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ON THE UNIQUENESS OF THE EXTREMAL FUNCTION
OF HARMONIC LENGTH PROBLEM

AND ITS APPLICATION

BY TAKAO KATO

1. Landau and Osserman [4] introduced the notion of harmonic length as
follows: Let R be an arbitrary Riemann surface, we denote by UR the family of
all functions u harmonic on R satisfying 0<&<l on R. Let γ be an arbitrary
cycle on R. We call

= s u p (
UGUR Jr

*du

the harmonic length of γ.
They showed the following

THEOREM A. Let D be a Dirichlet region on a Riemann surface R and let u
be a harmonic measure in D. If γ is homologous in D to a level locus of u, then
u is the unique extremal function in determining hD(γ).

Here a Dirichlet region means a relatively compact region on a Riemann
surface whose boundary is regular for the Dirichlet problem, and which has at
least two boundary components.

They applied this theorem to problems of conformal rigidity of plane Dirich-
let regions.

Recently, Suita and the author [7] have shown the following improvement of
theorem A. An English reference will be made to Suita [6].

THEOREM B. Let R be an arbitrary Riemann surface and let γ be a dividing
cycle relative to a regular partition {A, B) on R. If hR(γ)>0, the function satisfying

hR(γ)= \ *du0,

is unique and coincides with the harmonic measure of B.

In the present paper we shall show the uniqueness of the extremal function
in determining the harmonic length of any cycle on a finite Riemann surface.
Using the uniqueness, we shall give an elementary proof of a theorem of Huber in
the case of finite Riemann surfaces [3]. The author expresses his heartiest thanks
to Professor N. Suita for his kind suggestion in preparing this paper.
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2. Surfaces with which we are concerned are open Riemann surfaces, denoted
by F, of finite genus, say g^O, and with a finite number of boundary components,
say m>0, each of which consists of an analytic Jordan curve. We assume that F
is not conformally equivalent to a disk. Throughout this paper, we shall denote
by F such a Riemann surface.

Let G(p, q) be Green's function of F, and let γ be a cycle on F. Then we have

LEMMA 1. [5] γ is homologous to zero if and only if

where d\dnv denotes the inner normal derivative with respect to γ.

THEOREM 1. If γ is a cycle on F which is not homologous to zero, then there
exists the unique extremal function in determining hF(γ), and the extremal function
is a harmonic measure on F.

Proof. We may assume that ^ is a closed analytic curve. Let dF be the
boundary of F. For any function u in C7>, there exists a measurable function ύ
defined at almost all points on dF, satisfying O^w^l and

Let F o be a compact subregion of F which contains γ, and such that each
component of F—Fo is noncompact. We have

Δπ J r dnp JdF dnq

= _ Λ . _ l ύ(q) G(p, q)dsqdspΔπ J dn J dn

Since

d[ ~~G{p,q)dspJr dnp

is a harmonic differential on F—γ, it may be assumed that

W(q)= \ ——G(p, q)dsp
Jr dnp

is a function harmonic on each component of F—Fo, and that W is equal to a
constant on dF. Indeed, if q is in dF, then G(p, q) = G(q, p)=0 for all p in Fo.
Therefore we have a harmonic continuation of W across dF.

By lemma 1 dW has at most a finite number of zeros on dF, therefore
(djdnq)W(q) has at most a finite number of zeros on 3F, since W is a constant on
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each component of dF.
Let ύo be a function on dF, such that ύo(q)=l, if (dldnq)W(q)^0 and ύo(q)=O,

if (dldnq)W(q)<0. We set

ύo(q)-—G(p, q)dsq.

It is to be noted that u0 does not degenerate to a constant because of

\ ~iτw^dSq=z°'
Evidently we have that u0 is in UF
For any u in UF, let ύ be a boundary function associated with &. We have

[ *duo = ±-\ ύo(q)~W(q)dsq
Jr *π JdF onq

This shows that u0 is an extremal function.
If there is another extremal function, i.e. if there is Uι in UF such that

fr*dui=fr*du0, then we have

0= \

By the definition of ύ0 we have wo = ̂ i almost everywhere on dF. Then we
have established UQΞΞUI in F. From the construction of u0, we have assured that
UQ is a harmonic measure of F. This completes the proof.

3. In this section we shall give an alternative proof of the following theorem
due to Huber [3].

THEOREM 2. Let f be an analytic mapping of F into itself. Then either f is
an automorphism of F, or else f takes a cycle, which is not homologous to zero, to
a cycle which is homologous to zero.

To do this we prepare two lemmas.

LEMMA 2. Let f be an analytic mapping of F into itself. If there is a cycle
γ on F which is not homologous to zero satisfying hF(γ)=hF(f(γ)), then f is an
automorphism of F.

Proof. By theorem 1 there are uniquely determined harmonic measures u
and ω satisfying
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hF(γ)= \ *du

and

By virtue of theorem 1 we have

We show that / is a boundary preserving mapping. Indeed, let {pn} be a
sequence of points in F tending to a point on dF, say p0. If there exists
linv+eo u(pn) which equals either 0 or 1, then lim^ooω<>/(/>„) equals lim^*, w(/>TO).
This shows that f(pn) tends to the boundary. Thus it is to be observed only the
case when u{pn) tends to neither 0 nor 1. From the context of the proof of theo-
rem 1, the set of all accumulation points of such sequences {pn} is a finite set.
Therefore, we may choose a suitable uniformizer A(z) for the double of F with
domain J = {|z]<l}, which takes 0 into p0, real axis into dF and Ji = z/Π{Im2>0}
into F. Furthermore we may assume u°A(x) = Q for x>0 and u°A(x) = l for x<0.
If it is not the case we shall take 1 — u instead of u.

We introduce an auxiliary function on Δx

Evidently, B is a bounded harmonic function on Δ1 and B=0 on
— {0}. Let v°A be a conjugate harmonic function of u°A in Δx then

where B* is a conjugate harmonic function of B. Then we have \imΔ^z^
= — oo, that is, lim^co #(^w) = — oo.

If there is a subsequence {pnj\ of {/>w} such that lim^oo f(pnj) = ̂  is in F, we
define a conjugate harmonic function μ of ω in a neighborhood of q. Then
we have

But μ(q)^ — oo in any choice of /̂ . This contradicts the fact l i m , ^ v(p)= — oo.
This shows that /(/>«) tends to the boundary.

Since / is a boundary preserving mapping there exists a positive integer k
such that / is a ^-to-one analytic mapping of F onto itself [2]. Therefore, we
may understand that / is the restriction of an analytic mapping of the double of
F onto itself to F. From the Riemann-Hurwitz relation, we conclude necessarily
k=l. This completes the proof.

LEMMA 3. For any fixed positive number M, there are at most a finite number
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of homology classes on F whose harmonic lengths are less than M.

Proof Let Γ,, j=l, •••, 2g+m—1, be a homology basis of cycles on F. By
lemma 1, there exist functions vif i=l, •••, 2g+m—1 bounded and harmonic on F
satisfying

1 (/=./),
Jr, [ 0

We set

—inf # /

Then ^i is in UF. Set

J

On the other hand, for any cycle ^ on F there is a uniquely determined
system {ctfi-™"1 such that γ is homologous to ΣfJΛ" 1 CiΓ%. If there is an index j
such that pj\cj\^M, then we have

*duj

This completes the proof.

Proof of Theorem 2. In the present case hF(γ)=O if and only if γ is homo-
logous to zero by lemma 1. By lemma 3 there is a cycle γ0 which is not homo-
logous to zero such that

for each cycle γ which is not homologous to zero.
We note

for any cycle γ [4]. Hence, if / takes any cycle, which is not homologous to zero,
to a cycle which is not homologous to zero, then we have

Then, from lemma 2 we have concluded the desired assertion.

4. Remarks.

REMARK 1. In lemma 2, if F has the non-commutative fundamental group
then by virtue of the classical theorem of Schwarz the group of automorphisms
of the double of F has finite order. Since an automorphism of F is the restric-
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tion of an automorphism of the double of F to F, we have concluded that the
group of automorphisms of F has finite order.

REMARK 2. In theorem 2, if / is not an automorphism then for any cycle γ
there is an integer n depending on γ such that fn(γ) is homologous to zero, where
fn is the n-th iteration of /. Indeed, if we set M=hF(γ), then there is a number
n such that fn(γ) is homologous to zero by lemma 3 and the hypothesis on /.
Huber proved, however, that n is determined independently on γ and it is the
Betti number of F [3].

REMARK 3. We have used homology in sections 3 and 4 while Huber used
homotopy. But it is not intrinsic in our situation. For, in the hypothesis in
lemma 2, if we replace hF(γ)=hF(f(γ)) by the fact that γ is homologous to f(γ) we
can prove it by use of a result of Heins [1] cited below. Using this we can esta-
blish that /, which is not an automorphism of F, takes a cycle which is not homo-
topic to a point to a cycle which is homotopic to a point. The replacement of the
hypothesis in lemma 2 does not cause any trouble in proving theorem 2. But it is
not so elementary as our method and slightly complicated in proving the theorem.
For this reason we have abandoned this method.

The result of Heins [1]: Let R be a noncompact Riemann surface whose
fundamental group is non-commutative, let / be an analytic mapping of R into
itself and let K\ and K2 be given compact subsets of R. If / neither possesses a
fixed point nor has finite period, then fn(Ki) lies in one and the same component
of R—K2 for n sufficiently large.
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