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§ 1. Introduction.

In this paper, we consider homogeneous and nonhomogeneous fourth order
ordinary differential equations of the form

d2u , . du

dv

where u and v are unknown functions of z, z is the complex independent vari-
able, λ is a constant and b(z) is a known function of z. These equations are
related to the Orr-Sommerfeld and its adjoint equations, we call them together
Orr-Sommerfeld type equations that play the fundamental role in the theory of
hydrodynamic stability of viscous fluids. The Orr-Sommerfeld type equations
are of the form

(1.3) e*^r

where ε is a small positive parameter and pt(x, ε) (ι=l, 2,3) can be expanded
asymptotically in power series of ε with holomorphic coefficients. Except for
a small neighborhood of turning point x where pz(x, 0)=0, asymptotic solutions
of (1.3) were obtained by the W-K-B type approximation, Nishimoto [1]. On
the other hand, asymptotic expansions in the direct neighborhood of a turning
point are constructed by either the related equation method or the matching
procedure. If we apply the matching method to the equation (1.3) in the neigh-
borhood of its simple turning point which is assumed to be at the origin, ac-
cording to Nishimoto [2], page 238-239 with n=4, m=2 and q=l, it becomes
necessary to study the equations
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FOURTH ORDER DIFFERENTIAL EQUATIONS 129

in the large as the first and the higher terms of the inner asymptotic expansion.
By putting z=a1/Bx, the above equations take the form (1.1) and (1.2) with λ=b/a.
Then the results of this paper are intended to use for construction of the inner
solution of (1.3), by which one of the lackness of the previous paper [1] will be
covered.

Instead of the equation (1.1) we analyze the equation for y=du/dz

(1.4)
d3y
dz3

in the large by the Laplace integral method. The convergent expression of
solutions in the neighborhood of z=0, the asymptotic expression at z=oo and
their Stokes phenomenon are considered. Our method is quite standard and
there are many contributions to the general theory of the Laplace integral
method and its applications. Therefore the results may not be new in theory,
but there is no complete representation applicable to the solutions of (1.4) for
arbitrarily constant λ. Moreover a rigorous treatment of the matching method
requires the asymptotic behavior of solutions of nonhomogeneous equation (1.2)
for large value of z, which is studied in section 3.

§2. Solutions of the homogeneous equation.

2.1. The solutions of the equation (1.4) are, as is easily verified, expressed
by the Laplace contour integrals

-2π

Fig. 1.
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(2.1) yj(z)= - 2 ^ t*-1 exp (zt-^-ήdt 0 = 1 , 2, 3, 4, 5, 6),

where the integral paths C3 are as indicated in Fig. 1. The angles written at
the end of curves mean that the curves extend to infinity at these directions.
The constant λ is assumed not to be an integer avoiding the complexity of the
descriptions of the results obtained. The value of tλ~ι is determined by cutting
the complex ί-plane along the half line of argument (4/3)π for C, O'=l, 2,3,4),
0 for C5 and (2/3)τr for C6 respectively.

The solutions y^z) are connected by the identities

(2.2) yί

and for ω=exp 2πi/3,

(2.3) yi(z)=ωχys(ωz)=ω2λy2(ω2z),

(2.4) yά(z)=ωλy6(ωz)=ω2λyδ(ω*z).

It is easy to calculate from (2.1) the convergent power series for y^z) about
z=0, that is, by expanding expzt into power series of zt, integrating term by
term and evaluating the definite integrals in the coefficients of the powers of z.

From (2.1), we have for

(2.5) y1(z)=Έa^zk,
k = 0

where αjj,υ is given by

1 /. fk+λ-1 1 / 3

dk ~ 2πiJCl k\ e aT

- 2πi-k\^

2τtx* k\ \ 3 /

when Re(λ+k)>0, and if Re(λ+k)<0, the integration by parts gives the same
formula. Similarly we have for yά(z)

\Δ.Ό) y^K^)— 2-ι Uk Z i

with

ak - 2πi k\{e e )ό L \ 3

The convergent power series expressions for other y5{z) are obtained by using
(2.3) and (2.4). The above constructed power series converge for all finite z
since the differential equation (1.4) has a singularity only at z—infinity. The
problem is thus to determine the asymptotic expansions of ys{z) in the neigh-
borhood of infinity.
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2.2. At first, we obtain the asymptotic expansions of yx(z) for large positive
values of z by using a simpler method of Olver [3] rather than the methods of
steepest descent, and then consider the extension of regions of their validity in
later.

By the transformation t= Vz s, the integral expression (2.1) becomes

(2.7) y i W = - ^ r

where we can assume the integral path C[ consists of two rays of arguments

(2/3)ττ and (4/3)ττ starting from s= —1.

Let /±(f) be

+(?)= 5λ 'exp-o-ff s—o-

/-(?)= f "1+βoβ4ίrt/V-1 exp-|-f(s—ί

then

(2.8) yi(z)= -^z^UM-Uξ)} .

Following to [3],

J+(ξ)=eλπι I ŝ "1 exp { —o-?( s —o~ s

sz-i exp {f(^-(s-l) 2 +-^-(s-

Reverting the expression

v=—γ(s-iγ-±-(s-ιγ,

and constructing sλ~1ds/dv in power series of v, we have

(2.9)

^ - 1 ^ A ^ i 6 — 2 / 1 l α _ i Λ & _ r U - D U - 3 ) . 5 y _2_̂ τ e t c
^°-TV~ 3 ) ' ΰl~ 3 l "6"~T U Vj' ΰ*-\ 4 +48JV 3/ ' e t C ϊ >

in general bk has a form b'k(—2/3)α+1)/2 with constant ^i. Here we use the
branch (—2/3)1/2=(2/3)1/2f. Then we obtain the asymptotic expansion of /+(£)
such that

f ^ , as f->+oo .

By the same method, /-(£) can be expanded asymptotically in the form
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k+ι
2 as

with 5*=(—1
On substituting these results in (2.8), we have

(2.10)

a s

2.3. Next, we calculate the asymptotic expansion of yu(z) as z tends to
infinity. For positive z, putting t= Vz s, yA(z) becomes

(2.11) * { e x p

where we can suppose that the integral path C{ consists of a circle Cα ) of
radius r (0<r<l), and segments CC2) starting from the points P with coordinate
rexp4τπ73 and Pr with coordinate rexp (—2πi/S) and extending to infinity of
directions 4τπ/3 and —2πi/3 respectively (Fig. 2). We consider the contributions
to the integral (2.11) from the part C c υ and the part CC2) of C[ respectively.
The latter is estimated by

(2.12)

z-γ^e-Ύ^_eh^j V"1 exp

Iexp { —

3

exp (- du

Kz

for some constant K depending on r and λ.
Next, the contribution from C c υ is studied. To do so, we consider a mapping

u=s— s3/3. By this, a neighborhood of 5=0 is transformed onto a neighborhood
of u—0, in particular, the points P and P' to Pi and Pi respectively, and C(1)

to some curve C in the u-plane. We can suppose that the curve C is a circle
starting from Px and ending at P[ clockwise, and accordingly the cut in the
w-plane can be a segment connecting the origin and P[ (Fig. 3). Thus we have

JL/
* 2 ( s -
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s-plane

133

Fig. 3.

From the expression u=s— s3/3, we can find the convergent power series of u
for s=s(u) and then for s(u)λ~1ds/du such that

\ΔΛθ) S\U) ^ —U \ZJ O-2ku I t

where d2k are constants, in particular do=l, d2=(λ+2)/3, ί/4=(/ί+4)(/l+5)/15, etc.
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Since the coordinate of Pλ is r exp4τπ/3—r3/3, this can be written as p exp ia
with 0<p<l, π<a<3π/2. Let Ce be a circle around the origin of radius ε, and
P2, PL and Q be points with coordinates εexpia, εexpi(a—2π) and pexpπi
respectively (Fig. 3).

By the Cauchy's integral formula,

(2.14)
" C

Let n be a positive integer such that Re(Λ+2n+l)> — 1 and

Then we have

f uλ+2n+1 exp (zΎu)du
J c

e-2λπi)( + f }iίλ+2Λ+1 exp (z^M)dM

1/ p 1 Λ

since

lim|f^M^ + 2 n + 1 exp(2r2 M )d M

= l i m ε^+27Z+2 I ex
ε-̂ 0 K 0

Furthermore we have

(2.16) I f uλ+2n+ί exp (z^u)du = ea+2n+2)ai f V + 2 n + 1 exp ( Λ e l ί r ) ί

^ K[ °VRe ^+2w+1 exp (^^r cos a)dr

κ

(cosα)R e y l + 2 n + 2

Let m be the smallest positive integer such that Re^+m>—1. Then by
integration by parts, we have for 2k<m

f M2*^"1 exp (z^u)du
J c

= [ l i f e r " " * ' e x p (z 2 u ̂ a ~ t w i z 2 uiM e χ p ( z 2 M)ί/M

Ύu2k+λ e x p ( 2 r T M ) c i M + C ) l I e x p (^τ/) cos α)] .
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Repeating this process for m—2k+l times

J c •f(«-2*+l)
— ( i\m-2*+i £

) -3-

exp (z2 p cos α)] .

Since ReΛ+m> — 1, the above integral becomes as before

ί um+λ exp (zτu)du=(l-e-2λπi) f wm+yl exp (zΎu)du
J c J PXO

=(l-e-2λπi) f wm+/l exp Oτw)dw+O[exρ (^τ/? cos α)] ,
JQO

f wm+'1 exp (zΎu)du=elm+X)κt f ^r^' 1 exp (—zΎr)dr (u~reπι)
J QO J o

— gdii+ îrt j f °°rm+/l e χ p (_^Tr)i/r—J°°rm+>1 e χ p ( _ z T r )
1 p

z~Ύ exp(-zΎf

by using the asymptotic property of incomplete Gamma function. Thus

(2.17) f u2^-1 exp (z\)du=ea+1)π\l-e-2λπi)Γ(2k-{-λ)z~^2k+"
J c

+0[> τ < : m ~ 2 * + 1 ) exp (zΎp cos α)] .

Combining the results from (2.11) to (2.17) we obtain

(2.18)

with π<a<3π/2.

2.4. We consider here z as the complex variable and extend regions of
validity of the asymptotic expansions obtained in the previous paragraph.
Firstly, the solution yλ(z) has the asymptotic expansion (2.10) in the sector
|arg^ | <π as z tends to infinity, by the same reasonings for the Airy functions,
and so limit our considerations to the solution yA(z).

We consider the integral representation (2.11). If — π/2<argzV2<π/6, the
integral converges and the contribution from the part CC2) is exponentially small,
then for — π/3<argz<π/9, the asymptotic expansion (2.18) is valid. To extend
the region of validity still further, the integral path C[ in Fig. 2 is deformed to
C'l by rotating it around the origin through an angle —β/3, as indicated in Fig. 4.
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Fig. 4.

The branch of s*'1 in the integrand is to be determined by analytic continuation
in an obvious way along the integral path. By the Cauchy's theorem we can
prove that the integral

(2.19) -±-z

converges uniformly when

(2.20) -^r+β+oS^- arg z^+β-

where δ is an arbitrarily small positive number, and represents the analytic
continuation of yά(z) in this sector.

The analysis in the preceding paragraph shows that the function defined by
(2.19) has the same asymptotic expansion as (2.18) if Rez3/2(s— s3/3)<0 along
the straight segment of Q, that is if (2.20) and

are both satisfied.
The range of values of arg z for which β can be chosen to fulfil the con-

ditions (2.20) and (2.21) is thus obtained by eliminating β from these inequalities.
This gives

(2.22)
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Combining the results obtained in the paragraphs 2.1-2.4, we have established
the following theorem

THEOREM. The solutions y}(z) O'=l, 4) of the differential equation (1.4)
defined by the integral (2.1) are expressed by convergent power seήes in the
neighborhood of the origin such that

For large absolute values of z, yj(z) can be expanded asymptotically in the form

for \2ivgz\<π, \z\^R>0,

w ; 2πι

for —

where R is a large positive number, and the coefficients b2k and d2k are determined
by the equations (2.9) and (2.13) respectively.

2.5. From the relations (2.3) and (2.4), we can deduce the formulas of the
functions y2(z), yz(z), y5(z) and yQ(z). Since we have

then the asymptotic expansions of these functions are as follows.

f o r - ^ - ψ

for —|-<arg2 < ^ (

for
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β-2λπi-l)z-λ{Σ Γ(2k+λ)d2kz-Bk],

for

2.6. From the functions constructed in the preceding paragraphs, we can
obtain the fundamental systems of solutions of the equation (1.1).

Let Uj(z) be a function defined by

Uj(z)=C+Γyj(z)dz
J 0

for some constant C, then Uj(z) is a solution of (1.1). Since

exp (zt-+t

then by choosing the constant C as

we have

The convergent expression, asymptotic expansion and its Stokes phenomenon
of Uj(z) can be analyzed by the same way as in the preceding paragraphs with
λ—l in place of 2. Also, the derivatives yf\z) (k=l, 2) are defined by

)~ 2πιJc

Thus we have obtained the solutions of (1.1) and their derivatives. The
fundamental system of solutions is given, for example, by [1, u6(z), u^z), uz(z)~]
since its Wronskian becomes

det

1 ulz) uλ(z) u£z)

0 uί(z) u[{z) u'lz)

0 uS{z) uϊ{z) ug(z)

0 uf(z) uf(z) u'ξ{z)\

=det

Mf(0)
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The system [1, ufa), ufa), ufa)'] is one of the fundamental systems of
solutions of (1.1) whose asymptotic behavior as z tends to infinity is known in

the range of argument —ψ<argz<π. Another fundamental systems are

[1, ufa), ufa), ufa)~] for 7r/3<argz<5τr/3, and [1, ufa), ufa), ufa)] for -τr<argz
<τr/3.

Let

[1, ufa), ufa), ufa)]=[l, ufa), ufa), ufa)]Π1,

[1, ufa), ufa), ufa)] =

[1, uJiz), ), ufa)] = ll, ufa), ufa), ufa)~\Πz

then we have

3

" 1

0

0

__0

Γl

0

0

0

1-

1-

0

1

0

-or*

0

1

0

0

0

0
λ 1

0

0

0
λ 1

0 "*

-ωu

- 1

0

1

i

—ω~ u

" 1

0

0

_0

0

ω~u

0

0

0

0

1

0

1

- 1

- 1 ,

where ω=eχρ2πi/3.
From these relations we can get precise asymptotic expansions of solutions

in the whole z-plane.

§3. Solutions of nonhomogeneous equations.

3.1. To solve the nonhomogeneous equation (1.2) it is convenient to write
it by an equivalent vectorial form

dv

(3.1)
dz -

A
/I —

— s\ u

~0

0

0

0

1

0

0

λ

0

1

0

z

0

0

1

0

B=
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Here υ denotes the fourth column vector. By the method of variations of
constant, the solutions of (3.1) are expressed by

(3.2) v(z)=W(z){C+j ZW(s)-1B(s)ds},

where C is some constant vector and W(z) is a fundamental system of solutions
of homogeneous equation

W(z) can be a matrix of the form

W(z)=

1 wx(z) w2(z) wz(z)

0 w[(z) w'lz) w'lz)

0 wί'(z) w'2'{z) wg(z)

W\ \ZJ LV2 \Z) IM3 \Z)

such that each Wj(z) is equal to some uk(z) constructed in section 2 and the
functions [1, w^z), w2(z), w8(z)2 constitute a fundamental system of solutions of
(1.1). From the formula of inverse matrix, we can write

(3.3)

where

Wtι(sY

wλ

w[

__w[f

" 1

0

0

w2

w2

wί

wx

w[

w['

wz

wi

w'J_

wz "

W's

wg „

Wn(s)=W?tet

, W^^^Wo1 det

1 w2

0 w'2

_0 w!

' 1 l^i

0 wί

0 w ί7

^ 3

^ ^

wr
w2 "

)=-Wo1 άet

)=-Wό1 det

Here Wo denotes the constant det W(z). Since Wj(z) is a solution of (1.1) the
determinant Wu(z) satisfies the following third order differential equation and
initial condition:

d3w ( dw(3.4)
dzι
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w[

<

w,

wί'

w?

w2

w'2

wi'

w2

wί'

wi'

wz

wr
w3~

w'l

w'ξ

w[

w'ΐ

w2

w'

w'ξ

w3

w'

w'ξ

)=-Wo1 άet

and W4j(z) (j=2, 3, 4) satisfy the homogeneous equation

(3.5) dw

with the anologous initial conditions.

3.2. The differential equation (3.5) has the same form as (1.4) and then it
can be solved globally as in section 2. The solution of (3.5) with prescribed
initial values is written as a linear conbination of the functions y3(z) constructed
in section 2 with (1—λ) in place of λ. Furthermore, since a particular solution
of (3.4) is w(z)=l/(l—λ), then the solution of (3.4) satisfying the initial conditions
is also determined.

For example, assume that

Then the initial values of WAi(z) ( i = l , 2, 3, 4) at z=0 are

TJ7 /Λ\ -L

l-λ W'il(0)=Wi'1(0)=0,

(3.7)

W'ά(0)=-
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^

Corresponding to (3.6) we take as the fundamental system of solutions of
the equation (3.5) the system [y%(z), v8(z), vx(z)~], where Vj(z) (j=6, 3,1) are the
solutions of (3.5) obtained by replacing λ with (1—λ) in the definition of yj(z).
By this choice, both of the systems have the same regions of validity of asympto-
tic expansions. The solutions of the equations (3.4) and (3.5) with initial con-
ditions (3.7) are then expressed as follow;

(3.8)

Wu(z)=-2πiω-u/2v3(z).

3.3. Suppose that the function b(z) in the equation (3.1) has the form

b(z)=b1(z)uj(z)+b2(z)u'j(z)+bB(z)u'j(z)+blz)u%z), 0=0,1, 3, 6),

where bό(z) are polynomials of z and uo(z)=l.
Then from (3.2), (3.3) and (3.8), the solution of (3.1) are expressed by linear

combinations of the integrals of the following form of functions

/ i=0, 1, 2, 3 \
(3.9) b(s)u?(s)vk(s),

V j , 6=0, 1, 3, 6 /

with coefficients cuf(z).
For applications, we want to obtain particular solutions whose asymptotic

expansions at z=oo do not begin with constant terms. When j=0 or k=0, the
problem is simple since if &=0 for example

ί *b(s)uf{s)ds= [ *b(s) f tλ-2+ίest~^tSdt
*Ό ô Jc,

If the integral of the inner bracket of the above expression is performed, then
the above function of z is clearly expressed by the sum

where ct are constants and yj(z, λk) are functions defined in the section 2 with
appropriate λk in place of λ. Thus in this case all of the global properties of
this function become apparent.
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3.4. Next, we consider the asymptotic behavior of an integral

(3.10) PO)=C+ f 'b^u^v^ds .

From the results of the section 2 the functions u^s) and v^s) have asymptotic
expansions as s tends to infinity in the sector —τr<args<τr

λ-ί

2

i v —rsϊ)
Then we have

(3.11) b(s)Ul(s)v,(8)^^(5)8-^ exp (

Thus we can rewrite the integral (3.10) as

P(2')r=C+ b^u^v^ds —
JO J 3

means that the integral is
X

taken along a path starting x and tending to the infinity of the direction eιa.
Clearly the first integral of the above expression exists from (3.11), and also
the integration by parts gives

exp (—%-

\-2s^) exp (--|-s

Here if we choose the constant C in (3.10) as

&(s)w1(s)i;1(s

0

we have

(3.12) P(z) -^b(z) exp (—f-*

3.5. The asymptotic behavior of the function defined above when z tends
to infinity on the negative real axis will be considered in this paragraph. From
the paragraph 2.6, the following identities are valid:

W l(s):=cΛ5(s)-ω3 ;*w2(s)-w3(s),
(3.13)

v1(s)=ω-Bχv5(s)-ω-3;iv2(s)-v3(s).
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We know the asymptotic expansions of the functions appeared on the right
sides of the above identities on the range of the argument π/3<arg s<5π/3.
Then by using (3.13), P(z) is written as

P(z)=C+Cb(s){uδ(s)vδ(s)-uδ(s)v2(s)-ω*λuδ(s)v3(s)
J
 o

—U2(s)vδ(s)+u2(s)v2(s)+ω3λu2(s)v3(s)

—ω-s2us(s)vδ(s)+ω-*λus(s)v2(s)+u3(s)vs(s)}ds,

and if we evaluate each integral by the same method as in the previous para-
graph, then the asymptotic behavior of P(z) for large absolute values of z,
τr/3<arg£<5τr/3, becomes

ωub(s)ut(s)υt(s)ds- e {

 A π ^ { l) b(z)z~i+^ exp

(s)u2(s)v5(s)ds+ ^ J»£ λh(z)z^ exp ( - - | *

exp ( — | - *

^ 7 ; ^ ^ ft(^^ exp (-f*

ί
z 0-2λπι 3_

o^Γs-Ho(s)ds

+^eiaBb(s)u3(s)vs(s)ds—±fz->b(z) exp (-y"^) >

where 60(s) is a polynomial whose terms come from b(s) so that the integral

s~s/2b0(s)ds exists, and the quantities al9 a2, a3 satisfyJ o

—T" < α i < "^~» 7τ<α2<-o-7r, -?-<α:3<7:.

Thus we have obtained the asymptotic expansion of P(z) on the negative
real axis:
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— Έ ? Lb(s)ds

(3.14) +^~^-{Γ{λ-l)z^ι^-Γ{l-λ)z^χ-^}Kz) exp (—§-*

1 ^ - 2 / ^ 1 3 , 11 3 , , 1

+• \π\jΈ {e-λ^Γ{l~λ)z^λ~^-ezλπΨ^λ-l)z~^λ+τ}b{z) exp

If we compare this asymptotic form with that of (3.12), we can understand
the Stokes phenomenon of the function P(z). We take up one more example
from the terms in (3.9).

Let Q(z) be a function of the form

Q(z)=C+Cb(s)u6(s)v6(s)ds.
J o

By choosing a constant C appropriately, the asymptotic expansion of Q(z)
becomes

Q{2)^(cos2λπ-l)Γ(λ-l)Γ(l-λ) r•

for large absolute values of z and — ττ/3<argz<7r. The same procedure as for
P(z) gives us

λ ίι-ψb(z)e /_ 2

for — τr<arg2rg— ττ/3, and

l)Γ(lA) r

^ | ^ ^ ' + ^ + g - ^ Γ ( l - ^ ^ } ^ U ) exp

for
The integral of the other terms in (3.9) can be analyzed analogously and

from these the asymptotic behavior of the solution v(z) of the nonhomogeneous
differential equation can be obtained.
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