H. MIZUMOTO KODAI MATH. SEM. REP. 27 (1976), 257-270

ON HARMONIC DIFFERENCE FORMS ON A MANIFOLD

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Hisao Mizumoto

Introduction.

In the present note we aim to obtain an orthogonal decomposition theorem of difference forms on a *polyangulation* of a 3-dimensional manifold which is analogous to de Rham-Kodaira's theory on a Riemannian manifold.

In the previous paper [6], we concerned ourselves with the problem of constructing a theory of discrete harmonic and analytic differences on a polyhedron and the problem of approximating harmonic and analytic differentials on a Riemann surface by harmonic and analytic differences respectively, where our definition of a polyhedron differs from the ordinary one based on a triangulation and admits also a polygon and a lune as 2-simplices (cf. § 1. 1 of [6]). In order to set the definitions of a conjugate difference, we introduced concepts of a conjugate polyhedron and a complex polyhedron. In the present note, we shall also introduce similar concepts of a conjugate polyhedron and a complex polyhedron (cf. § 1. 3) on a 3-dimensional manifold, and we shall show that on such a complex polyhedron a theory of harmonic difference forms analogous to de Rham-Kodaira's theory on Riemannian manifold is obtained.

§1. Foundation of topology.

1. Polyangulation. Let E^s be the 3-dimensional euclidean space. By a *euclidean* 0-simplex we mean a point on E^s . By a *euclidean* 1-simplex we mean a closed line segment or a closed circular arc. By a *euclidean* 2-simplex we mean a closed polygon on a hyperplane or a convex surface, surrounded by a finite number (≥ 2) of segments and circular arcs. A lune (biangle) and a triangle are also admitted as a euclidean 2-simplex. By a *euclidean* 3-simplex we mean a closed convex polyhedron surrounded by a finite number (≥ 2) of such polygons (euclidean 2-simplices). A dihedron and a trihedron (closed convex polyhedra surrounded by two polygons and three ones respectively) are also admitted as a euclidean 3-simplex.

Let F be a 3-dimensional orientable manifold. By an *n*-simplex s^n (n=0, 1, 2, 3) on F we mean a pair of a euclidean *n*-simplex e^n and a one-to-one bi-

Received April 30, 1974,

continuous mapping ϕ of e^n into F. We shall write $s^n = [e^n, \phi]$ (n=0, 1, 2, 3). The image of e^n under ϕ is called the *carrier* of s^n , and is denoted by $|s^n|$; that is, $\phi(e^n) = |s^n|$. The images of the faces, edges and vertices of a euclidean 3-simplex e^s by ϕ are called *faces*, *edges* and *vertices* of $s^s = [e^s, \phi]$. Each face, each edge and each vertex of s^s is a 2-simplex, a 1-simplex and a 0-simplex respectively. We say that a point p belongs to s^n when $p \in |s^n|$ (n=0, 1, 2, 3).

Let us suppose that a collection K of 3-simplices is defined on F in such a way that each point p on F belongs to at least one 3-simplex in K and such that the following conditions (i), (ii), (iii) and (iv) are satisfied:

(i) if p belongs to a 3-simplex s^3 of K but is not on a face of s^3 , then s^3 is the only 3-simplex containing p and $|s^3|$ is a neighborhood of p;

(ii) if p belongs to a face s^2 of a 3-simplex s_1^3 in K but does not belong to an edge of s_1^3 , there is exactly one other 3-simplex s_2^3 in K such that $|s^2| \subset |s_1^3| \cap |s_2^3|$, s_1^3 and s_2^3 are the only 3-simplices containing p, and $|s_1^3| \cup |s_2^3|$ is a neighborhood of p;

(iii) if p belongs to an edge s^1 of a 3-simplex s_1^3 in K but is not a vertex of s_1^3 , there are a finite number of 3-simplices s_1^3, \dots, s_k^3 ($\kappa \ge 2$) such that each successive pair of 3-simplices s_j^3 , s_{j+1}^3 ($j=1, \dots, \kappa$; $s_{\kappa+1}^3 = s_1^3$) have at least one face in common, s_1^3, \dots, s_k^3 are the only 3-simplices containing p, and $|s_1^3| \cup \dots \cup |s_k^3|$ forms a neighborhood of p, where it is permitted that some pair of 3-simplices have two or more faces in common;

(iv) if p is a vertex of s_1^3 , there are a finite number of 3-simplices s_1^3, \dots, s_{ν}^3 , $(\nu \ge 2)$, each having p as a vertex, s_1^3, \dots, s_{ν}^3 are the only 3-simplices containing p, and $|s_1^3| \cup \dots \cup |s_{\nu}^3|$ forms a neighborhood of p.

Then, K is called a *polyangulation* of F or a *polyhedron*¹⁾, and F on which a polyangulation is defined, is called a *polyangulated manifold*.

Let Ω be a compact bordered subregion of F whose boundary consists of faces (2-simplices) of a polyangulation K. Then the collection of 3-simplices of K having their carriers in Ω is called a *compact bordered polyhedron*. If F is closed (open resp.), then K is said to be *closed* (open resp.).

Let K and L be two polyhedra. If every 3-simplex of L is a 3-simplex of K, then L is called a *subpolyhedron* of K and K is said to *contain* L.

2. Homology. On a polyhedron we can define a homology in the same manner as the case of a triangulated polyhedron. An ordered n-simplex (n=0,1,2,3) is defined in a similar way. An ordered n-simplex (n=0,1,2,3) is denoted by the same notation s^n as an n-simplex. The orientation of simplices induces an orientation of the manifold F.

For a fixed dimension n (n=0, 1, 2, 3) a free Abelian group $C_n(K)$ is defined by the following conditions (i) and (ii):

(i) all ordered *n*-simplices are generators of $C_n(K)$;

(ii) each element c^n of $C_n(K)$ can be represented in the form of finite sum

¹⁾ Throughout the present paper, the terminology "polyhedron" will be taken in this sense.

$$c^n = \sum_j x_j s_j^n$$
,

where x_j are integers. Each element of $C_n(K)$ is called an *n*-dimensional chain or an *n*-chain.

The boundary ∂ of an *n*-simplex s^n (n=1, 2, 3) is defined by

$$\partial s^n = s_1^{n-1} + \cdots + s_{\kappa}^{n-1}$$
 ($\kappa = 2$ if $n = 1$; $\kappa \ge 2$ if $n = 2, 3$),

where $s_1^{n-1}, \dots, s_n^{n-1}$ are vertices, edges and faces of s^n in the cases of n=1, 2, 3, respectively, with the orientation induced by the orientation of s^n . The boundary ∂s^0 of a 0-simplex s^0 is defined as 0; $\partial s^0=0$. The boundary of an *n*-chain $c^n = \sum_j x_j s_j^n$ (n=0, 1, 2, 3) is defined by

$$\partial c^n = \sum_j x_j \partial s_j^n$$
.

An *n*-chain whose boundary is zero, is called a *cycle*.

3. Complex polyhedron. If two open or closed polyangulations K and K^* of a common manifold F satisfy the following conditions (i) and (ii), then K^* (K resp.) is called the *conjugate polyhedron* of K (K^* resp.):

(i) To each 0-simplex s^0 of K and K*, there is exactly one 3-simplex s^3 of K* and K respectively such that $|s^0| \in |s^3|$. Then, s^3 and s^0 are said to be *conjugate* to s^0 and s^3 respectively, and the conjugate simplices of s^0 and s^3 are denoted by $*s^0$ and $*s^3$ respectively;

(ii) To each 1-simplex s^1 of K and K^* , there is exactly one 2-simplex s^2 of K^* and K respectively such that $|s^1|$ intersects $|s^2|$ at only one point. If the oriented 1-simplex s^1 runs through the oriented 2-simplex s^2 from the reverse side to the front side, then s^2 and s^1 are said to be *conjugate* to s^1 and s^2 respectively, and the conjugate simplices of s^1 and s^2 are denoted by $*s^1$ and $*s^2$ respectively.

By the definition, we have always $**s^n = *(*s^n) = s^n$ for n=0, 1, 2, 3.

The pair of K and K* is called a *complex polyangulation* of F or a *complex polyhedron*, and is denoted by $\mathbf{K} = \langle K, K^* \rangle$. A manifold F on which a complex polyangulation is defined, is called a *complex polyangulated manifold*. If F is open or closed, then $\mathbf{K} = \langle K, K^* \rangle$ is said to be *open* or *closed* respectively. Let L be a compact bordered subpolyhedron of K and L* be the sum of 3-simplices of K* having their carriers in |L|. Let us suppose that L^* is not vacuous and is connected. Then L^* is the maximal compact bordered subpolyhedron of K* under the condition $|L^*| \subset |L|$. The pair $\mathbf{L} = \langle L, L^* \rangle$ is called a *compact bordered complex polyhedron*.

Let $K = \langle K, K^* \rangle$ and $L = \langle L, L^* \rangle$ be two complex polyhedra. If L and L* are subpolyhedra of K and K* respectively, then L is called a *complex sub-polyhedron* of K.

By an *n*-chain X (*n*=0, 1, 2, 3) of a complex polyhedron K, we mean a formal sum $X=X_1+X_2$ of an *n*-chain X_1 of K and an *n*-chain X_2 of K^* . Here we

agree that if **K** is compact bordered then the conjugate 2-simplex $*s^1$ of each 1-simplex $s^1 \in \partial K$ and the conjugate 1-simplex $*s^2$ of each 2-simplex $s^2 \in \partial K$ is admitted as a generator of $C_2(K^*)$ and that of $C_1(K^*)$ respectively, and thus X_2 is precisely an *n*-chain of $K^* + \{*s^1, *s^2 | s^1, s^2 \in \partial K\}$. The boundary ∂X is defined by $\partial X = \partial X_1 + \partial X_2$. X is said to be homologous to zero, denoted by $X \sim 0$, if and only if $X_1 \sim 0$ and $X_2 \sim 0$.

4. Complex boundary. Let $K = \langle K, K^* \rangle$ be a compact bordered complex polyhedron. Now we shall try to define a new polyhedron K^{*+} such that $K^* \subset K^{*+}$ and $|K^{*+}| = |K|$. Let s^2 be an arbitrary 2-simplex of ∂K . Then the carrier $|*s^2|$ of the conjugate 1-simplex $*s^2$ is divided into two portions by the point $p = |s^2| \cap |*s^2|$. We divide $*s^2$ into two 1-simplices s_1^1 and s_2^1 whose carriers are the portions of $|*s^2|$ lying on the reverse side and the front side of s^2 respectively. Then s_1^1 is called the *conjugate half 1-simplex of s^2 with respect to \partial K* and is denoted by $*s^2$. The terminal vertex of s_1^1 , whose carrier lies on $|s^2|$, is called the *conjugate of s^2 on \partial K* and is denoted by $*s^2(\partial K)$.

Let s^1 be an arbitrary oriented 1-simplex of ∂K . Then there exist exactly two oriented 2-simplices σ_1^2 and σ_2^2 of ∂K such that s^1 is a common edge of σ_1^2 and σ_2^2 , where s^1 is assumed to have the orientation induced by the orientation of σ_2^2 and thus of $-\sigma_1^2$. Let s_1^3, \dots, s_k^3 ($\kappa \ge 1$) be the collection of 3-simplices of Khaving s^1 as their common edge such that σ_1^2 and σ_2^2 are the faces of s_1^3 and s_k^3 respectively, and such that each successive pair s_j^3 , s_{j+1}^3 of 3-simplices has a common face s_j^2 with the edge s^1 , where s_j^2 is assumed to be oriented so that the orientation of s_j^2 induces that of s^1 . Here if $\kappa=1$, then σ_1^2 and σ_2^2 are the faces of the common 3-simplex $s_1^3=s_k^3$, and $\{s_j^2\}_{j=1}^{\kappa-1}=\emptyset$. Let σ_1^0 and σ_2^0 be the terminal vertices of $*\sigma_1^2$ and $*\sigma_2^2$ lying on σ_1^2 and σ_2^2 respectively. We define a new 1simplex σ^1 with $\partial\sigma^1=\sigma_2^0-\sigma_1^0$ whose carrier $|\sigma^1|$ is a line segment lying on $|\sigma_2^2|$ $\cup |\sigma_1^2|$ and intersects $|s^1|$ at only one point. The 1-simplex σ^1 is said to be *conjugate to* s^1 on ∂K and is denoted by $*s^1(\partial K)$. Furthermore we define a new 2-simplex σ^2 such that

(1.1)
$$\partial \sigma^2 = -*s^1(\partial K) - *\sigma_1^2 + \sum_{j=1}^{\kappa-1} *s_j^2 + *\sigma_2^2.$$

The 2-simplex σ^2 is called the *conjugate half 2-simplex of* s^1 with respect to ∂K and is denoted by $*s^1$.

Let s^0 be an arbitrary 0-simplex of ∂K . Let s_1^i, \dots, s_ν^1 ($\nu \ge 2$) be the collection of 1-simplices of K whose common initial vertex is s^0 , and let s_1^i, \dots, s_μ^1 ($\mu \le \nu$) be the collection of those lying on ∂K . Then we define a new 2-simplex σ^2 with $|\sigma^2| \subset |\partial K|$ such that

$$\partial \sigma^2 = \sum_{j=1}^{\mu} * S_j^1(\partial K)$$

The 2-simplex σ^2 is said to be *conjugate to* s^0 on ∂K and is denoted by $*s^0(\partial K)$. Furthermore we define a new 3-simplex σ^3 such that

(1.2)
$$\partial \sigma^3 = *s^0(\partial K) + \sum_{j=1}^{\mu} *s^1_j + \sum_{j=\mu+1}^{\nu} *s^1_j,$$

where if $\mu = \nu$, then the last term of (1.2) is vacuous. The 3-simplex σ^3 is called the *conjugate half 3-simplex of s*⁰ with respect to ∂K and is denoted by $*s^0$.

The (simple) boundary $\partial \mathbf{K} = \langle \partial K, \partial K^* \rangle$ of \mathbf{K} is defined by the sum of the 1-chains ∂K and ∂K^* . Next, by K^{*+} we denote the new polyhedron defined as the sum of all 3-simplices of K^* and the conjugate half 3-simplices of all 0-simplices $s^0 \in \partial K$ with respect to ∂K . Then $|K^{*+}| = |K|$. The sum of ∂K and ∂K^{*+} is called the *complex boundary* of \mathbf{K} and denoted by $\partial \mathbf{K} = \langle \partial K, \partial K^{*+} \rangle$, where ∂K^{*+} is the 2-chain defined as the sum of $*s^0(\partial K)$ for all $s^0 \in \partial K$. Throughout the present paper we shall preserve these notations.

§2. Differences on a polyhedron.

1. Difference calculus. Let $K = \langle K, K^* \rangle$ be an arbitrary complex polyhedron. By an *n*-th order difference or *n*-difference φ^n on K (*n*=0, 1, 2, 3), we mean the complex valued function φ^n on the set of oriented *n*-simplices of K such that φ^n has a value $\varphi^n(s^n)$ for each oriented *n*-simplex s^n and $\varphi^n(-s^n) = -\varphi^n(s^n)$. A zero order difference φ^0 on K is also called a function on K.

We assume that differences of arbitrary order satisfy the linearity property:

$$(c_1\varphi^n + c_2\varphi^n)(s^n) = c_1 \cdot \varphi^n(s^n) + c_2 \cdot \varphi^n(s^n)$$
 (n=0, 1, 2, 3),

where φ^n and ψ^n are *n*-differences on **K**, and c_1 and c_2 are complex constants.

The multiplication of a 2-difference ϕ^2 with a 0-difference ϕ^0 is defined as a 2-difference satisfying the condition

$$\varphi^{0}\psi^{2}(s^{2}) = \psi^{2}\varphi^{0}(s^{2}) = \frac{1}{2} \{\varphi^{0}(s^{0}_{1}) + \varphi^{0}(s^{0}_{2})\}\psi^{2}(s^{2})$$

for each 2-simplex $s^2 \in \mathbf{K}$, where s_1^0 and s_2^0 are the 0-simplices such that $\partial * s^2 = s_2^0 - s_1^0$. The multiplication of a 3-difference ϕ^3 with a 0-difference φ^0 is defined as a 3-difference satisfying the condition

$$\varphi^0 \psi^3(s^3) = \varphi^0(*s^3) \psi^3(s^3)$$
 for each 3-simplex $s^3 \in \mathbf{K}$.

The exterior product of a 1-difference φ^1 and a 2-difference ψ^2 is defined as a 3-difference satisfying the condition

$$\varphi^1 \psi^2(s^3) = \psi^2 \varphi^1(s^3) = \frac{1}{2} \sum_{j=1}^{k} \varphi^1(*s_j^2) \psi^2(s_j^2)$$

for each 3-simplex $s^3 \in \mathbf{K}$, where $s_1^2, \dots, s_{\mathbf{x}}^2$ are the 2-simplices such that $\partial s^3 = s_1^2 + \dots + s_{\mathbf{x}}^2$.

The complex conjugate $\bar{\varphi}^n$ of an *n*-difference φ^n (n=0, 1, 2, 3) is defined by $\bar{\varphi}^n(s^n) = \overline{\varphi^n(s^n)}$.

The difference of an *n*-difference φ^n (n=0,1,2) is defined as an (n+1)-difference $\varDelta \varphi^n$ satisfying the condition

$$\varDelta \varphi^n(s^{n+1}) = \sum_{j=1}^k \varphi^n(s^n_j) \quad \text{for each } (n+1)\text{-simplex } s^{n+1} \in \mathbf{K},$$

where s_1^n, \dots, s_n^n are the *n*-simplices such that $\partial s^{n+1} = s_1^n + \dots + s_n^n$. The difference of a 3-difference φ^3 is defined as 0; $\Delta \varphi^3 = 0$. If $\Delta \varphi^n = 0$ (n=0, 1, 2, 3), then φ^n is said to be *closed*. If for an *n*-difference φ^n (n=1, 2, 3) there exists an (n-1)-difference φ^{n-1} such that $\varphi^n = \Delta \varphi^{n-1}$, then φ^n is said to be *exact*. Obviously, if φ^n is exact, then φ^n is closed. We can easily verify that the partial difference formula

(2.1)
$$\Delta(\varphi^{0}\psi^{2}) = (\Delta\varphi^{0})\psi^{2} + \varphi^{0}\Delta\psi^{2}$$

holds for a 0-difference φ^0 and a 2-difference ψ^2 .

2. Summation of differences. We can define the sum of an *n*-difference (n=0, 1, 2, 3) over an *n*-chain. Let $c^n = \sum_j x_j s_j^n$ be an *n*-chain (n=0, 1, 2, 3) of a complex polyhedron K. The sum of an *n*-difference φ^n over c^n is defined by

$$\int_{c^n} \varphi^n = \sum_j x_j \varphi^n(s_j^n) \quad (n = 0, 1, 2, 3).$$

The basic duality between a chain and a difference

(2.2)
$$\int_{c^n} \Delta \varphi^{n-1} = \int_{\partial c^n} \varphi^{n-1} \qquad (n=1, 2, 3)$$

is obvious, where c^n is an *n*-chain and φ^n is an *n*-difference. The formula for partial summation

(2.3)
$$\int_{c^3} (\mathcal{I}\varphi^0) \psi^2 = \int_{\partial c^3} \varphi^0 \psi^2 - \int_{c^3} \varphi^0 \mathcal{I}\psi^2$$

follows from (2.1) and (2.2).

The following two criteria are also obvious:

An *n*-difference φ^n (n=0, 1, 2) is closed if and only if $\sum_{c^n} \varphi^n = 0$ for every cycle c^n that is homologous to 0;

An *n*-difference φ^n (n=1, 2, 3) is exact if and only if $\int_{c^n} \varphi^n = 0$ for every cycle c^n .

If an *n*-difference φ^n (n=0,1,2) is closed, then the *period of* φ^n along an *n*-cycle c^n is defined by $\int_{c_n} \varphi^n$, which depends only on the homology class of c^n .

Now we shall define the *sum* of 3-difference over a complex polyhedron $\mathbf{K} = \langle K, K^* \rangle$. If **K** is compact bordered or closed, then the sum of a 3-difference φ^{s} over **K**

$$\int_{\mathbf{k}} \varphi^{s}$$

is defined as the sum of φ^3 over the 3-chain K because K is itself a 3-chain. If K is open, then we can set

(2.4)
$$\int_{\mathbf{x}} \varphi^{\mathbf{s}} = \lim_{c^{\mathbf{s}} \to \mathbf{x}} \int_{c^{\mathbf{s}}} \varphi^{\mathbf{s}}$$

provided that the limit exists, where c^{3} is a 3-chain of K such that $c^{3} \subset K$.

3. Conjugate differences. Let φ^n (n=0, 1, 2, 3) be an *n*-difference on a complex polyhedron K. Then the *conjugate difference* $*\varphi^n$ of φ^n is defined as a (3-n)-difference satisfying the condition

$$*\varphi^{n}(*s^{n}) = \varphi^{n}(s^{n})$$
 (*n*=0, 1, 2, 3)

for each *n*-simplex $s^n \in K$. Then we can easily see that

(2.5)
$$**\varphi^n = \varphi^n$$
 $(n=0, 1, 2, 3),$

(2.6)
$$*\varphi^n * \psi^{3-n} = \varphi^n \psi^{3-n}$$
 (n=0, 1, 2, 3).

An *n*-difference φ^n (n=1,2) is said to be *harmonic* if φ^n and $*\varphi^n$ are both closed. By (2.5) and the definition, φ^n and $*\varphi^n$ are simultaneously harmonic. Let u be a function (0-difference) on K. u is called a *harmonic function on* K if the difference Δu is harmonic. A function u is harmonic on K if and only if

$$u(s^0) = \frac{1}{\kappa} \sum_{j=1}^{\kappa} u(s_j^0)$$

for every 0-simplex s^0 of K whose carrier $|s^0|$ is in the interior of |K|, where $\partial s_j^1 = s_j^0 - s^0$ $(j=1, \dots, \kappa)$ and $s_1^1, \dots, s_{\kappa}^1$ are all 1-simplices having s^0 as a vertex.

§3. The Hilbert space of differences.

1. The inner product. Let φ^n and φ^n (n=0, 1, 2, 3) be two *n*-differences on a complex polyhedron $\mathbf{K} = \langle K, K^* \rangle$. We shall define the *inner product* $(\varphi^n, \varphi^n) = (\varphi^n, \varphi^n)_{\mathbf{K}}$ of φ^n and φ^n . If \mathbf{K} is closed, then it is defined by

$$(\varphi^n, \psi^n)_{\mathbf{K}} = \sum_{s^n \in \mathbf{K}} \varphi^n(s^n) \overline{\psi^n(s^n)} \qquad (n = 0, 1, 2, 3).$$

If K is compact bordered, then it is defined by

$$\begin{split} (\varphi^{0}, \psi^{0})_{\mathbf{K}} &= \sum_{s^{3} \in \mathbf{K}} \varphi^{0}(*s^{3}) \overline{\psi^{0}(*s^{3})} , \\ (\varphi^{n}, \psi^{n})_{\mathbf{K}} &= \sum_{s^{n} \in \mathcal{K} - \partial \mathcal{K}} \varphi^{n}(s^{n}) \overline{\psi^{n}(s^{n})} + \frac{1}{2} \sum_{s^{n} \in \partial \mathcal{K}} \varphi^{n}(s^{n}) \overline{\psi^{n}(s^{n})} \\ &+ \sum_{s^{3-n} \in \mathcal{K} - \partial \mathcal{K}} \varphi^{n}(*s^{3-n}) \overline{\psi^{n}(*s^{3-n})} \\ &+ \frac{1}{2} \sum_{s^{3-n} \in \partial \mathcal{K}} \varphi^{n}(*s^{3-n}) \overline{\psi^{n}(*s^{3-n})} \\ &(\varphi^{3}, \psi^{3})_{\mathbf{K}} = \sum_{s^{3} \in \mathbf{K}} \varphi^{3}(s^{3}) \overline{\psi^{3}(s^{3})} . \end{split}$$

If K is open, then it is defined by the limit process

$$(\varphi^n, \psi^n)_{\mathbf{K}} = \lim_{L \to \mathbf{K}} (\varphi^n, \psi^n)_L \qquad (n = 0, 1, 2, 3),$$

provided that the limit exists, where $L = \langle L, L^* \rangle$ is a compact bordered complex polyhedron such that $L \subset K$.

If K is closed or open, then we can easily see that

$$(\varphi^n, \psi^n)_{\mathbf{K}} = \sum_{\mathbf{K}} \varphi^n * \bar{\varphi}^n \qquad (n=0, 1, 2, 3).$$

If K is compact bordered, then we can easily verify that

$$\begin{split} (\varphi^n, \psi^n)_{\mathbf{K}} = & \int_{\mathbf{K}} \varphi^n \ast \bar{\psi}^n \qquad (n = 0, 3) , \\ (\varphi^1, \psi^1)_{\mathbf{K}} = & \int_{\mathbf{K}} \varphi^1 \ast \bar{\psi}^1 + \frac{1}{2} \sum_{s^1 \in \partial K} \varphi^1(s^1) \overline{\psi^1(s^1)} \\ & + \frac{1}{2} \sum_{s^2 \in \partial K^*} \varphi^1(\ast s^2) \overline{\psi^1(\ast s^2)} , \\ (\varphi^2, \psi^2)_{\mathbf{K}} = & \int_{\mathbf{K}} \varphi^2 \ast \bar{\psi}^2 + \frac{1}{2} \sum_{z^1 \in \partial K} \varphi^2(\ast s^1) \overline{\psi^2(\ast s^1)} \\ & + \frac{1}{2} \sum_{s^2 \in \partial K^*} \varphi^2(s^2) \overline{\psi^2(s^2)} . \end{split}$$

By the definition of the inner product, for every case of K and for n=0, 1, 2, 3, we have

$$(3.1) \qquad (*\varphi^n, *\psi^n) = (\varphi^n, \psi^n),$$

(3.2)
$$(\varphi^n, \psi^n) = (\bar{\psi}^n, \bar{\varphi}^n).$$

Let φ^n be an *n*-difference (n=0, 1, 2, 3) on a complex polyhedron K. Then the norm $\|\varphi^n\| = \|\varphi^n\|_K$ of φ^n is defined by

(3.3)
$$\|\varphi^n\|_{\mathbf{K}} = (\varphi^n, \varphi^n)_{\mathbf{K}}^{1/2}$$
 $(n=0, 1, 2, 3)$

Let us denote the Hilbert space of all *n*-differences φ^n on K with $\|\varphi^n\| < \infty$ by Γ , for a fixed n=1 or n=2. Furthermore, we define the closed subspaces of Γ as follows:

$$\begin{split} \Gamma_{e} &= \{\varphi^{n} | \varphi^{n} \text{ is closed, } \varphi^{n} \in \Gamma \} , \\ \Gamma_{e} &= \{\varphi^{n} | \varphi^{n} \text{ is exact, } \varphi^{n} \in \Gamma \} , \\ \Gamma_{n} &= \{\varphi^{n} | \varphi^{n} \text{ is harmonic, } \varphi^{n} \in \Gamma \} , \\ \Gamma_{e}^{*} &= \{\varphi^{n} | \ast \varphi^{n} \text{ is closed, } \varphi^{n} \in \Gamma \} , \\ \Gamma_{e}^{*} &= \{\varphi^{n} | \ast \varphi^{n} \text{ is exact, } \varphi^{n} \in \Gamma \} , \\ \Gamma_{n}^{*} &= \{\varphi^{n} | \ast \varphi^{n} \text{ is harmonic, } \varphi^{n} \in \Gamma \} , \end{split}$$

Then it is obvious that $\Gamma_h^* = \Gamma_h$, $\Gamma_e \subset \Gamma_c$, $\Gamma_h = \Gamma_c \cap \Gamma_c^*$.

2. The definition of φ^n on ∂K^{*+} . Let $\partial K = \langle \partial K, \partial K^{*+} \rangle$ be a complex boundary of a compact bordered complex polyhedron $K = \langle K, K^* \rangle$. We shall define an *n*-difference (n=0, 1, 2) on ∂K^{*+} .

Let φ^0 be a 0-difference on **K**. Then φ^0 is defined on ∂K^{*+} by

(3.4)
$$\varphi^{0}(\sigma^{0}) = \frac{1}{2} \{\varphi^{0}(s_{1}^{0}) + \varphi^{0}(s_{2}^{0})\} \quad \text{for each 0-simplex } \sigma^{0} \text{ of } \partial K^{*+},$$

where $\partial * s^2 = s_2^0 - s_1^0$, s^2 is the 2-simplex of ∂K with $\sigma^0 = *s^2(\partial K)$ and φ^0 is assumed to be defined at s_2^0 .

Let φ^1 be a 1-difference on **K**. Then φ^1 is defined on ∂K^{*+} by

$$\varphi^{1}(\sigma^{1}) = -\frac{1}{2} \varphi^{1}(*\sigma_{1}^{2}) + \sum_{j=1}^{\kappa-1} \varphi^{1}(*s_{j}^{2}) + \frac{1}{2} \varphi^{1}(*\sigma_{2}^{2})$$

for each 1-simplex σ^1 of ∂K^{*+} , where

$$\partial \sigma^2 = -\sigma^1 - \ll \sigma_1^2 + \sum_{j=1}^{\kappa-1} \ll S_j^2 + \ll \sigma_2^2$$

 σ^2 is the conjugate half 2-simplex of s^1 with respect to ∂K , s^1 is the 1-simplex of ∂K with $\sigma^1 = *s^1(\partial K)$, and σ_1^2 , σ_2^2 and s_j^2 $(j=1, \dots, \kappa-1)$ is the notations defined in (1.1).

Let φ^2 be a 2-difference on **K**. Then φ^2 is defined on ∂K^{*+} by

$$\varphi^{2}(\sigma^{2}) = -\frac{1}{2} \sum_{j=1}^{\mu} \varphi^{2}(*S_{j}^{1}) - \sum_{j=\mu+1}^{\nu} \varphi^{2}(*S_{j}^{1})$$

for each 2-simplex σ^2 of ∂K^{*+} , where

$$\partial \sigma^3 = \sigma^2 + \sum_{j=1}^{\mu} * s_j^1 + \sum_{j=\mu+1}^{\nu} * s_j^1$$
,

 σ^3 is the conjugate half 3-simplex of s^0 with respect to ∂K , s^0 is the 0-simplex of ∂K with $\sigma^2 = *s^0(\partial K)$ and s_j^1 $(j=1, \dots, \nu)$ is the notations defined in (1.2).

The multiplication of a 2-difference ϕ^2 with a 0-difference ϕ^0 on $\partial K = \langle \partial K, \partial K^{*+} \rangle$ is defined as a 2-difference on ∂K satisfying the condition

$$\varphi^0 \psi^2(s^2) = \psi^2 \varphi^0(s^2) = \varphi^0(s^0) \psi^2(s^2)$$
 for each 2-simplex $s^2 \in \partial K$,

where if $s^2 \in \partial K$ then $s^0 = *s^2(\partial K)$ and if $s^2 \in \partial K^{*+}$ then $s^2 = *s^0(\partial K)$.

The exterior product of two 1-differences φ^1 and ψ^1 on $\partial K = \langle \partial K, \partial K^* \rangle$ is defined as a 2-difference $\varphi^1 \psi^1$ satisfying the condition

$$\varphi^1 \psi^1(s^2) = -\frac{1}{2} \sum_{j=1}^{\kappa} \varphi^1(\sigma_j^1) \psi^1(s_j^1)$$
 for each 2-simplex $s^2 \in \partial K$,

where $\partial s^2 = s_1^i + \cdots + s_k^i$, and if $s^2 \in \partial K$ then $\sigma_j^1 = *s_j^1(\partial K)$ and if $s^2 \in \partial K^{*+}$ then $s_j^1 = -*\sigma_j^1(\partial K)$.

For an arbitrary 1-difference φ^1 , we shall agree to define

(3.5)
$$\Delta \varphi^{1}(*s^{1})=0$$
 for each 1-simplex $s^{1} \in \partial K$.

3. Fundamental theorem.

THEOREM 3.1. If a complex polyhedron K is compact bordered or closed, then we have

(3.6)
$$(\varDelta \varphi^{n-1}, \psi^n)_{\mathbf{K}} = \int_{\partial \mathbf{K}} \varphi^{n-1} * \bar{\psi}^n + (\varphi^{n-1}, \, \delta \psi^n)_{\mathbf{K}} \quad (n=1, \, 2, \, 3) \,,$$

where δ is the operator $(-1)^n * \Delta *$ for an n-difference, and if **K** is closed then the first term of the right-hand side vanishes.

Proof. The case of n=1: By the definition of the inner product and (2.3), we see that

$$\begin{split} (\varDelta\varphi^{0}, \varphi^{1})_{\mathbf{K}} &= \int_{\mathbf{K}} \varDelta\varphi \ast \bar{\psi} + \frac{1}{2} \sum_{s^{1} \in \partial K} \varDelta\varphi(s^{1}) \overline{\psi(s^{1})} + \frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \varDelta\varphi(\ast s^{2}) \overline{\psi(\ast s^{2})} \\ &= \left(\int_{\partial \mathbf{K}} \varphi \ast \bar{\psi} + \frac{1}{2} \sum_{s^{1} \in \partial K} \varDelta\varphi(s^{1}) \overline{\psi(s^{1})} + \frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \varDelta\varphi(\ast s^{2}) \overline{\psi(\ast s^{2})} \right) \\ &- \int_{\mathbf{K}} \varphi \varDelta \ast \bar{\psi} \\ &= \left(\int_{\partial K} \varphi \ast \bar{\psi} + \frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \{\varphi(s^{0}_{1}) + \varphi(s^{0}_{2})\} \ast \overline{\psi(s^{2})} \right) \\ &+ \frac{1}{2} \sum_{s^{1} \in \partial K} \varDelta\varphi(s^{1}) \overline{\ast \psi(\ast s^{1})} + \frac{1}{2} \sum_{s^{2} \in \partial K^{*}} \varDelta\varphi(\ast s^{2}) \overline{\ast \psi(s^{2})} \right) \\ &+ (\varphi, \ \partial \psi)_{\mathbf{K}} \,, \end{split}$$

where $\varphi = \varphi^0$ and $\psi = \psi^1$, and $\partial * s^2 = s_2^0 - s_1^0$. Here if we note that

$$\begin{split} & \int_{\partial K^{*+}} \varphi * \bar{\psi} = \sum_{s^0 \in \partial K} \varphi(s^0) \overline{* \psi(*s^0(\partial K))} \\ & = \sum_{s^2 \in \partial K^*} \varphi(s^0_2) \overline{* \psi(s^2)} + \sum_{s^1 \in \partial K} \varDelta \varphi(s^1) \cdot \frac{1}{2} \overline{* \psi(*s^1)} \,, \end{split}$$

then we obtain (3.6).

The case of n=3 can be easily reduced to the case of n=1.

The case of n=2: By the definition of the inner product, we see that

(3.7)
$$(\varDelta \varphi^{1}, \psi^{2})_{\mathbf{K}} = \sum_{s^{2} \in K - \partial K} \varDelta \varphi(s^{2}) \overline{\ast \psi(\ast s^{2})} + \frac{1}{2} \sum_{s^{2} \in \partial K} \varDelta \varphi(s^{2}) \overline{\ast \psi(\ast s^{2})} + \sum_{s^{1} \in K - \partial K} \varDelta \varphi(\ast s^{1}) \overline{\ast \psi(s^{1})} + \frac{1}{2} \sum_{s^{1} \in \partial K} \varDelta \varphi(\ast s^{1}) \overline{\ast \psi(s^{1})},$$

where $\varphi = \varphi^1$ and $\psi = \psi^2$. By the definition (3.5) the last term of the right-hand side of (3.7) is equal to zero, and further we have

$$\sum_{s^2 \in K - \partial K} \Delta \varphi(s^2) \overline{\ast \psi(\ast s^2)} + \frac{1}{2} \sum_{s^2 \in \partial K} \Delta \varphi(s^2) \overline{\ast \psi(\ast s^2)}$$
$$= \sum_{s^1 \in K - \partial K} \varphi(s^1) \overline{\Delta \ast \psi(\ast s^1)} + \sum_{s^1 \in \partial K} \varphi(s^1) \overline{\ast \psi(\ast s^1(\partial K))}$$

•

Similarly, we have

$$\begin{split} (\varphi^{\mathbf{1}}, \, \delta \psi^{\mathbf{2}})_{\mathbf{K}} &= \sum_{s^{2} \in \mathcal{K} - \partial \mathcal{K}} \varphi(\ast s^{2}) \overline{\varDelta \ast \psi(s^{2})} + \frac{1}{2} \sum_{s^{2} \in \partial \mathcal{K}} \varphi(\ast s^{2}) \overline{\varDelta \ast \psi(s^{2})} \\ &+ \sum_{s^{1} \in \mathcal{K} - \partial \mathcal{K}} \varphi(s^{1}) \overline{\varDelta \ast \psi(\ast s^{1})} + \frac{1}{2} \sum_{s^{1} \in \partial \mathcal{K}} \varphi(s^{1}) \overline{\varDelta \ast \psi(\ast s^{1})} \\ &= \sum_{s^{1} \in \mathcal{K} - \partial \mathcal{K}} \overline{\ast \psi(s^{1})} \varDelta \varphi(\ast s^{1}) + \sum_{s^{1} \in \partial \mathcal{K}} \overline{\ast \psi(s^{1})} \varphi(\ast s^{1}(\partial \mathcal{K})) \\ &+ \sum_{s^{1} \in \mathcal{K} - \partial \mathcal{K}} \varphi(s^{1}) \overline{\varDelta \ast \psi(\ast s^{1})} \,. \end{split}$$

Hence we find that

$$\begin{split} (\varDelta \varphi^1, \, \psi^2)_{\mathbf{K}} - (\varphi^1, \, \delta \psi^2)_{\mathbf{K}} &= \sum_{s^1 \in \partial K} \varphi(s^1) \overline{*\psi(*s^1(\partial K))} - \sum_{s^1 \in \partial K} \overline{*\psi(s^1)} \varphi(*s^1(\partial K)) \\ &= \int_{\partial \mathbf{K}} \varphi^1 \overline{*\psi^2} \,. \end{split}$$

4. Orthogonal projection on a compact polyhedron. In $4\sim5$, we shall briefly state the method of orthogonal projection of the Hilbert space of differences which is analogous to de Rham-Kodaira's orthogonal decomposition theorem for differential forms on a Riemannian manifold.

THEOREM 3.2. Let K be a closed complex polyhedron. Then the orthogonal decomposition

$$\Gamma = \Gamma_c + \Gamma_e^* = \Gamma_c^* + \Gamma_e$$

holds for the Hilbert space Γ of n-differences (n=1,2).

Proof. By Theorem 3.1 we see that

$$(\phi^n, * \varDelta \varphi^{2-n}) = (-1)^{3-n} (\varDelta \phi^n, * \varphi^{2-n}) \quad (n=1, 2).$$

Hence $\Delta \phi^n = 0$ implies that $(\phi^n, *\Delta \varphi^{2-n}) = 0$, and thus ϕ^n is orthogonal to every element of Γ_e^* .

Conversely, if

$$(\varDelta \psi^n, *\varphi^{2-n}) = 0$$

holds for all (2-n)-differences φ^{2-n} on K, then we can easily verify that $\Delta \phi^n = 0$ on K. Hence on a closed complex polyhedron K, Γ_c is the orthogonal complement of Γ_e^* . Then by the general theory, we have the orthogonal decomposition $\Gamma = \Gamma_c + \Gamma_e^*$. The orthogonal decomposition $\Gamma = \Gamma_c^* + \Gamma_e$ for *n*-differences immediately follows from the decomposition $\Gamma = \Gamma_c + \Gamma_e^*$ for (3-n)-differences.

COROLLARY. (de Rham-Kodaira's decomposition theorem.)

$$\Gamma = \Gamma_h + \Gamma_e + \Gamma_e^* \qquad (n = 1, 2).$$

Let \pmb{K} be a compact bordered complex polyhedron. An *n*-difference φ^n

(n=0, 1, 2) on **K** is said to vanish on the complex boundary $\partial \mathbf{K}$ if $\varphi^n(s^n)=0$ for every *n*-simplex s^n of $\partial \mathbf{K} = \langle \partial K, \partial K^{*+} \rangle$. A closed *n*-difference φ^n (n=1, 2) is said to belong to the subspace Γ_{c0} if φ^n vanishes on $\partial \mathbf{K}$. Similarly, an exact *n*difference $\varphi^n = \Delta \varphi^{n-1}$ (n=1, 2) is said to belong to the subspace Γ_{c0} if $\varphi^{n-1}=0$ on the complex boundary $\partial \mathbf{K}$.

By Theorem 3.1 we have the formula

(3.8)
$$(\phi^n, *\varDelta \varphi^{2-n}) = \int_{\partial \kappa} \overline{\varphi^{2-n}} \phi^n + (-1)^{3-n} (\varDelta \phi^n, *\varphi^{2-n}) \quad (n=1, 2).$$

By making use of (3.8) and the similar argument to the theorem 3.2, for the Hilbert space Γ of *n*-differences (n=1,2) on a compact bordered complex polyhedron K we have the orthogonal decompositions

$$\Gamma = \Gamma_{c0} \dotplus \Gamma_e^* = \Gamma_{c0}^* \dotplus \Gamma_e,$$

$$\Gamma = \Gamma_c \dotplus \Gamma_{c0}^* = \Gamma_c^* \dotplus \Gamma_{c0}$$

and hence we have immediately the orthogonal decomposition

$$\Gamma = \Gamma_h + \Gamma_{e_0} + \Gamma_{e_0}^*.$$

5. Orthogonal projection on a generic polyhedron. Let us suppose that K is an open or closed complex polyhedron. An *n*-difference φ^n (n=0, 1, 2, 3) on K is said to have *compact support* if $\varphi^n(s^n)=0$ for all *n*-simplex $s^n \in K$ except for a finite number of *n*-simplices of K.

Let Γ'_{e_0} be the subclass of Γ_e consisting of the *n*-differences φ^n such that $\varphi^n = \varDelta \phi^{n-1}$ for an (n-1)-difference φ^{n-1} with compact support. We define the subspace Γ_{e_0} of Γ as the closure in Γ of Γ'_{e_0} . From the definition it follows that $\Gamma_{e_0} = \Gamma_e$ for a closed complex polyhedron K.

On an arbitrary complex polyhedron K we can prove that the following orthogonal decompositions for the Hilbert spaces of *n*-differences (n=1,2) hold:

$$\begin{split} \Gamma &= \Gamma_{e0} \div \Gamma_{e}^{*} = \Gamma_{e0}^{*} \div \Gamma_{c} , \\ \Gamma &= \Gamma_{h} \div \Gamma_{e0} \div \Gamma_{e0}^{*} , \\ \Gamma_{c} &= \Gamma_{h} \div \Gamma_{e0} , \\ \Gamma_{e} &= \Gamma_{he} \div \Gamma_{e0} , \end{split}$$

where $\Gamma_{he} = \Gamma_h \cap \Gamma_e$.

§4. Network flow problem.

1. ρ^n -harmonic differences. Let $K = \langle K, K^* \rangle$ be an arbitrary complex polyhedron.

By an *n*-th order density or *n*-density ρ^n on K (*n*=0, 1, 2, 3) we mean the positive valued function defined on the set of *n*-simplices of K such that ρ^n has

a positive value $\rho^n(s^n)$ for each *n*-simplex s^n of **K**.

A product of an *n*-difference φ^n with an *n*-density ρ^n is defined as an *n*-difference $\rho^n \varphi^n$ satisfying the condition

$$\rho^n \varphi^n(s^n) = \rho^n(s^n) \varphi^n(s^n)$$
 for each *n*-simplex $s^n \in \mathbf{K}$.

If $\rho^n \varphi^n$ is closed, i.e. $\Delta(\rho^n \varphi^n) = 0$, then the *n*-difference φ^n is said to be closed with respect to the density ρ^n or ρ^n -closed. If $\rho^n \varphi^n$ is exact, then the *n*-difference φ^n is said to be exact with respect to the density ρ^n or ρ^n -exact.

The conjugate density $*\rho^n$ of an *n*-density ρ^n is defined as a (3-n)-density satisfying the condition

$$*\rho^{n}(*s^{n}) = \rho^{n}(s^{n})$$
 for each *n*-simplex $s^{n} \in \mathbf{K}$.

An *n*-difference φ^n is said to be harmonic with respect to a density ρ^n or ρ^n -harmonic if φ^n is closed and $*\varphi^n$ is $*\rho^n$ -closed. By the definition, an *n*-difference φ^n is ρ^n -harmonic if and only if the (3-n)-difference $*(\rho^n\varphi^n)$ is $*(1/\rho^n)$ -harmonic.

2. The inner product with a density and orthogonal projection. Let ρ^n (n=0, 1, 2, 3) be a fixed *n*-density on K, and let φ^n and ψ^n be arbitrary *n*-differences on K. Then the inner product $(\varphi^n, \psi^n)_{\rho} = (\varphi^n, \psi^n)_{\rho,K}$ of φ^n and ψ^n with the density ρ^n is defined by

(4.1)
$$(\varphi^n, \psi^n)_{\rho} = (\sqrt{\rho^n} \varphi^n, \sqrt{\rho^n} \psi^n)_{\mathbf{K}} = (\rho^n \varphi^n, \psi^n)_{\mathbf{K}} \quad (n=0, 1, 2, 3),$$

where $(\sqrt{\rho^n}\varphi^n, \sqrt{\rho^n}\psi^n)$ is the inner product of $\sqrt{\rho^n}\varphi^n$ and $\sqrt{\rho^n}\psi^n$ defined in in §3. 1.

By the definitions (4.1), (3.2) and (3.1), we have

(4.2)
$$(\phi^n, \varphi^n)_{\rho} = (\bar{\varphi}^n, \bar{\psi}^n)_{\rho},$$

(4.3)
$$(*\varphi^n, *\psi^n)_{*\rho} = (\varphi^n, \psi^n)_{\rho}.$$

The norm $\|\varphi^n\|_{\rho} = \|\varphi^n\|_{\rho,\kappa}$ of φ^n with the density ρ^n is defined by

(4.4)
$$\|\varphi^n\|_{\rho} = \sqrt{(\varphi^n, \varphi^n)_{\rho}} = \sqrt{(\rho^n \varphi^n, \varphi^n)} \qquad (n = 0, 1, 2, 3).$$

Let us denote the Hilbert space of all *n*-differences φ^n on K with $\|\varphi^n\|_{\rho} < \infty$ by Γ^{ρ} , for a fixed n=1 or 2. Furthermore we define the closed subspaces of Γ^{ρ} as follows:

$$\begin{split} \Gamma_{e}^{\rho} &= \{\varphi^{n} | \varphi^{n} \text{ is closed, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{e}^{\rho} &= \{\varphi^{n} | \varphi^{n} \text{ is exact, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{e}^{\rho*} &= \{\varphi^{n} | *\varphi^{n} \text{ is closed, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{e}^{\rho*} &= \{\varphi^{n} | *\varphi^{n} \text{ is exact, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{\rho c}^{\rho} &= \{\varphi^{n} | \varphi^{n} \text{ is } \rho^{n} \text{-closed, } \varphi^{n} \in \Gamma^{\rho} \} , \end{split}$$

$$\begin{split} \Gamma_{\rho e} &= \{ \Gamma^{n} | \varphi^{n} \text{ is } \rho^{n} \text{-exact, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{\rho e}^{*} &= \{ \varphi^{n} | \ast \varphi^{n} \text{ is } \ast \rho^{n} \text{-closed, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{\rho e}^{*} &= \{ \varphi^{n} | \ast \varphi^{n} \text{ is } \ast \rho^{n} \text{-exact, } \varphi^{n} \in \Gamma^{\rho} \} , \\ \Gamma_{\rho h}^{*} &= \{ \varphi^{n} | \varphi^{n} \text{ is } \rho^{n} \text{-harmonic, } \varphi^{n} \in \Gamma^{\rho} \} . \end{split}$$

Then it is obvious that $\Gamma_e^{\rho} \subset \Gamma_c^{\rho}$, $\Gamma_{\rho e} \subset \Gamma_{\rho c}$ and $\Gamma_{\rho h} = \Gamma_c^{\rho} \cap \Gamma_{\rho c}^*$.

Let K be a closed complex polyhedron. Then, by an argument similar to Theorem 3.2 we can prove the orthogonal decompositions

$$\Gamma^{\rho} = \Gamma_{\rho c} \dotplus \Gamma_{e}^{\rho *} = \Gamma_{\rho c}^{*} \dotplus \Gamma_{e}^{\rho},$$

$$\Gamma^{\rho} = \Gamma_{c}^{\rho} \dotplus \Gamma_{\rho e}^{*} = \Gamma_{c}^{\rho *} \dotplus \Gamma_{\rho e}$$

for the Hilbert space Γ^{ρ} of *n*-differences (n=1, 2). Hence we obtain the orthogonal decompositions

$$\Gamma^{\rho} = \Gamma_{\rho\hbar} + \Gamma^{\rho}_{e} + \Gamma^{*}_{\rhoe},$$

$$\Gamma^{\rho}_{c} = \Gamma_{\rho\hbar} + \Gamma^{\rho}_{e}.$$

Similarly, on a compact bordered or an open complex polyhedron K, we can also show the orthogonal decompositions for the Hilbert space Γ^{ρ} which are analogous to those in § 3. 4 and § 3. 5.

References

- [1] AHLFORS, L.V. AND L. SARIO, Riemann surfaces, Princeton University Press, 1960.
- [2] BLANC, C., Les réseaux Riemanniens, Comm. Math. Helv., 13 (1940), 54-67.
- [3] COURANT, R., K. FRIEDRICHS AND H. LEWY, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74.
- [4] DE RHAM, G., Variétés différentiables, Hermann, Paris, 1955.
- [5] LELONG-FERRAND, J., Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris (1955).
- [6] MIZUMOTO, H., A finite-difference method on a Riemann surface, Hiroshima Math. J., 3 (1973), 277-332.

School of Engineering, Okayama University