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Introduction.

In the present note we aim to obtain an orthogonal decomposition theorem
of difference forms on a polyangulation of a 3-dimensional manifold which is
analogous to de Rham-Kodaira's theory on a Riemannian manifold.

In the previous paper [6], we concerned ourselves with the problem of con-
structing a theory of discrete harmonic and analytic differences on a polyhedron
and the problem of approximating harmonic and analytic differentials on a
Riemann surface by harmonic and analytic differences respectively, where our
definition of a polyhedron differs from the ordinary one based on a triangulation
and admits also a polygon and a lune as 2-simplices (cf. § 1. 1 of [6]). In order
to set the definitions of a conjugate difference, we introduced concepts of a
conjugate polyhedron and a complex polyhedron. In the present note, we shall
also introduce similar concepts of a conjugate polyhedron and a complex poly-
hedron (cf. § 1. 3) on a 3-dimensional manifold, and we shall show that on such
a complex polyhedron a theory of harmonic difference forms analogous to de
Rham-Kodaira's theory on Riemannian manifold is obtained.

§1. Foundation of topology.

1. Polyangulation. Let Es be the 3-dimensional euclidean space. By a
euclidean 0-simplex we mean a point on Es. By a euclidean 1-simplex we mean
a closed line segment or a closed circular arc. By a euclidean 2-sιmplex we
mean a closed polygon on a hyperplane or a convex surface, surrounded by a
finite number (2^2) of segments and circular arcs. A lune (biangle) and a triangle
are also admitted as a euclidean 2-simplex. By a euclidean ̂ -simplex we mean
a closed convex polyhedron surrounded by a finite number (^2) of such polygons
(euclidean 2-simplices). A dihedron and a trihedron (closed convex polyhedra
surrounded by two polygons and three ones respectively) are also admitted as
a euclidean 3-simplex.

Let F be a 3-dimensional orientable manifold. By an n-simplex sn (rc=0, 1,
2, 3) on F we mean a pair of a euclidean n-simplex en and a one-to-one bi-
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continuous mapping φ of en into F. We shall write sn=[_en, φ~\ (n=0, 1, 2, 3).
The image of en under φ is called the carrier of s71, and is denoted by \sn\
that is, 0 ( e n ) = ϊ s n | . The images of the faces, edges and vertices of a euclidean
3-simplex e3 by ^ are called faces, edges and vertices of s3=[>3, 0], Each face,
each edge and each vertex of s3 is a 2-simplex, a 1-simplex and a 0-simplex
respectively. We say that a point p belongs to sΛ when />e | s n | (n=0, 1, 2, 3).

Let us suppose that a collection if of 3-simplices is defined on F in such a
way that each point p on F belongs to at least one 3-simplex in K and such
that the following conditions (i), (ii), (iii) and (iv) are satisfied:

(i) if p belongs to a 3-simplex s3 of K but is not on a face of s3, then s3

is the only 3-simρlex containing p and | s 3 | is a neighborhood of p;
(ii) if p belongs to a face s2 of a 3-simρlex 5? in K but does not belong to

an edge of sf, there is exactly one other 3-simplex s\ in K such that | s 2 | c | s f |
Γ\ I si I, sf and si are the only 3-simplices containing p, and 15? | W | s| | is a neigh-
borhood of p;

(iii) if p belongs to an edge s1 of a 3-simplex sf in K but is not a vertex
of sf, there are a finite number of 3-simρlices sf, •••, s | (Λ;^2) such that each suc-
cessive pair of 3-simρlices s% s3

 + 1 O'=l, ••• , Λ;; sl+1=sf) have at least one face in
common, sf, •••, s% are the only 3-simplices containing p, and | sf | \J ••• \J \ s% | forms
a neighborhood of p, where it is permitted that some pair of 3-simplices have
two or more faces in common;

(iv) if p is a vertex of sf, there are a finite number of 3-simplices sf, •••, sj,
(vΞ>2), each having p as a vertex, sf, •• ,s? are the only 3-simplices containing
p, and |sf |U ••• W|sJ I forms a neighborhood of p.
Then, K is called a polyαngulαtion of F or a polyhedron1^ and F on which a
polyangulation is defined, is called a polyαngulαted manifold.

Let fl be a compact bordered subregion of F whose boundary consists of
faces (2-simplices) of a polyangulation K. Then the collection of 3-simplices of
K having their carriers in Ω is called a compact bordered polyhedron. If F is
closed (open resp.), then K is said to be closed {open resp.).

Let K and L be two polyhedra. If every 3-simplex of L is a 3-simρlex of
K, then L is called a subpolyhedron of /£ and if is said to contain L.

2. Homology. On a polyhedron we can define a homology in the same
manner as the case of a triangulated polyhedron. An ordered n-simplex (n=
0,1,2,3) is defined in a similar way. An ordered n-simplex (n=0,1,2,3) is
denoted by the same notation sn as an n-simplex. The orientation of simplices
induces an orientation of the manifold F.

For a fixed dimension n (n=0,1,2,3) a free Abelian group Cn(K) is defined
by the following conditions (i) and (ii):

(i) all ordered n-simplices are generators of Cn(K);
(ii) each element cn of Cn(K) can be represented in the form of finite sum

1) Throughout the present paper, the terminology "polyhedron" will be taken in
this sense
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where x3 are integers. Each element of Cn(K) is called an n-dimensional chain
or an n-chain.

The boundary d of an n-simplex sn ( n = l , 2, 3) is defined by

dsn=sΓ1+ '" +SJΓ1 (κ=2 if n = l ; Λ:^2 if n=2, 3),

where sf"1, •••, s^"1 are vertices, edges and faces of s71 in the cases of n = l , 2,3,
respectively, with the orientation induced by the orientation of sn. The bound-
ary ds° of a 0-simplex s° is defined as 0; 3s°=0. The boundary of an n-chain
cn=Σ,jXjSJ

ι (n=0,l,2,3) is defined by

An n-chain whose boundary is zero, is called a cycle.

3. Complex polyhedron. If two open or closed polyangulations K and K*
of a common manifold F satisfy the following conditions (i) and (ii), then K*
(K resp.) is called the conjugate polyhedron of K (K* resp.):

(i) To each 0-simplex s° of K and K*, there is exactly one 3-simplex s3 of
K* and K respectively such that | s° | e ] s81. Then, s3 and s° are said to be con-
jugate to s° and s3 respectively, and the conjugate simplices of s° and s3 are
denoted by *s° and *s3 respectively;

(ii) To each 1-simplex s1 of K and if*, there is exactly one 2-simplex s2

of K* and if respectively such that Is1! intersects \s2\ at only one point. If
the oriented 1-simplex s1 runs through the oriented 2-simplex s2 from the reverse
side to the front side, then s2 and s1 are said to be conjugate to s1 and s2 re-
spectively, and the conjugate simplices of s1 and s2 are denoted by *sJ and *s2

respectively.
By the definition, we have always **s n =*(*s n )=s n for n=0,1, 2,3.

The pair of K and K* is called a complex polyangulation of F or a complex
polyhedron, and is denoted by K=(K, ϋ?*>. A manifold F on which a complex
polyangulation is defined, is called a complex polyangulated manifold. If F is
open or closed, then K=(K, if*> is said to be open or closed respectively. Let
L be a compact bordered subpolyhedron of A" and L* be the sum of 3-simρlices
of K* having their carriers in \L\. Let us suppose that L* is not vacuous and
is connected. Then L* is the maximal compact bordered subpolyhedron of K*
under the condition | L* | C | L \. The pair L=(L, L*> is called a compact bordered
complex polyhedron.

Let K=(K, K*} and L=(L, L*> be two complex polyhedra. If L and L*
are subpolyhedra of K and ϋί* respectively, then L is called a complex sub-
polyhedron of ϋΓ.

By an n-chain X (n=0,1,2,3) of a complex polyhedron K, we mean a formal
sum X ^ X i + X j of an n-chain Xx of /C and an n-chain X2 of ϋf*. Here we
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agree that if K is compact bordered then the conjugate 2-simplex *s* of each
1-simplex s1<=dK and the conjugate 1-simplex *s2 of each 2-simplex s2<=dK is
admitted as a generator of C2{K*) and that of C^K*) respectively, and thus X2

is precisely an n-chain of K*+{*s1, *s2 |s2, s2^dK}. The boundary dX is defined
by dX=dX1+dX2. X is said to be homologous to zero, denoted by X~0, if and
only if X^O and X2~0.

4. Complex boundary. Let K=(K, K*} be a compact bordered complex
polyhedron. Now we shall try to define a new polyhedron K*+ such that K*czK*+

and | ϋΓ*+1 = | Λ"|. Let s2 be an arbitrary 2-simplex of dK. Then the carrier
|*s 2 | of the conjugate 1-simplex *s2 is divided into two portions by the point
P=\s2\Γ\\*s2\> We divide *s2 into two 1-simplices s\ and s| whose carriers are
the portions of |*s 2 | lying on the reverse side and the front side of s2 respec-
tively. Then s{ is called the conjugate half 1-simplex of s2 with respect to dK
and is denoted by * s2. T h e terminal vertex of s\, whose carrier lies on | s 2 | ,

is called the conjugate 0-simplex of s2 on dK and is denoted by *s\dK).

Let s1 be an arbitrary oriented 1-simplex of dK. Then there exist exactly
two oriented 2-simρlices σ\ and σ\ of dK such that s1 is a common edge of σ\
and σ\, where s1 is assumed to have the orientation induced by the orientation
of σ\ and thus of —σ{. Let sf, •••, si (Λ Ξ^I) be the collection of 3-simplices of K
having s1 as their common edge such that σ\ and σ\ are the faces of sf and s%
respectively, and such that each successive pair sj, sj+1 of 3-simplices has a
common face s* with the edge s1, where s) is assumed to be oriented so that the
orientation of s] induces that of s1. Here if Λ:=1, then σ\ and σl are the faces
of the common 3-simplex sf=s3

K, and {s|}*=}=0. Let σj and σ§ be the terminal
vertices of &σ\ and *σ\ lying on σ? and σ\ respectively. We define a new 1-
simplex σ1 with dσ1—σl—σ\ whose carrier 1 cr11 is a line segment lying on \σ\\
W|σf| and intersects \s*\ at only one point. The 1-simρlex σ1 is said to be con-
jugate to s1 on dK and is denoted by *s\dK). Furthermore we define a new
2-simplex σ2 such that

(1.1) 3 σ 2 = - * s 1 ( 3 A ' ) - * σ ϊ + Σ 1 * s 3 + M
3 = 1

The 2-simplex σ2 is called the conjugate half 2-simplex of s1 with respect to dK
and is denoted by &S1.

Let s° be an arbitrary 0-simρlex of dK. Let sj, •••, si (vΞ>2) be the collection
of 1-simplices of K whose common initial vertex is s°, and let s\, •• ,sj< {μ^v)
be the collection of those lying on dK. Then we define a new 2-simplex σ2 with
\σ2\a\dK\ such that

The 2-simplex σ2 is said to be conjugate to s° on dK and is denoted by *s°(dK).
Furthermore we define a new 3-simplex σ3 such that

(1.2) dσ*=*
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where if μ=v, then the last term of (1.2) is vacuous. The 3-simplex σ3 is called
the conjugate half 3-simplex of s° with respect to dK and is denoted by ^s°.

The {simple) boundary dK=(dK, 9if*> of K is defined by the sum of the
1-chains dK and 3X*. Next, by if*+ we denote the new polyhedron defined as
the sum of all 3-simplices of K* and the conjugate half 3-simplices of all 0-
simplices s°^dK with respect to dK. Then |/f*+| = \K\. The sum of dK and
dK*+ is called the complex boundary of K and denoted by dK=(dK, 3iΓ*+>,
where dK*+ is the 2-chain defined as the sum of *s°(dK) for all s°^dK Through-
out the present paper we shall preserve these notations.

§2. Differences on a polyhedron.

1. Difference calculus. Let K—{K, if *> be an arbitrary complex polyhedron.
By an n-th order difference or n-difference φn on K (n=0, 1, 2, 3), we mean

the complex valued function φn on the set of oriented n-simplices of K such
that φn has a value φn(sn) for each oriented n-simplex sn and φn{ — sn)= — φn(sn).
A zero order difference <p° on K is also called a function on K.

We assume that differences of arbitrary order satisfy the linearity property:

(c^n+c^n)(sn)=Cl^
n(sn)+c2^

n(sn) (n=0, 1, 2, 3),

where φn and ψn are n-differences on K, and cλ and c2 are complex constants.
The multiplication of a 2-difference ψ2 with a 0-difference φ° is defined as

a 2-difference satisfying the condition

for each 2-simplex s2^K, where s? and s°2 are the 0-simplices such that d*s2=
s°2—5?. The multiplication of a 3-difference ψz with a 0-difference φ° is defined as
a 3-difference satisfying the condition

φψ(^)=φ\*sz)φ\ss) for each 3-simplex SBEΞK.

The exterior product of a 1-difference ί̂)1 and a 2-difference »̂2 is defined as
a 3-difference satisfying the condition

φ ψ\s )—ψ φ\s )——

for each 3-simρlex s3eϋΓ, where sf, •••, sj are the 2-simplices such that dss=

The complex conjugate φn of an n-difference ψn (n=0,1, 2,3) is defined by

The difference of an n-difference ψn (w=0,1,2) is defined as an (n+1)-
difference J^)n satisfying the condition

Jφn(sn+1)=Σlφ
n(sn

J) for each (n+1)-simplex sn+1(=K,
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where sf, •••, s2 are the n-simplices such that dsn+1=:sf+ ••• +sS. The difference
of a 3-difference φs is defined as 0; J p 8 = 0 . If J ^ n = 0 (n=0,l,2,3), then φn is
said to be closed. If for an n-difference φn (n=1,2,3) there exists an (n—In-
difference ψ71'1 such that φn=dψn-1, then p n is said to be exact. Obviously, if
φn is exact, then φn is closed. We can easily verify that the partial difference
formula

(2.1)

holds for a 0-difference φ° and a 2-difference 02.

2. Summation of differences. We can define the sum of an n-difference
(n=0,1,2,3) over an n-chain. Let cn=yΣJxJs

r} be an n-chain (n=0,1,2,3) of a
complex polyhedron K. The sum of an n-difference φn over cn is defined by

(n=0, l ,2 ,3) .

The basic duality between a chain and a difference

(2.2) $ V ' Ή S Ψn-1 (n=l,2,3)

is obvious, where cπ is an n-chain and φn is an n-difference. The formula for
partial summation

(2.3)

follows from (2.1) and (2.2).

The following two criteria are also obvious:

An n-difference φn (n=0,1, 2) is closed if and only if Q φn=0 for every

cycle cn that is homologous to 0;

An n-difference ψn (rc=l, 2,3) is exact if and only if Q φn=0 for every

cycle cn.

If an n-difference φn (n=0,1, 2) is closed, then the period of <pn along an

n-cycle cn is defined by ^ φn, which depends only on the homology class of cn.

Now we shall define the sum of 3-difference over a complex polyhedron
K=(K, K*}. If Γ̂ is compact bordered or closed, then the sum of a 3-difference
φB over K

is defined as the sum of φ3 over the 3-chain K because K is itself a 3-chain.
If K is open, then we can set

(2 4)

provided that the limit exists, where c8 is a 3-chain of K such that csczK.
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3. Conjugate differences. Let φn (n=0,l,2,3) be an n-difference on a
complex polyhedron K. Then the conjugate difference *φn of ψn is defined as
a (3—n)-difference satisfying the condition

*φ"(*s«)=φn(s") (n=0, 1, 2, 3)

for each n-simplex sn<=K. Then we can easily see that

(2.5) **φ»=φ» (n=0, 1, 2, 3),

(2.6) *(pn*ψ*-n=φnψ*-n (n=0, 1, 2, 3).

An n-difference ^ n ( n = l , 2) is said to be harmonic if ψn and *^n are both
closed. By (2.5) and the definition, φn and *φn are simultaneously harmonic.
Let u be a function (O-difference) on ui. w is called a harmonic function on K
if the difference Δu is harmonic. A function u is harmonic on K if and only if

for every 0-simplex s° of ϋΓ whose carrier \s°\ is in the interior of \K\, where
ds^s^—s0 (y=l, •••, A:) and s{, •••, sί are all 1-simplices having s° as a vertex.

§ 3. The Hubert space of differences.

1. The inner product. Let ψn and ψn (n=0,1, 2,3) be two n-differences on
a complex polyhedron K=(K, if*>. We shall define the inner product (φn, ψn)=
(<pn, ψn)κ of φn and ψn. If K is closed, then it is defined by

(φn, ψn)κ= Σ φn(sn)ψ\sn) (n=0, 1, 2, 3).

If Γ̂ is compact bordered, then it is defined by

on, φn)κ= Έ κ<pn(sn)ψn(sn)+-j>- J

4—Q- ZJ ψ l * s )Ψ V*s \n—if * ) ,

= Σ

If K is open, then it is defined by the limit process

(φn, ψn)κ=Hm (φn, φn)L (n=0 f 1, 2, 3),
LK
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provided that the limit exists, where L=<L, L*> is a compact bordered complex
polyhedron such that LczK.

If K is closed or open, then we can easily see that

(φn, φn)κ=^κφ
n*Φn (n=0, 1, 2, 3).

If K is compact bordered, then we can easily verify that

n*Φn (n=0,3) ,

+4"

4- Σ
6 l

By the definition of the inner product, for every case of K and for n=Q, 1, 2, 3,
we have

(3.1) {*φn, *ψn)={φn, φn) ,

(3.2) (φn, ψn)=(ψn, Ψn) .

Let φn be an n-difference (n=0,1, 2, 3) on a complex polyhedron K. Then
the norm | | ^ | | = % n L of ψn is defined by

(3.3) \\φn\\κ=(φn, φn)Ψ (n=0, 1, 2, 3) .

Let us denote the Hubert space of all n-differences φn on K with | |^ n | |<oo by
Γ, for a fixed n = l or n—2. Furthermore, we define the closed subspaces of
Γ as follows:

Γc = {φn\φn is closed, ̂ G Γ } ,

Γe = {ψn\φn is exact, φn^Γ) ,

Γh={φn\φn is harmonic, p n εΓ} ,

Γ*={φn\*φn is closed, ^ G Γ } ,

Γ*={φn\*φn is exact, ^ G Γ } ,

Γ$={φn\*φn is harmonic, p n εΓ} .

Then it is obvious that Γ%=Γh, Γe(zΓc, Γh=Γcr\Γ*.
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2. The definition of φn on dK*+. Let dK=(dK,dK*+} be a complex
boundary of a compact bordered complex polyhedron K=(K, K*}. We shall
define an n-difference (n=0,1, 2) on 37^ *+.

Let φ° be a O-difference on K. Then °̂ is defined on dK*+ by

(3.4) φXσ^-Y-lφXs^+φXsl)} for each 0-simplex <x° of dK*+ ,

where 3*52=s§—s°u s2 is the 2-simplex of dK with σ ^ H ^ S i f ) and <p° is assumed
to be defined at sg.

Let p 1 be a 1-difference on ϋf. Then φ1 is defined on dK*+ by

for each 1-simρlex tf1 of 3/ί*+, where

J — JL

σ2 is the conjugate half 2-simplex of s1 with respect to dK, s1 is the 1-simplex of
dK with σ1=*s\dK), and σ\, σ\ and s) 0 = 1 , ••• ,ιc—1) is the notations defined in

(1.1).
Let φ2 be a 2-difference on jfiΓ. Then φ2 is defined on dK*+ by

for each 2-simρlex σ2 of 3iί*+, where

<73 is the conjugate half 3-simplex of s° with respect to dK, s° is the 0-simρlex of
dK with σ2—*s°(3iC) and 5) 0 = 1 , •••, v) is the notations defined in (1.2).

The multiplication of a 2-difference ψ2 with a O-difference °̂ on dK—(dK,
dK*+} is defined as a 2-difference on 91JL satisfying the condition

φψ(s2)=ψ2φXs2)=φ\s0)ψ\s2) for each 2-simplex

where if s2^dK then so=:*s2(3iί:) and if s2e3if*+ then s 2 =
The exterior product of two 1-differences ζ̂ 1 and ψ1 on dK=<dK, dK*} is

defined as a 2-difference φ1ψ1 satisfying the condition

φψ(s2)=—τ£-ib φ\σ))ψ\s)) for each 2-simplex s2e3ϋΓ,

where 3s2=s}H f-si, and if s2e3ii: then ^ =* sχ3iί:) and if s 2e3/ί*+ then
s}=-*σ}(3/ϊ").

For an arbitrary 1-difference φ1, we shall agree to define

(3.5) Jy)1(*s1)=O for each 1-simplex s
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3. Fundamental theorem.

THEOREM 3.1. // a complex polyhedron K is compact bordered or closed, then
we have

n-\ δψ»)κ ( n = l f 2, 3),(3.6)

where δ is the operator (—l)n*J* for an n-difference, and if K is closed then the
first term of the right-hand side vanishes.

Proof. The case of n=l: By the definition of the inner product and (2.3),
we see that

+

where <p=φ° and ψ=ψ1, and 9*s2=s§—sj. Here if we note that

then we obtain (3.6).
The case of n—Z can be easily reduced to the case of n = l .
The case of n=2: By the definition of the inner product, we see that

(3.7)
s

Σ
sl<=K-dK

where φ—φ1 and ^ = ^ 2 . By the definition (3.5) the last term of the right-hand
side of (3.7) is equal to zero, and further we have

si<=κ-dκ
sι)+ Σ φ(sl
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Similarly, we have

Hence we find that

4. Orthogonal projection on a compact polyhedron. In 4~5, we shall
briefly state the method of orthogonal projection of the Hubert space of differ-
ences which is analogous to de Rham-Kodaira's orthogonal decomposition theorem
for differential forms on a Riemannian manifold.

THEOREM 3.2. Let K be a closed complex polyhedron. Then the orthogonal
decomposition

Γ—Γ 4-Γ*—Γ*-1Γ

holds for the Hilbert space Γ of n-differences (n = l, 2).

Proof. By Theorem 3.1 we see that

(ψn, *Δφ2-n)=(-\)z-n(Δψn, *φz-n) ( n = l , 2).

Hence Δψn=0 implies that (ψn, *Δφ2-n)=0, and thus ψn is orthogonal to every
element of Γf.

Conversely, if

(Δψn, *<p2~n)=0

holds for all (2—n)-differences φ2'71 on K, then we can easily verify that Δψn=0
on K. Hence on a closed complex polyhedron K, Γc is the orthogonal comple-
ment of Γf. Then by the general theory, we have the orthogonal decomposition
Γ=ΓC + Γ?. The orthogonal decomposition Γ=ΓfJrΓe for n-differences im-
mediately follows from the decomposition Γ=Γc + Γf for (3—n)-differences.

COROLLARY, (de Rham-Kodaira's decomposition theorem.)

Γ=ΓhA-Γe+Γ* (n=l,2).

Let K be a compact bordered complex polyhedron. An n-difference φn
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(rc=0,1,2) on K is said to vanish on the complex boundary dK if φn(sn)=Q for
every ft-simplex sn of dK=(dK, 9if*+>. A closed ft-difference φn (n=l, 2) is said
to belong to the subspace Γc0 if φn vanishes on dK. Similarly, an exact n-
difference φn~dψn~1 ( n = l , 2) is said to belong to the subspace Γe0 if ψn~1=0
on the complex boundary dK.

By Theorem 3.1 we have the formula

(3.8) (ψn, *Jφ2-n)=§ ^ψn+(-iγ-n(Jψn

f *<p2~n) ( n = l , 2).

By making use of (3.8) and the similar argument to the theorem 3.2, for the
Hubert space Γ of n-differences ( n = l , 2) on a compact bordered complex poly-
hedron K we have the orthogonal decompositions

r=r c 0+r*=ra+rβ,

and hence we have immediately the orthogonal decomposition

5. Orthogonal projection on a generic polyhedron. Let us suppose that
K is an open or closed complex polyhedron. An w-difference <pn (w=0,1,2,3)
on K is said to have compact support if <pn(sn)=0 for all n-simplex sn<=K except
for a finite number of n-simplices of K.

Let Γ'e0 be the subclass of Γe consisting of the n-differences φn such that
φn=Jφ71-1 for an (n—Indifference φ71"1 with compact support. We define the
subspace Γe0 of Γ as the closure in Γ of Feo From the definition it follows
that Γe0=Γe for a closed complex polyhedron K.

On an arbitrary complex polyhedron K we can prove that the following
orthogonal decompositions for the Hubert spaces of n-differences (n=l,2) hold:

ί c—Γh

-t e=Γue eQ ,

where Γhe—Γhr\Γe.

§4. Network flow problem.

1. ^-harmonic differences. Let K=(K, K*} be an arbitrary complex poly-
hedron.

By an n-th order density or n-density ρn on K (n=0,1,2,3) we mean the
positive valued function defined on the set of ft-simplices of K such that pn has
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a positive value pn(sn) for each n-simplex sn of K.
A product of an n-difference <pn with an n-density pn is defined as an n-

difference ρnψn satisfying the condition

pnφ\sn)=pn(sn)φn(sn) for each n-simplex sn^K.

If ρnφn is closed, i. e. d(ρnφn)=0, then the n-difference φn is said to be closed
with respect to the density ρn or ρn-closed. If pnφn is exact, then the n-differ-
ence φn is said to be exact with respect to the density pn or pn-exact.

The conjugate density *ρn of an n-density pn is defined as a (3—n)-density
satisfying the condition

*pn(*sn)=pn(sn) for each n-simplex sn^K.

An n-difference ψn is said to be harmonic with respect to a density ρn or pn-
harmonic if φn is closed and *φn is ^"-closed. By the definition, an n-difference
φn is ^-harmonic if and only if the (3—n)-difference *(pnφn) is *(l/io

n)-harmonic.

2. The inner product with a density and orthogonal projection. Let ρn

(n=0,1, 2,3) be a fixed n-density on K, and let φn and ψn be arbitrary n-differ-
ences on K. Then the inner product (<pn, ψn)p=(φn, ψn)PfK of φn and ψn with
the density pn is defined by

(4.1) (φn, ψn)p=( V^φn, «Jψψn)κ={pnφn, φn)κ (n=0, 1, 2, 3),

where (Vp^φ71, V^ψ71) is the inner product of Vρnφn and Vpnψn defined in
in § 3. 1.

By the definitions (4.1), (3.2) and (3.1), we have

(4.2) (φn,φn)p=(φn,Φn)P,

(4.3) (*φn,*Φn\p=(φn,ψn)P.

The norm 11^11^=11^11^^ of φn with the density pn is defined by

(4.4) | |p»| |,= V(φn, ψn)P = V(pnφn, φn) (n=0, 1, 2, 3).

Let us denote the Hubert space of all n-differences φn on K with ||^>n||j0<oo by
Γp, for a fixed n—\ or 2. Furthermore we define the closed subspaces of Γp

as follows:

Γζ ={φn\φn is closed, φn

ΓS ={φn\φn is exact, <*»€

Γζ*={φn\*φn is closed, φnζ=Γ<>} ,

Γξ*={φn\*φn is exact, ^

Γpc = {φn\φn is ^-closed, p n
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Γpe={Γn\φ* is ^-exact, pΛ

Γ&={φn\*φn is ^"-closed,

Γ^={^ n | *^ n is */on-exact, ^ E P } ,

^Λ={^ n l^ n is ^-harmonic, φn^Γp}.

Then it is obvious that ΓζaΓξ, ΓpeaΓpc and Γph=Γβ

cnΓfc.
Let UL be a closed complex polyhedron. Then, by an argument similar to

Theorem 3.2 we can prove the orthogonal decompositions

-t —J. c ^ L Pe—•*• c * L pe

for the Hubert space Γp of n-differences (n=1,2). Hence we obtain the ortho-
gonal decompositions

Similarly, on a compact bordered or an open complex polyhedron K, we can
also show the orthogonal decompositions for the Hubert space Γp which are
analogous to those in § 3. 4 and § 3. 5.
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