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Introduction.

In the present note we aim to obtain an orthogonal decomposition theorem
of difference forms on a polyangulation of a 3-dimensional manifold which is
analogous to de Rham-Kodaira’s theory on a Riemannian manifold.

In the previous paper [6], we concerned ourselves with the problem of con-
structing a theory of discrete harmonic and analytic differences on a polyhedron
and the problem of approximating harmonic and analytic differentials on a
Riemann surface by harmonic and analytic differences respectively, where our
definition of a polyhedron differs from the ordinary one based on a triangulation
and admits also a polygon and a lune as 2-simplices (cf. §1. 1 of [6]). In order
to set the definitions of a conjugate difference, we introduced concepts of a
conjugate polyhedron and a complex polyhedron. In the present note, we shall
also introduce similar concepts of a conjugate polyhedron and a complex poly-
hedron (cf. § 1. 3) on a 3-dimensional manifold, and we shall show that on such
a complex polyhedron a theory of harmonic difference forms analogous to de
Rham-Kodaira’s theory on Riemannian manifold is obtained.

§1. Foundation of topology.

1. Polyangulation. Let E® be the 3-dimensional euclidean space. By a
euclidean 0-simplex we mean a point on E°. By a euclidean 1-simplex we mean
a closed line segment or a closed circular arc. By a euclidean 2-simplex we
mean a closed polygon on a hyperplane or a convex surface, surrounded by a
finite number (=2) of segments and circular arcs. A lune (biangle) and a triangle
are also admitted as a euclidean 2-simplex. By a euclidean 3-simplex we mean
a closed convex polyhedron surrounded by a finite number (=2) of such polygons
(euclidean 2-simplices). A dihedron and a trihedron (closed convex polyhedra
surrounded by two polygons and three ones respectively) are also admitted as
a euclidean 3-simplex.

Let F be a 3-dimensional orientable manifold. By an n-simplex s® (n=0, 1,
2,3) on FF we mean a pair of a euclidean n-simplex ¢ and a one-to-one bi-
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continuous mapping ¢ of e” into F. We shall write s"=[e", ¢] (n=0, 1, 2, 3).
The image of ¢” under ¢ is called the carrier of s*, and is denoted by |s"|;
that is, ¢(e®)=|s"|. The images of the faces, edges and vertices of a euclidean
3-simplex ¢® by ¢ are called faces, edges and vertices of s*=[¢*, ¢]. Each face,
each edge and each vertex of s® is a 2-simplex, a 1-simplex and a 0-simplex
respectively. We say that a point p belongs to s® when pe|s®| (n=0, 1, 2, 3).

Let us suppose that a collection K of 3-simplices is defined on F in such a
way that each point p on F belongs to at least one 3-simplex in K and such
that the following conditions (i), (ii), (iii) and (iv) are satisfied:

(i) if p belongs to a 3-simplex s* of K but is not on a face of s° then s
is the only 3-simplex containing p and |s®| is a neighborhood of p;

(ii) if p belongs to a face s® of a 3-simplex s} in K but does not belong to
an edge of s}, there is exactly one other 3-simplex s} in K such that |s*|C]|s|
N3], si and s are the only 3-simplices containing p, and |s}|\J|s}| is a neigh-
borhood of p;

(iii) if p belongs to an edge s' of a 3-simplex s} in K but is not a vertex
of s}, there are a finite number of 3-simplices s}, ---, si (¢k=2) such that each suc-
cessive pair of 3-simplices s}, s3., (j=1, -+, &; siy;=s}) have at least one face in
common, S, -, st are the only 3-simplices containing p, and |s}|\U --- U|s¢| forms
a neighborhood of p, where it is permitted that some pair of 3-simplices have
two or more faces in common;

(iv) if p is a vertex of s}, there are a finite number of 3-simplices s}, -+, s3,
(v=2), each having p as a vertex, $$,--+, s} are the only 3-simplices containing
p, and [s}|\U ---U|s)| forms a neighborhood of p.

Then, K is called a polyangulation of F or a polyhedron®, and F on which a
polyangulation is defined, is called a polyangulated manifold.

Let 2 be a compact bordered subregion of F whose boundary consists of
faces (2-simplices) of a polyangulation K. Then the collection of 3-simplices of
K having their carriers in 2 is called a compact bordered polyhedron. If F is
closed (open resp.), then K is said to be closed (open resp.).

Let K and L be two polyhedra. If every 3-simplex of L is a 3-simplex of
K, then L is called a subpolyhedron of K and K is said to contain L.

2. Homology. On a polyhedron we can define a homology in the same
manner as the case of a triangulated polyhedron. An ordered n-simplex (n=
0,1,2,3) is defined in a similar way. An ordered n-simplex (n=0,1,2,3) is
denoted by the same notation s® as an n-simplex. The orientation of simplices
induces an orientation of the manifold F.

For a fixed dimension n (n=0,1,2,3) a free Abelian group C,(K) is defined
by the following conditions (i) and (ii):

(i) all ordered n-simplices are generators of C,(K);

(ii) each element ¢® of C,(K) can be represented in the form of finite sum

1) Throughout the present paper, the terminology “polyhedron” will be taken in
this sense.
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"=231x,s7,
J

where x, are integers. Each element of C,(K) is called an n-dimensional chain
or an n-chain.
The boundary 0 of an n-simplex s* (n=1,2,3) is defined by

Os"=sp7 14 o+ +sp7t (k=2 if n=1; k=2 if n=2,3),

where sP71, .-, sg7! are vertices, edges and faces of s® in the cases of n=1,2,3,
respectively, with the orientation induced by the orientation of s®. The bound-
ary 0s° of a 0-simplex s° is defined as 0; ds°=0. The boundary of an n-chain
c"=3,x,8" (n=0,1,2,3) is defined by

Oc*=3x,0s2.
J
An n-chain whose boundary is zero, is called a cycle.

3. Complex polyhedron. If two open or closed polyangulations K and K*
of a common manifold F satisfy the following conditions (i) and (ii), then K*
(K resp.) is called the conjugate polyhedron of K (K* resp.):

(i) To each 0-simplex s° of K and K*, there is exactly one 3-simplex s* of
K* and K respectively such that |s°| <|s?|. Then, s® and s are said to be con-
jugate to s° and s® respectively, and the conjugate simplices of s” and s® are
denoted by *s° and xs® respectively;

(ii) To each l-simplex s' of K and K*, there is exactly one 2-simplex s?
of K* and K respectively such that |s'| intersects |s?| at only one point. If
the oriented 1-simplex s' runs through the oriented 2-simplex s® from the reverse
side to the front side, then s and s! are said to be conjugate to s* and s® re-
spectively, and the conjugate simplices of s' and s? are denoted by *s' and *s*
respectively.

By the definition, we have always #xs"=x#(xs")=s" for n=0, 1, 2, 3.

The pair of K and K* is called a complex polyangulation of F or a complex
polyhedron, and is denoted by K=<K, K*). A manifold F on which a complex
polyangulation is defined, is called a complex polyangulated manifold. 1f F is
open or closed, then K=<{K, K*) is said to be open or closed respectively. Let
L be a compact bordered subpolyhedron of K and L* be the sum of 3-simplices
of K* having their carriers in |L|. Let us suppose that L* is not vacuous and
is connected. Then L* is the maximal compact bordered subpolyhedron of K*
under the condition |L*|C|L|. The pair L=<L, L*) is called a compact bordered
complex polyhedron.

Let K=<(K, K*) and L=<L, L*) be two complex polyhedra. If L and L*
are subpolyhedra of K and K* respectively, then L is called a complex sub-
polyhedron of K.

By an n-chain X (n=0,1,2,3) of a complex polyhedron K, we mean a formal
sum X=X,+X, of an n-chain X, of K and an n-chain X, of K*. Here we
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agree that if K is compact bordered then the conjugate 2-simplex *s' of each
1-simplex s'€0K and the conjugate l-simplex *s® of each 2-simplex s*c0K is
admitted as a generator of C,(K*) and that of C,(K*) respectively, and thus X,
is precisely an n-chain of K*-+ {xs?, xs%|s', s?€0K}. The boundary 0.X is defined
by 0X=0X,+0X,. X is said to be homologous to zero, denoted by X~0, if and
only if X;~0 and X,~0.

4. Complex boundary. Let K=<K, K*> be a compact bordered complex
polyhedron. Now we shall try to define a new polyhedron K** such that K*C K**
and |K**|=|K|. Let s* be an arbitrary 2-simplex of dK. Then the carrier
|*s?| of the conjugate 1-simplex *s* is divided into two portions by the point
p=]s*|N|*s%|. We divide *s® into two l-simplices s! and s} whose carriers are
the portions of |*s?| lying on the reverse side and the front side of s* respec-
tively. Then s! is called the conjugate half l-simplex of s with respect to 0K
and is denoted by s The terminal vertex of s, whose carrier lies on |s?|,
is called the conjugate 0-simplex of s*> on 0K and is denoted by *s*(0K).

Let s' be an arbitrary oriented 1-simplex of 6K. Then there exist exactly
two oriented 2-simplices ¢} and o2 of 0K such that s is a common edge of o}
and o3, where s' is assumed to have the orientation induced by the orientation
of 0% and thus of —o}. Let s}, ---, s} (k=1) be the collection of 3-simplices of K
having s' as their common edge such that ¢} and o} are the faces of s} and s
respectively, and such that each successive pair s}, si;, of 3-simplices has a
common face s with the edge s', where s? is assumed to be oriented so that the
orientation of s? induces that of s'. Here if £=1, then ¢} and ¢} are the faces
of the common 3-simplex s{=si, and {s?}j={=0. Let o and ¢} be the terminal
vertices of o0} and %0} lying on o} and o} respectively. We define a new 1-
simplex o' with do'=0}—o09 whose carrier |o'| is a line segment lying on |0}
Ule?| and intersects |s| at only one point. The 1-simplex ¢* is said to be con-
jugate to s* on 0K and is denoted by *s(0K). Furthermore we define a new
2-simplex ¢® such that

(1.1) 802:—*s‘(aK)—%a%—i—E]l*s?—{—xa% .
J=1

The 2-simplex ¢% is called the conjugate half 2-simplex of s* with respect to 0K
and is denoted by s’

Let s° be an arbitrary 0-simplex of K. Let s}, ---,si (v=2) be the collection
of 1-simplices of K whose common initial vertex is s°, and let s, -, sk (p=v)
be the collection of those lying on K. Then we define a new 2-simplex ¢® with
lo*|c|0K]| such that

9ot =3 si(OK) .
J=1

The 2-simplex o° is said to be conjugate to s° on 0K and is denoted by #s%(9K).
Furthermore we define a new 3-simplex ¢® such that

1.2) 900 =42 (OK)+ Sxsi+ 3 #sh,
=1 I=p+1
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where if #=v, then the last term of (1.2) is vacuous. The 3-simplex o® is called
the conjugate half 3-simplex of s® with respect to 0K and is denoted by s°.

The (simple) boundary 0 K=<{0K, 0K*) of K is defined by the sum of the
1-chains 0K and 0K*. Next, by K** we denote the new polyhedron defined as
the sum of all 3-simplices of K* and the conjugate half 3-simplices of all 0-
simplices s°c0dK with respect to 0K. Then |K**|=|K|. The sum of 0K and
0K** is called the complex boundary of K and denoted by 0K=<(0K, 0K**),
where 0K** is the 2-chain defined as the sum of *s°(0K) for all s’€0K. Through-
out the present paper we shall preserve these notations.

§2. Differences on a polyhedron.

1. Difference calculus. Let K=<K, K*) be an arbitrary complex polyhedron.

By an n-th order difference or n-difference ¢™ on K (n=0, 1, 2, 3), we mean
the complex valued function ¢" on the set of oriented n-simplices of K such
that ¢ has a value ¢™(s*) for each oriented n-simplex s* and ¢™(—s")=—¢"(s").
A zero order difference ¢° on K is also called a funciion on K.

We assume that differences of arbitrary order satisfy the linearity property:

(™™ (sM)=c1r @"(s") F ¢ ¢"(s™)  (n=0, 1,2, 3),

where ¢" and ¢" are n-differences on K, and ¢, and ¢, are complex constants.
The multiplication of a 2-difference ¢* with a 0-difference ¢° is defined as
a 2-difference satisfying the condition

PP =g ps) =5 () + P D)

for each 2-simplex s’ K, where s} and s} are the 0-simplices such that 0xs?=
s§—s. The multiplication of a 3-difference ¢* with a 0-difference ¢° is defined as
a 3-difference satisfying the condition

PP (s*) = (xs*)p*(s®) for each 3-simplex s’ K.

The exterior product of a 1-difference ¢' and a 2-difference ¢* is defined as
a 3-difference satisfying the condition

gol¢2(83)=¢2¢1(88)Z_%élgol(*s?)gbZ(S.%)

for each 3-simplex s’ K, where s}, ---,s? are the 2-simplices such that 09s’=
L SRS o3

The complex conjugate " of an n-difference ¢" (n=0,1,2,3) is defined by
¢n(sn):¢n(sn).

The difference of an n-difference ¢ (n=0,1,2) is defined as an (n-+1)-
difference 4¢™ satisfying the condition

Ago"(s"“):ﬁ‘, o"(s?) for each (n+1)-simplex s"*'eK,
J=1
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where s?,---, s are the n-simplices such that 0s"*'=s7+ .-« +s2. The difference
of a 3-difference ¢® is defined as 0; dp*=0. If dp"=0 (n=0,1,2,3), then ¢" is
said to be closed. If for an n-difference ¢” (n=1,2,3) there exists an (n—1)-
difference ¢™! such that ¢"=4¢""!, then ¢" is said to be exact. Obviously, if
¢" is exact, then ¢" is closed. We can easily verify that the partial difference
formula

2.1) A(p°¢*)=(d¢)p*+ " 4¢*
holds for a 0-difference ¢° and a 2-difference ¢?
2. Summation of differences. We can define the sum of an n-difference

(n=0,1,2,3) over an n-chain. Let ¢"=2X,x,s7 be an n-chain (n=0,1,2,3) of a
complex polyhedron K. The sum of an n-difference ¢™ over c¢® is defined by

S o"=Sxgns)  (1=0,1,2,3).
The basic duality between a chain and a difference

(2.2) S, dem=S emt (n=1,2,3)

is obvious, where ¢" is an n-chain and ¢” is an n-difference. The formula for
partial summation

(23) S.de=§, ¢°9*=S o°44*

follows from (2.1) and (2.2).
The following two criteria are also obvious:

An n-difference ¢" (n=0,1,2) is closed if and only if S ¢"=0 for every
cn
cycle ¢® that is homologous to 0;
An n-difference ¢ (n=1,2,3) is exact if and only if Sngo":O for every

cycle c”.
If an n-difference ¢™ (n=0,1,2) is closed, then the period of ¢" along an

n-cycle c" is defined by Sngo", which depends only on the homology class of c”.

Now we shall define the sum of 3-difference over a complex polyhedron
K=<K, K*). If K is compact bordered or closed, then the sum of a 3-difference

¢* over K
3
S8

is defined as the sum of ¢® over the 3-chain K because K is itself a 3-chain.
If K is open, then we can set

(2.4) S ¢*=lim

¢3—K

provided that the limit exists, where ¢® is a 3-chain of K such that ¢*c K.
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3. Conjugate differences. Let ¢" (#=0,1,2,3) be an n-difference on a
complex polyhedron K. Then the conjugate difference @™ of ¢™ is defined as
a (3—n)-difference satisfying the condition

*@"(xsM)=¢"(s") (n=0,1,2,3)
for each n-simplex s"=K. Then we can easily see that
(2.5) k=" n=0,1,2,3),
(2.6) * QR =" h T (n=0, 1, 2, 3).

An n-difference ¢" (n=1,2) is said to be harmonic if ¢" and *¢" are both
closed. By (2.5) and the definition, ¢" and *¢" are simultaneously harmonic.
Let u be a function (0-difference) on K. u is called a harmonic function on K
if the difference du is harmonic. A function u is harmonic on K if and only if

()= u(s))
E =1
for every 0-simplex s° of K whose carrier |s°| is in the interior of |K|, where
0si=s9—s" (j=1, -, k) and s}, -+, st are all 1-simplices having s° as a vertex.
§ 3. The Hilbert space of differences.

1. The inner product. Let ¢"” and ¢" (n=0,1,2,3) be two n-differences on
a complex polyhedron K=<K, K*). We shall define the inner product (¢", $")=
(¢", ¢™)x of " and ¢". If K is closed, then it is defined by

(", ¢")x=sn§K e(sM(s®)  (n=0,1,2,3).
If K is compact bordered, then it is defined by

(@, )= 2 @"(xs")"(+s%)

@, 9= = gIFTE B (I
sPeK—9K sPedK
_|_ 2 ¢n(*sa—n)¢n(*ss—n)
$3-"eK—-3K

tg D P TFET  (1=1,2),
0K

s3-ng
(¢", §)x= T @' (sI°D.
If K is open, then it is defined by the limit process
(" ¢"x=lim (¢" ¢"):  (n=0,1,2,3),
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provided that the limit exists, where L=<L, L*) is a compact bordered complex
polyhedron such that LCK.
If K is closed or open, then we can easily see that

(0", ¢"x=S ¢™d"  (n=0,1,2,3).
K
If K is compact bordered, then we can easily verify that
(0" gMx=§ o™g"  (n=0,3),
K
1 1y 1, 71 L 10 AN 117 o1
(9" $)x =5 "+ +5 T IS
> ' (xs?)P(xs?),
s2eK*

(¢, $0x =G x5 X @H(xs)Fe)
K dejk

1
T3

R GGl

By the definition of the inner product, for every case of K and for n=0,1,2,3,
we have

3.1) (x@", %p™)=(¢", ¢),
(3.2) (¢, gM=(g", ¢").

Let ¢" be an n-difference (n=0,1,2,3) on a complex polyhedron K. Then
the norm [|¢"|=|¢"|lx of ¢ is defined by

(33) le™lx=(e" ¢Mx*  (n=0,1,2,3).

Let us denote the Hilbert space of all n-differences ¢" on K with [|¢"|<co by
I, for a fixed n=1 or n=2. Furthermore, we define the closed subspaces of
I" as follows:

I'.={¢p"|¢" is closed, p"l'},
I'y={¢"|¢" is exact, p"l'},
I'y={¢"| ¢ is harmonic, ¢"<l'},
I'*={p"|x¢™ is closed, "I},
If={¢"|*p" is exact, "I},
I't={¢™|*p" is harmonic, ¢"l'} .
Then it is obvious that I'¥=I",, I'.cl',, I',=I .NT¥.
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2. The definition of ¢" on 0K**. Let 0K=<0K,dK**> be a complex
boundary of a compact bordered complex polyhedron K=<{K, K*). We shall
define an n-difference (n=0,1,2) on 0K**

Let ¢° be a 0O-difference on K. Then ¢° is defined on 0K** by

(3.4) ¢°(o°)=%{¢°(s9)+¢°(sg)} for each 0-simplex ¢° of dK**,

where 0xs?=s}—s}, s® is the 2-simplex of 0K with ¢"=#s%0K) and ¢° is assumed

to be defined at sf.
Let ¢' be a l.difference on K. Then ¢' is defined on 0K** by

0= =P (Ho)+E, PP+ (xa)
for each 1-simplex ¢ of 0K**, where
0o*=—c'—xo}+ KE—I*S%-F%G% )
J=1

o? is the conjugate half 2-simplex of s* with respect to 0K, s' is the 1l-simplex of
0K with o'=#s'(0K), and o3, ¢} and s? (j=1, ---, £—1) is the notations defined in

1.1).
Let ¢* be a 2-difference on K. Then ¢* is defined on dK** by

20 -2 _____1__ £ 20 ol __ < 20 4 ol
Po)=—g D)= 3 o)
for each 2-simplex o® of 0K**, where
603=02+§‘_, EHEE » *5},
J=1 I=p+1

o® is the conjugate half 3-simplex of s° with respect to 0K, s° is the 0-simplex of
0K with o*=#s"(0K) and s! (=1, ---,v) is the notations defined in (1.2).

The multiplication of a 2-difference ¢* with a 0-difference ¢° on 0K=<(0K,
0K**> is defined as a 2-difference on 0K satisfying the condition

PP =" (sH)=¢"(s")¢*(s?)  for each 2-simplex s*cdK,

where if s?€0K then s"=#s*(0K) and if s2€0K** then s*=x*s%0K).
The exterior product of two l-differences ¢' and ¢' on 0K=<(0K, 0K*) is
defined as a 2-difference ¢'¢' satisfying the condition

golgbl(sz):——%—ﬁ}lgol(@)gbl(s}) for each 2-simplex s*cdK,
p3

where 0s?=s}+ --- +sk, and if s?€0K then ol=#s¥(0K) and if s’€dK** then
si=—x0}(0K).
For an arbitrary 1l-difference ¢', we shall agree to define

(3.5) Ap(xs")=0 for each l-simplex s*€dK .
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3. Fundamental theorem.

THEOREM 3.1. If a complex polyhedron K is compact bordered or closed, then
we have

(3.6) (g™, gMe=(, o" "+, 3N (1=1,2,3),

where 0 is the operator (—1)"xdx for an n-difference, and if K is closed then the
first term of the right-hand side vanishes.

Proof. The case of n=1: By the definition of the inner product and (2.3),
we see that

(dg", $0s=S Agrf+ 3 Ap(HF+5, 5 dp(x)g)

=(Saxso*¢7+—%— > dop(sHP(H)+ % szeza:x*d9"(*32)m>

sledk
=S, 04+¢
-1 S
e P RCERC I
1 —— 1 NI
+781§KA¢(31)*¢(*31)+ 5 szg‘_a_,x*dgo(*s )*¢(32))
+(S07 5¢)K ’
where p=¢" and ¢=¢?, and 0*s*=s3—s{. Here if we note that
Ty — 0 0,
Spes 049=, 2, 0(s)+PxOK))
_ 1 ——
= a2 PR T, B Ap(s) g5,
then we obtain (3.6).
The case of n=3 can be easily reduced to the case of n=1.
The case of n=2: By the definition of the inner product, we see that
1,52\ 2\ T 7 = o2, L 2\ T = 2Y
37 (¢, 9=, 3 A5, 3 Ag(eg )
1\e Ji7 oLy, L 1N ho( o)
+leKE_aKAgo(*s »P(s)+—5 sleza)KAgo(*s YxP(sh) ,

where ¢=¢' and ¢=¢?*. By the definition (3.5) the last term of the right-hand
side of (3.7) is equal to zero, and further we have

Ap(s PO+ B Ap(s G

Y
s2eK—9K

= 2. oOFGED+ B o geK)
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Similarly, we have

(¢, 3=, 2 ot TG+, 3 o) )

s2€0K

+sleK2—aK 50(81) *¢(*Sl)+—é-slezaK SD(SI)A*GL'(*Sl)

:sleI;—aK *gb(Sl)AgD(*SI)+31§K*¢(31)§0(*31<8K))
+315K223K§0(51)A*¢(*31) .

Hence we find that
(4%, $x—(g", 5¢Yx=, 33 (HPOER) — 3+ (s (0K)

:SOKSDIW'

4. Orthogonal projection on a compact polyhedron. In 4~5, we shall
briefly state the method of orthogonal projection of the Hilbert space of differ-
ences which is analogous to de Rham-Kodaira’s orthogonal decomposition theorem
for differential forms on a Riemannian manifold.

THEOREM 3.2. Let K be a closed complex polyhedron. Then the orthogonal
decomposition

r=r +r=rx+r.
holds for the Hilbert space I' of n-differences (n=1,2).
Proof. By Theorem 3.1 we see that
(@, #de*"=(=1)""(d¢", x¢*™)  (n=1,2).

Hence 4¢™=0 implies that (¢", *d¢*™")=0, and thus ¢ is orthogonal to every
element of ['*.
Conversely, if

(dgr, xp*™)=0

holds for all (2—n)-differences ¢*~™ on K, then we can easily verify that 4¢"=0
on K. Hence on a closed complex polyhedron K, I'. is the orthogonal comple-
ment of ['¥. Then by the general theory, we have the orthogonal decomposition
I'=I",+T'¥ The orthogonal decomposition I'=I"*¥+I", for n-differences im-
mediately follows from the decomposition I'=1I",+I"¥ for (3—n)-differences.

COROLLARY. (de Rham-Kodaira’s decomposition theorem.)
r=r,+r,+rs (n=1, 2).

Let K be a compact bordered complex polyhedron. An n-difference ¢"
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(n=0,1,2) on K is said to vanish on the complex boundary 0K if ¢"(s")=0 for
every n-simplex s of 0K=<0K, 0K**>. A closed n-difference ¢" (n=1, 2) is said
to belong to the subspace [, if ¢" vanishes on 0K. Similarly, an exact n-
difference ¢"=4¢"* (n=1,2) is said to belong to the subspace I, if ¢™ =0
on the complex boundary oK.

By Theorem 3.1 we have the formula

(38) (97, gt )= GG (=1 LG 1t (n=1,2).

By making use of (3.8) and the similar argument to the theorem 3.2, for the
Hilbert space I" of n-differences (n=1,2) on a compact bordered complex poly-
hedron K we have the orthogonal decompositions

I'=r+I¥=rx+r,,
I'=r +rx=r+r,,
and hence we have immediately the orthogonal decomposition

'+ +1%.

5. Orthogonal projection on a generic polyhedron. Let us suppose that
K is an open or closed complex polyhedron. An n-difference ¢" (n=0,1,2,3)
on K is said to have compact support if ¢"(s*)=0 for all n-simplex s"K except
for a finite number of n-simplices of K.

Let I';, be the subclass of I', consisting of the n-differences ¢" such that
p"=4¢"* for an (n—1)-difference ¢" ' with compact support. We define the
subspace I',, of I" as the closure in I of I'},, From the definition it follows

that I’,,=1I", for a closed complex polyhedron K.
On an arbitrary complex polyhedron K we can prove that the following
orthogonal decompositions for the Hilbert spaces of n-differences (n=1,2) hold:

I'=r,+r¥=ri+r.,
r=r,+r.+rx,
I'=r,+r,,,
=1+,

where I',=1,NT,.

§4. Network flow problem.

1. p™harmonic differences. Let K=<(X, K*) be an arbitrary complex poly-

hedron.
By an n-th order density or n-density p™ on K (n=0,1,2,3) we mean the

positive valued function defined on the set of n-simplices of K such that p™ has
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a positive value p"(s*) for each n-simplex s of K.
A product of an n-difference ¢" with an n-density p" is defined as an n-
difference p"¢" satisfying the condition

P " (sM)=p"(sM)p"(s™) for each n-simplex s"€ K.

If p"p™ is closed, i.e. 4(p"¢™)=0, then the n-difference ¢" is said to be closed
with respect to the density p" or p"-closed. If p"¢" is exact, then the n-differ-
ence ¢" is said to be exact with respect to the density p™ or p"-exact.

The conjugate density *p™ of an n-density p" is defined as a (3—n)-density
satisfying the condition

*0"(xs™)=p"(s") for each n-simplex s"<K.

An n-difference ¢" is said to be harmonic with respect to a density p" or p"-
harmonic if ¢™ is closed and *¢" is *p"-closed. By the definition, an n-difference
" is p™-harmonic if and only if the (3—n)-difference *(p"p") is *(1/p™)-harmonic.

2. The inner product with a density and orthogonal projection. Let p"
(n=0,1,2,3) be a fixed n-density on K, and let ¢" and ¢" be arbitrary n-differ-
ences on K. Then the inner product (¢", ¢™)o=(¢", ¢"o,x 0f ¢" and ¢" with
the density p™ is defined by

(4.1) (@™ 9Mo=(Vp"g", Vo "P"x=(p"¢", ¢")x  (n=0,1,2,3),

where (vp"¢", Vp"$") is the inner product of +/p"¢" and +/p"¢" defined in
in §3. 1.
By the definitions (4.1), (3.2) and (3.1), we have

(4.2) (@™, ¢")o=(", ™),
(43) (x@", *™).o=(9", ¢")s -

The norm |l¢™l,=ll¢"llo,x 0f @™ with the density p™ is defined by
(44) le™lo=~(¢" ¢™)p =~(0"¢" ¢")  (n=0,1,2,3).

Let us denote the Hilbert space of all n-differences ¢" on K with [¢"],<oco by
I'?, for a fixed n=1 or 2. Furthermore we define the closed subspaces of I'?

as follows :
I’ ={¢"|¢" is closed, p"=I"},

I't ={p"| " is exact, p"l'*},
I'*={p"|xp" is closed, """},
I'*={p"|xp" is exact, p"=l*},
I'pe={¢"|¢" is p"-closed, ¢"'?},
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Ip={I""¢" is p™exact, """},
I's={¢"|x¢™ is *p™-closed, ¢"=l*},
I'={p"|*p™ is *p™-exact, p"l*},
I' n={¢"|¢" is p"-harmonic, ¢},

Then it is obvious that I8 I, I'peClpe and I' py=I"8 NI},
Let K be a closed complex polyhedron. Then, by an argument similar to
Theorem 3.2 we can prove the orthogonal decompositions

[#=r, +T#=T%+T,
I*=I8 4+ Th=T"%+T,,

for the Hilbert space I'? of n-differences (n=1,2). Hence we obtain the ortho-
gonal decompositions
Ire=r,,+I't+I'%,,

Fg:th‘i‘Fg-

Similarly, on a compact bordered or an open complex polyhedron K, we can
also show the orthogonal decompositions for the Hilbert space I'# which are

analogous to those in §3. 4 and §3. 5.
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