} \varphi\left(s^{1}\right) \overline{* \psi\left(* s^{1}(\partial K)\right)} .
\end{aligned}
$$

Similarly，we have

$$
\begin{aligned}
& \left(\varphi^{1}, \delta \psi^{2}\right)_{\mathbf{K}}={ }_{s^{2} \in K-\partial K} \varphi\left(* s^{2}\right) \overline{\overline{* *}\left(s^{2}\right)}+\frac{1}{2} \sum_{s^{2} \in \partial K} \varphi\left(* s^{2}\right) \overline{\overline{4 * \phi}\left(s^{2}\right)} \\
& +\sum_{s^{1} \in K-\partial K} \varphi\left(s^{1}\right) \overline{\overline{* \psi\left(* s^{1}\right)}}+\frac{1}{2} \sum_{s^{1} \in \partial K} \varphi\left(s^{1}\right) \overline{山 * \psi\left(* s^{1}\right)} \\
& =\sum_{s^{1} \in K-\partial K} \overline{* \psi\left(s^{1}\right)} \Delta \varphi\left(* s^{1}\right)+{ }_{s^{1} \in \partial K} \sum^{* \psi\left(s^{1}\right)} \varphi\left(* s^{1}(\partial K)\right) \\
& +{ }_{s^{1} \in K-\partial K} \varphi\left(s^{1}\right) \overline{山 * \psi\left(* s^{1}\right)} .
\end{aligned}
$$

Hence we find that

$$
\begin{aligned}
\left(\Delta \varphi^{1}, \psi^{2}\right)_{K}-\left(\varphi^{1}, \delta \psi^{2}\right)_{\boldsymbol{K}} & ={ }_{s^{1} \in \partial K} \varphi\left(s^{1}\right) \overline{* \psi\left(* s^{1}(\partial K)\right)}-\sum_{s^{1} \in \partial K} \overline{* \phi\left(s^{1}\right)} \varphi\left(* s^{1}(\partial K)\right) \\
& =\int_{\partial K} \varphi^{1} \overline{* \psi^{2}}
\end{aligned}
$$

4．Orthogonal projection on a compact polyhedron．In $\mathbf{4 \sim 5}$ ，we shall briefly state the method of orthogonal projection of the Hilbert space of differ－ ences which is analogous to de Rham－Kodaira＇s orthogonal decomposition theorem for differential forms on a Riemannian manifold．

Theorem 3．2．Let \boldsymbol{K} be a closed complex polyhedron．Then the orthogonal decomposition

$$
\Gamma=\Gamma_{c} \dot{+} \Gamma_{e}^{*}=\Gamma_{c}^{*} \dot{+} \Gamma_{e}
$$

holds for the Hilbert space Γ of n－differences（ $n=1,2$ ）．
Proof．By Theorem 3.1 we see that

$$
\left(\psi^{n}, * \Delta \varphi^{2-n}\right)=(-1)^{3-n}\left(\Delta \psi^{n}, * \varphi^{2-n}\right) \quad(n=1,2) .
$$

Hence $\Delta \psi^{n}=0$ implies that $\left(\psi^{n}, * \Delta \varphi^{2-n}\right)=0$ ，and thus ψ^{n} is orthogonal to every element of Γ_{e}^{*} ．

Conversely，if

$$
\left(\Delta \psi^{n}, * \varphi^{2-n}\right)=0
$$

holds for all（2－n）－differences φ^{2-n} on \boldsymbol{K} ，then we can easily verify that $\Delta \psi^{n}=0$ on \boldsymbol{K} ．Hence on a closed complex polyhedron $\boldsymbol{K}, \Gamma_{c}$ is the orthogonal comple－ ment of Γ_{e}^{*} ．Then by the general theory，we have the orthogonal decomposition $\Gamma=\Gamma_{c} \dot{+} \Gamma_{e}^{*}$ ．The orthogonal decomposition $\Gamma=\Gamma_{c}^{*} \dot{+} \Gamma_{e}$ for n－differences im－ mediately follows from the decomposition $\Gamma=\Gamma_{c} \dot{+} \Gamma_{e}^{*}$ for（3－n）－differences．

Corollary．（de Rham－Kodaira＇s decomposition theorem．）

$$
\Gamma=\Gamma_{h} \dot{+} \Gamma_{e} \dot{+} \Gamma_{e}^{*} \quad(n=1,2) .
$$

Let \boldsymbol{K} be a compact bordered complex polyhedron．An n－difference φ^{n}
($n=0,1,2$) on \boldsymbol{K} is said to vanish on the complex boundary $\partial \boldsymbol{K}$ if $\varphi^{n}\left(s^{n}\right)=0$ for every n-simplex s^{n} of $\partial \boldsymbol{K}=\left\langle\partial K, \partial K^{*+}\right\rangle$. A closed n-difference $\varphi^{n}(n=1,2)$ is said to belong to the subspace $\Gamma_{c 0}$ if φ^{n} vanishes on $\partial \boldsymbol{K}$. Similarly, an exact n difference $\varphi^{n}=\Delta \psi^{n-1}(n=1,2)$ is said to belong to the subspace $\Gamma_{e 0}$ if $\psi^{n-1}=0$ on the complex boundary $\partial \boldsymbol{K}$.

By Theorem 3.1 we have the formula

$$
\begin{equation*}
\left(\psi^{n}, * \Delta \varphi^{2-n}\right)=\int_{\partial K} \overline{\varphi^{2-n}} \psi^{n}+(-1)^{3-n}\left(\Delta \psi^{n}, * \varphi^{2-n}\right) \quad(n=1,2) \tag{3.8}
\end{equation*}
$$

By making use of (3.8) and the similar argument to the theorem 3.2, for the Hilbert space Γ of n-differences ($n=1,2$) on a compact bordered complex polyhedron \boldsymbol{K} we have the orthogonal decompositions

$$
\begin{aligned}
& \Gamma=\Gamma_{c 0} \dot{+} \Gamma_{e}^{*}=\Gamma_{c 0}^{*} \dot{+} \Gamma_{e}, \\
& \Gamma=\Gamma_{c} \dot{+} \Gamma_{e 0}^{*}=\Gamma_{c}^{*}+\Gamma_{e 0}
\end{aligned}
$$

and hence we have immediately the orthogonal decomposition

$$
\Gamma=\Gamma_{h} \dot{+} \Gamma_{e 0} \dot{+} \Gamma_{e 0}^{*}
$$

5. Orthogonal projection on a generic polyhedron. Let us suppose that \boldsymbol{K} is an open or closed complex polyhedron. An n-difference $\varphi^{n}(n=0,1,2,3)$ on \boldsymbol{K} is said to have compact support if $\varphi^{n}\left(s^{n}\right)=0$ for all n-simplex $s^{n} \in \boldsymbol{K}$ except for a finite number of n-simplices of \boldsymbol{K}.

Let $\Gamma_{e 0}^{\prime}$ be the subclass of Γ_{e} consisting of the n-differences φ^{n} such that $\varphi^{n}=\Delta \psi^{n-1}$ for an ($n-1$)-difference ψ^{n-1} with compact support. We define the subspace $\Gamma_{e 0}$ of Γ as the closure in Γ of $\Gamma_{e 0}^{\prime}$. From the definition it follows that $\Gamma_{e 0}=\Gamma_{e}$ for a closed complex polyhedron \boldsymbol{K}.

On an arbitrary complex polyhedron \boldsymbol{K} we can prove that the following orthogonal decompositions for the Hilbert spaces of n-differences ($n=1,2$) hold:

$$
\begin{aligned}
& \Gamma=\Gamma_{e 0} \dot{+} \Gamma_{c}^{*}=\Gamma_{e 0}^{*} \dot{+} \Gamma_{c}, \\
& \Gamma=\Gamma_{h} \dot{+} \Gamma_{e 0} \dot{+} \Gamma_{e 0}^{*}, \\
& \Gamma_{c}=\Gamma_{h} \dot{+} \Gamma_{e 0}, \\
& \Gamma_{e}=\Gamma_{h e} \dot{+} \Gamma_{e 0},
\end{aligned}
$$

where $\Gamma_{n e}=\Gamma_{h} \cap \Gamma_{e}$.

§4. Network flow problem.

1. ρ^{n}-harmonic differences. Let $\boldsymbol{K}=\left\langle K, K^{*}\right\rangle$ be an arbitrary complex polyhedron.

By an n-th order density or n-density ρ^{n} on $\boldsymbol{K}(n=0,1,2,3)$ we mean the positive valued function defined on the set of n-simplices of \boldsymbol{K} such that ρ^{n} has
a positive value $\rho^{n}\left(s^{n}\right)$ for each n-simplex s^{n} of \boldsymbol{K}.
A product of an n-difference φ^{n} with an n-density ρ^{n} is defined as an n difference $\rho^{n} \varphi^{n}$ satisfying the condition

$$
\rho^{n} \varphi^{n}\left(s^{n}\right)=\rho^{n}\left(s^{n}\right) \varphi^{n}\left(s^{n}\right) \quad \text { for each } n \text {-simplex } s^{n} \in \boldsymbol{K}
$$

If $\rho^{n} \varphi^{n}$ is closed, i. e. $\Delta\left(\rho^{n} \varphi^{n}\right)=0$, then the n-difference φ^{n} is said to be closed with respect to the density ρ^{n} or ρ^{n}-closed. If $\rho^{n} \varphi^{n}$ is exact, then the n-difference φ^{n} is said to be exact with respect to the density ρ^{n} or ρ^{n}-exact.

The conjugate density $* \rho^{n}$ of an n-density ρ^{n} is defined as a ($3-n$)-density satisfying the condition

$$
* \rho^{n}\left(* s^{n}\right)=\rho^{n}\left(s^{n}\right) \quad \text { for each } n \text {-simplex } s^{n} \in \boldsymbol{K} .
$$

An n-difference φ^{n} is said to be harmonic with respect to a density ρ^{n} or ρ^{n} harmonic if φ^{n} is closed and $* \varphi^{n}$ is $* \rho^{n}$-closed. By the definition, an n-difference φ^{n} is ρ^{n}-harmonic if and only if the ($3-n$)-difference $*\left(\rho^{n} \varphi^{n}\right)$ is $*\left(1 / \rho^{n}\right)$-harmonic.
2. The inner product with a density and orthogonal projection. Let ρ^{n} ($n=0,1,2,3$) be a fixed n-density on \boldsymbol{K}, and let φ^{n} and ψ^{n} be arbitrary n-differences on \boldsymbol{K}. Then the inner product $\left(\varphi^{n}, \psi^{n}\right)_{\rho}=\left(\varphi^{n}, \phi^{n}\right)_{\rho, \boldsymbol{K}}$ of φ^{n} and ψ^{n} with the density ρ^{n} is defined by

$$
\begin{equation*}
\left(\varphi^{n}, \psi^{n}\right)_{\rho}=\left(\sqrt{\rho^{n}} \varphi^{n}, \sqrt{\rho^{n}} \psi^{n}\right)_{\boldsymbol{K}}=\left(\rho^{n} \varphi^{n}, \psi^{n}\right)_{\boldsymbol{K}} \quad(n=0,1,2,3), \tag{4.1}
\end{equation*}
$$

where $\left(\sqrt{\rho^{n}} \varphi^{n}, \sqrt{\rho^{n}} \psi^{n}\right)$ is the inner product of $\sqrt{\rho^{n}} \varphi^{n}$ and $\sqrt{\rho^{n}} \psi^{n}$ defined in in §3. 1.

By the definitions (4.1), (3.2) and (3.1), we have

$$
\begin{align*}
& \left(\psi^{n}, \varphi^{n}\right)_{\rho}=\left(\bar{\varphi}^{n}, \bar{\psi}^{n}\right)_{\rho} \tag{4.2}\\
& \left(* \varphi^{n}, * \psi^{n}\right)_{* \rho}=\left(\varphi^{n}, \psi^{n}\right)_{\rho} \tag{4.3}
\end{align*}
$$

The norm $\left\|\varphi^{n}\right\|_{\rho}=\left\|\varphi^{n}\right\|_{\rho, \boldsymbol{K}}$ of φ^{n} with the density ρ^{n} is defined by

$$
\begin{equation*}
\left\|\varphi^{n}\right\|_{\rho}=\sqrt{\left(\varphi^{n}, \varphi^{n}\right)_{\rho}}=\sqrt{\left(\rho^{n} \varphi^{n}, \varphi^{n}\right)} \quad(n=0,1,2,3) . \tag{4.4}
\end{equation*}
$$

Let us denote the Hilbert space of all n-differences φ^{n} on \boldsymbol{K} with $\left\|\varphi^{n}\right\|_{\rho}<\infty$ by Γ^{ρ}, for a fixed $n=1$ or 2 . Furthermore we define the closed subspaces of Γ^{ρ} as follows:

$$
\begin{aligned}
& \Gamma_{c}^{\rho}=\left\{\varphi^{n} \mid \varphi^{n} \text { is closed, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{e}^{\rho}=\left\{\varphi^{n} \mid \varphi^{n} \text { is exact, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{c}^{\rho *}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is closed, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{e}^{\rho *}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is exact, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{\rho c}=\left\{\varphi^{n} \mid \varphi^{n} \text { is } \rho^{n} \text {-closed, } \varphi^{n} \in \Gamma^{\rho}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{\rho e}=\left\{\Gamma^{n} \mid \varphi^{n} \text { is } \rho^{n} \text {-exact, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{\rho c}^{*}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is } * \rho^{n} \text {-closed, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{\rho e}^{*}=\left\{\varphi^{n} \mid * \varphi^{n} \text { is } * \rho^{n} \text {-exact, } \varphi^{n} \in \Gamma^{\rho}\right\}, \\
& \Gamma_{\rho h}=\left\{\varphi^{n} \mid \varphi^{n} \text { is } \rho^{n} \text {-harmonic, } \varphi^{n} \in \Gamma^{\rho}\right\} .
\end{aligned}
$$

Then it is obvious that $\Gamma_{e}^{\rho} \subset \Gamma_{c}^{\rho}, \Gamma_{\rho e} \subset \Gamma_{\rho c}$ and $\Gamma_{\rho h}=\Gamma_{c}^{\rho} \cap \Gamma_{\rho c}^{*}$.
Let \boldsymbol{K} be a closed complex polyhedron. Then, by an argument similar to Theorem 3.2 we can prove the orthogonal decompositions

$$
\begin{aligned}
& \Gamma^{\rho}=\Gamma_{\rho c} \dot{+} \Gamma_{e}^{\rho *}=\Gamma_{\rho c}^{*} \dot{+} \Gamma_{e}^{\rho}, \\
& \Gamma^{\rho}=\Gamma_{c}^{\rho} \dot{+} \Gamma_{\rho e}^{*}=\Gamma_{c}^{\rho *} \dot{+} \Gamma_{\rho e}
\end{aligned}
$$

for the Hilbert space Γ^{ρ} of n-differences $(n=1,2)$. Hence we obtain the orthogonal decompositions

$$
\begin{aligned}
& \Gamma^{\rho}=\Gamma_{\rho h}+\Gamma_{e}^{\rho} \dot{+} \Gamma_{\rho e}^{*}, \\
& \Gamma_{c}^{\rho}=\Gamma_{\rho h}+\Gamma_{e}^{\rho} .
\end{aligned}
$$

Similarly, on a compact bordered or an open complex polyhedron \boldsymbol{K}, we can also show the orthogonal decompositions for the Hilbert space Γ^{ρ} which are analogous to those in $\S 3.4$ and $\S 3.5$.

References

[1] Ahlfors, L. V. and L. Sario, Riemann surfaces, Princeton University Press, 1960.
[2] Blanc, C., Les réseaux Riemanniens, Comm. Math. Helv., 13 (1940), 54-67.
[3] Courant, R., K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74.
[4] De Rham, G., Variétés différentiables, Hermann, Paris, 1955.
[5] Lelong-Ferrand, J., Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris (1955).
[6] Mizumoto, H., A finite-difference method on a Riemann surface, Hiroshima Math. J., 3 (1973), 277-332.

