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CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION
By TeTsvo FujiMAGARI AND MINORU MoToO

Introduction.

A mathematical theory of cascade processes with infinite cross section has
been developed by Harris in his book ([3], Chap. VII).» By a cascade process
with infinite cross section, we mean a process in which each particle splits in-
finitely often in any finite time interval. In our paper, we will treat a model
which satisfies “ Approximation A ” in Harris’ book. Our model is less general
than Harris’ one in the sense that it consists of only one type of particles such
as electrons. On the other hand, it includes the case where the particle may split
into infinitely many new particles simultaneously and may lose its energy con-
tinuously.? Inspired by recent developments of the theory of continuous state
branching processes ([7], [8], [9], [13], [14], [15]), we shall define a cascade process
as a branching Markov process satisfying a condition of homogeneity on a certain
space of discrete measures. FEach measure in the space represents a configuration
of a system of countably many particles. Moreover we shall specify the process
by its characteristic quantities.

In §1, we investigate fundamental properties of a space M, of measures.
Any element g in M, (0<p<co) has a form X3, xds, (0<z;=1, X5, z:=p) or 0,
where d,; is a unit measure concentrated at ;. A measure p=X; £:0»;, corresponds
to a configuration of a system of particles, with energy x; (=1, 2, ---). The total
mass ||y||=2X.x: of p represents the total energy of the system. Endowed with
weak*-topology, the space M, is considered as a compact metrizable space. In
§2, we first define a cascade semigroup on the space of continuous functions on
M,. It has the branching property and certain property of homogeneity in addi-
tion to usual ones of conservative Markov semigroups. Then, we define a cascade
process (u:) corresponding to the cascade semigroup, where u; is considered to
specify the state of the system at time #. In §3, we derive an underlying process
(z;) on [0, 1] where z; may be considered as the energy of each specific particle
at time #. It is shown that (—log z;) is an increasing additive process. In §4, a
branching measure I on M;—{6,} is introduced. The measure represents the law
of splitting of each particle. It has a close connection with the Levy measure of

Received November 12, 1970.

1) Historical notes and physical meanings of the theory are also seen in the book
(Chap. VII, §1 1n [3]).

2) Even in this case it is different from “ Approximation B” in §2 of [3].
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CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 403

the underlying process (z;) (see (4.15)).>> The underlying process is uniquely
determined by a branching measure // and a nonnegative constant . The con-
stant m represents a rate of continuous loss of energy of each particle. In §5,
using the underlying process and the branching measure, we derive a system of
(Sg)-equations. They are fundamental integral equations, and their unique bounded
solution is given by the cascade semigroup. The system of (S;)-equations is an
analogue of the equation given by Skorohod [12] (see, also, [5]). In §6, we show
that for a given cascade semigroup the underlying process and the branching
measure are uniquely determined through (S;)-equations. The result is used in
§8. In §7, we have the expression of the generator of the cascade semigroup.
A non-linear evolution equation for the cascade semigroup is derived by using the
branching measure I/ and the nonnegative constant . The equation corresponds
to that given by Harris (Theorem 11.1 of Chap. VII in [3]). In §8, we start
with a process (x;) on [0, 1] and a measure I on M;—{0,} satisfying centain con-
ditions which are known to be necessary for an underlying process and a branch-
ing measure. By solving (Sq)-equations constructed by (x;) and I/, we obtain a
cascade semigroup. Moreover, it is shown that (x;) and I/ are the underlying
process and the branching measure of the cascade semigroup. Finally, we have
the following result: There is a one-to-one correspondence between cascade
processes and pairs (m, II), where m is a nonnegative constant and I7 is a meas-
ure on M;—{d:} such that [a,—y (1—M(p)I(dp)<+oo where M(y)=max, z; for
p=2X.x:0z,€ M. Il is the branching measure and = is the constant mentioned
in §4.

Main results of the paper were published in [2] without detailed proofs. We
would like to express our thanks to Professores N. Ikeda, M. Nagasawa, and S.
Watanabe for their valuable opinions and encouragement.

§1. Preliminaries.

In this section we shall present several notions which will be necessary to

formulate cascade processes.
First of all, to define the state space, let S be an interval (0, 1], and set

M,={y; p is a measure on S such that p=0 or
(=20 Ti0z; (2:€S) and [|pll= 2, 2, =p}

for each p (0<p< o), where x:0,;, is a measure which is concentrated at a point
xz; and has a mass «; at the point, 3], denotes a finite or countably infinite sum,
and ||yl is the total mass of a measure p. Setting p=1, M; will be the state
space of cascade processes.

For introducing a topology on the space M, let C, be the set of all con-

38) II 1s o-finite, but not necessarily finite. If J7 is finite, the process has a finite
cross section.
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tinuous functions on S vanishing in a neighborhood of 0, then there exists a
countable family {f.} of functions in C, such that 0=f,=1 for all =1 and the
linear hull _{f,} is dense in C, with the uniform topology.

Given such an {fy}, set

o )= 35 5 [y 0= )

n=1

for each p, ve M, where (f, p) is defined as

s )= sz(:v)/z(d:v)

for any Borel function f on S and any measure g on S. By the definition, it is
clear that p(y, v)=2p for all p, ve M,.
Then, we have the following

ProrosiTiON 1. 1. (M), p) is a@ compact metric space and the convergence with
respect to p is equivalent to the weak*-convergence, i.e. for {p}C My, pe My, pn—p
in p if and only if (f, pa)—(f, p) for all feC.

Proof. (My, p) is obviously a metric space and the equivalence of convergence
in p and weak*-convergence is also easily shown. Hence, we have only to show
the compactness of (My, p). To begin with, it should be noticed that a bounded
closed set in the dual space C; of C, is compact with respect to the weak*-
topology and the space M, can be considered as a set in C; in the usual way.
Therefore, as the boundedness of M,cCC; is clear, it is sufficient to verify the
closedness of M, in Cj.

Let {u.} be a sequence in M, converging to some continuous linear functional
leC;, then [ may be identified with a measure pz on S which satisfies ||u/|=p. If
infinitely many g, are equal to 0, then obviously p=0eM,. Hence it is sufficient
to consider the case n= 250 X307 for all ». If we denote the restricted measure
on [, 1] (0<e<1) of a measure px on S by pl., then p,|, converges weakly to p|. as
n—co, if p({e)=0. Let pu|,= X% 270.n, then Na=(fo, pa|) for a continuous func-
tion fo(x)=2"! on [, 1] and this converges to (fo, #l)=N if p({})=0. From this,
N,=N for all sufficiently large » and so we can choose a subsequence {n:} of {7}
such that N,,=N and z7* converges to some x; as k—oo for all i (I=i=N).
Thus pn,|, converges to X0, x:0., and we have p|.=XY, 0z, if p({)=0. There-
fore, taking a sequence ¢, |0 such as p({e:.})=0, we can conclude p=3; z:ds,, ie.
PEM),.

We remark that the topology of M, does not depend on the choice of {f,}
because it is equivalent to the weak*-topology by proposition 1. 1.

Next we define a function # which will play a fundamental role in formulat-
ing the branching Markov process. For this, set
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B¥={f; f is a Borel function on S
such that 0=f=1 and f=1 in some neighborhood of 0}
and
C¥={e"; ¢eCy and ¢=0}CB¥.

Then we define f(x) for any feB¥ and any peM, by

L. 1) F=exp({ < tog floya),

where log 0=—oco and e~~=0. It follows by the definition that 1=1, 7 is a Borel
function on M,, 0=7=1 and f(0)=1, and if feC¥, then f>O0.

We will consider f for feC# almost all time, partly because of the following
proposition.

PrOPOSITION 1. 2. The linear hull _C{f; feC¥) is dense in the space C(M,) of
all continuous functions on M, with the uniform topology.

Proof. If feC¥, then z— log f(x)eC, and so feC(M,) by the definition. Thus
Proposition 1. 2 follows from the theorem of Stone and Weierstrass.

We shall state some of properties of f.

 Lewwa L1 G) I £,0¢BY, fi=Fi) for any peMy Gi) If feBE,
flpetv)=7(wf@) for any p,veM, such as p+veM, also. (i) If feB¥, f(u)
=1L flw:) for any p= L %:02,€ Mp.

Proof. () f<y)o<m=exp(gé tog fte)di) Jex( |- 1og a(aruta)
=eXp<S% log f(w)g(x)y(dx)) =f{'\g(#)-
@) Frn=exp( | 1og ftoxeroan)

=exp (S% log f(x) /z(dx)) exp (g % log f (a;)v(dx))

=7 f ).
(iii) Since feB¥, flx)=1 on (0, ¢) for some ¢>0 and so

F=esp({ L 1og ftayutao) —exp({. u% log fta)(do))

€y

= 11 flz)=TI f(z;)
TiZe 1
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when p=3Y, £z,
We now define a multiplication of ¢eS and peM, by

Z axiaa‘ti lf n= Z -Tiaxi,

k2

1. 2) a-p=

if p=0,
and set
1.3) 0o (x)=1(azx)

for any Borel function f on S. Clearly a-peM,, 0.feB¥ for feB¥ and 6.feC¥
for feC#.

LemMA 1.2. (i) For any aeS, a-p is a continuous mapping of p on Mp. (i)
If aeS and feB¥, f(a-p)=0af(r) for every peM,.

Proof. (i) Let {ua} be a sequence in M, which converges to g Since
(¢, @)=\ pl2)a o) = {aptaoyn(ao)
and ap(ax)eC, for any ¢eCy, (¢, @*pn) converges to
\optardn)=o, a- 1.

Thus @ pp—a-p as n—oo.
(i) When p=73] x:0z,;, it follows from Lemma 1.1 (iii) that

fa ) =F(Z azae) =1 flazy)
and
A
Oaf ()= 1;1 Oaf(@:)= I}f (@),
so that we have the lemma.
We define a function M(y) on M, by

max x; if [,tZZ xiazi,
7 (2

@4 M=
0 if p=0,

which will play an important role to characterize a cascade process.
LemMa 1.3. M(y) is a continuous function of p on M.

Proof. Let {u,} be a sequence which converges to . When =0, choose a
function feC, such that f=0 and f=1 on [, 1] for 0<e<l. Since (f, u,) con-
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verges to (f, ©)=0, (f, xn)<e and so M(p.)<e for all sufficiently large ». This
implies M(pn)—0=M(y) as n—co.

As for the case p=0, put a=M(p)>0 and choose a function f,€C, such that
f 1=0 and
1 if e=x=1,

Jﬁ(x)=={ .
0 if 0<z=a—¢

for each sufficiently small ¢>0. Since the limit of (fi, mn) is (f1, p=a>0,
(f1, tta)>0 for all sufficiently large z and so M(y.)>a—e. Similarly, choosing a
nonnegative function f,€C, which satisfies
1 if ate=x ély
f2<x)={ ,
0 if 0<z=aq,

we have M(p,)<a+e for all sufficiently large ». Therefore we have M(u.)—M(p)
as #—oo.

Finally we shall introduce some more notations which are of technical use in
sections 4, 6, and 8.
For any d (2/3<d<1), set Sq=((1—d)/d, 1] and

Mg={u; p is a measure on Sy such that =0
or pu= Za,, xiﬁzi(xiesd) and H#”éﬁ}

Then, introducing weak*-topology on M$ as in the case of M, M$ is also a
compact metrizable space. For peM,, denote the restriction of g on Sq by ¢u(y)
=pls, then ¢g maps M, onto Mg. Set

B¥={f; f is a Borel function on S such that
0=sr=1 and f=1 on S—S4}

and denote the Borel fields on M, and M¢ by B, and B¢, respectively. Then we
have the following lemma.

LemMA 1.4. (i) ¢q is a continuous mapping from M, onto Mg. (i)
9 (BHC By and if 2/3<d<d'<1, ¢ (BT BF). (i) Visca<1 97 (BF)=Bp
(iv) If feB%, fis a 0 (BE)-measurable function.

Proof. (i) Denote Cy(S;) the set of all continuous functions with compact
support on S; and define FeCy(S) for feCy(Ss) by

_ {f on Sd,
0 on S—S;.

Let {u:} be a sequence which converges to g in M), then for each feCy(Ss),
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o, godmn)):SS fd¢d(#n)=gsfdﬂn=(f: o).
d

Thus letting #—oco, we have ¢u(pn)—ea(r) in Mg. (i) It is clear from (i) that
0 (BT By It BeB§, ¢ipalps(B)=¢z(B) and in addition ¢u(p7'(B))eB§
since it 1s shown in the same way as (i) that a mapping M§'>p—p|s,eM$ is con-
tinuous, and p|s;=¢ulpz!(p)). Thus we have (ii). (i) Vaez'(BF)C B, is obvious
from (ii) above, and so, noting the fact that @, is equal to the minimal ¢-field on
M, with respect to which all continuous functions on M, are measurable, in order
to prove (iv) it is sufficient to show that all continuous functions on M, are
V ¢ 97(BE)-measurable.

For each nonnegative function geCy(S), there exists such a d (2/3<d<1) that
g=0 on S—S;. Then, if d<d’'<l, (g, )=(glsy» ¢a()) for any peM, Since
gls, €Co(Sar), (glsy, v) is a continuous function of v on Mg and so (g, z) is A BE")-
measurable. It follows from this that f is Vg ¢z (B%)-measurable for any feC¥.
Therefore, from Proposition 1.2, all continuous functions on M, are Vg ¢;(B%)-
measurable. (iv) If feB},

F=esp({ L tog flouta)

=exp(gsd% log f(@)palda)

for all peM, and the right hand side of this equality is a Bg-measurable func-
tion of ¢u(y), so that f is ¢3'(BE)-measurable.

Furthermore, we shall state the following extension theorem.

LemMA 1.5. Let {4z 2/3<d<1} be a family of measures such that each Aq
is a finite measure on (My, 3"(BE)) and if 2[3<d<d'<]1, Aq is the restriction of
Aa on o (PE). Then, theve exists a unique measure A on (My, Bp) sSuch that Ag
is the restriction of A on ¢z'(BE).

Proof. Set A*(A)=A4(A) for Aepz'(Bg). Then A* is well defined on V4 ¢z'(BE)
and a ﬁgitely additive set function on it. Let A be any set in Vg ¢z'(B%), then
A=¢3'(A) for some d and Ac B, Since Ay(-)=44p3'(+)) is a finite Borel measure
on the compact metrizable space M, there exists for any ¢>0 a compact set K
such that Kc A and

Ao (B)) = Ao(R)= A A)— e= Aa(A)—e.

Since ¢q is continuous and M, is compact, go;‘(]? ) is a compact subset of A and
in pz(BE). It follows from this fact that A* is countably additive in V¢ ¢37'(BE).
Thus A* can be extended uniquely to a measure 4 on V4 ¢z (BE)=B,. This 4
is a required one and the uniqueness of A is obvious.
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§ 2. Formulation.
We now define a cascade semigroup and a cascade process.

DerINITION 2.1. {T3; ¢=0} is said to be a cascade semigroup when it satisfies
(@) {T t=0} is a strongly continuous and contraction semigroup of nonnegative
linear operators on C(M,) and 7 1=1 for ¢=0, (b) T.f(p+v)=T.f(W)T.f(v) for any

FeCH, if m v and ptveMs, and (¢) T.f(ade)=Tiduf(3) for any feC¥, if aeS.

By the general theory of Markov processes (see, for example, [1]), there exists
a strong Markov process {W, m, 91, P, p€M;} on the state space M, with right con-
tinuous sample paths with left limit at each #=0 such that T,F(x)=E.[F(w)],
where W is the space of sample paths and w(w)=w(t) for weW, J1. is a o-field of
subsets of W generated by the sets {w; p(w)eA} for Ae (M) and s€[0, £], and
E,[-] denotes the expectation by the probability measure P, on (W, Jl..) in which
T is the smallest o-field including 97, for all ¢=0. We shall call the Markov
process (u) a cascade process. The property (b) in Definition 2.1 will be called
a branching property of the semigroup (or of the process () which is an
abstruction of the independence of each particle of the cascade process (cf. Ikeda,
Nagasawa, and Watanabe [5]), where we interprete a state p=73, z:d,,€ M; as the
existence of particles with energy (or mass etc.) x; i=1,2,.--. The property (c)
in the definition is an analogue of the “ Approximation A” of Harris’ book [3]
(p. 167) representing a homogeneity of a medium in some sense. This will
become clear in later sections.

In the following, we shall study some general properties of a cascade semi-
group {73} (or of a cascade process (p)).

Lemma 2.1. Let (T.f)s be the restriction on S of T.f defined by (T.f)|s(x)
=T,/ (zdz) for feC¥. Then, (T.f)|s€C¥ and

PN A
@1 Tif () =(Tt/)ls()
for all peM,.
Proof. Put plc= T,z 20z for any p= 3, 2:0:,€ M, then p|.—p as ¢ |0 and

T.j (ﬂ)=1£ilnf} 7.7 (pl.)

by 7.feC(M,). Since the branching property (b) implies
L7y = 11 T:f (),

we have
(2.2) Lf ) =11 1o ().

On the other hand, there exists 0<e<1 for each feC¥ such that f(x)=1 for
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0<z<e. Since
. N
T f (20z)=T101(01)

= B [02F ()]
= exp ([ - tog slavyuian) |

it follows T;f(zd;)=1 if 0<z<e. Therefore (7.f)|scC¥ follows from the con-
tinuity of the mapping x—xd,. Thus, (2.1) follows from (2. 2) and

AN
(L) =TL(T:f)ls(w) =1L Tof (wids)
by Lemma 1.1 (iii).

It is shown that the total mass in a cascade process does not exceed the
initial one.

ProposiTiON 2.1. For any peM;,
(2.3 Pllll=Ilgll Sor all tz0)=1.
Proof. Take a sequence {¢,}CC, such as ¢,=0 and ¢, |1 for #—oo, and put
Falw) =g,
Then, since f,eC¥ if 2=0, it holds

T f n(p+2)=To () T Fuv)
and

thn(dga,) = ﬂa/a}’n(él)

for any 2=0. Moreover, since 7;f,(z) turns out to be an analytic function of 1
in the whole complex plane from the expression:

7.4 n=E,| exp({ aguoutan) |=Butetoneol,
the above two equations hold for all real 2. Thus we have

T o)=L Tla 8

for any p=JY, z:0,,€ M: and any real 2 because f,eC(M;) implies Tf,eC(M).
Since

PN
0afn<y>=exp(axg son(dx)/z(d»’v)>§e‘“”"”
S
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for 2>0,
A A
I T (@) =11 Es [0z, fu(p)] =11 E; [evitlml]
=<II Eal[exii] =gZTiTi—=gAllell
for 2>0. On the other hand,
T.f a(p) = E,[eXent0] | E,[e#l]1]

as n—oo for 2>0. Therefore we have
E,[edlmll]<eallall,
or
E,[exlmli=lzID] =1
for all 2>0. Thus, letting 2—oco, we have
P(llezll =1l > 0)=0,

or
Plpll=llplh=1
for all £=0. Moreover, by the right continuity of p(w), we have

P(lpll=]lpl for all £=0)=1.

411

The branching property may be extended in Proposition 2.2 below, but for

this it needs the following

LeMmMA 2. 2. For any integer n=1, fi, f2, -+, f,€C¥, and 0=, =t,=--=t,< oo,

2. 4) E,ml;]jl 7 i(ﬂti)]zE/t[lﬁl f i(ﬂti)] . Ey[zﬁl f i(ﬂti)]

if p,v and ptveM.

Proof. (2.4) is reduced to the branching property for #=1. Since, by the

Markov property at time f£,-1,

Byl 17400 |< o] T FidBu,_ Foltesn |

where by Lemma 2.1

4 . — T~
Eﬂtnq[fn(#tn—tn_l)] = Ttn—tn_lfn(ﬂtn_l): (T:n~zn_1fn)|s(#tn_1)’

and
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n n—2 . — T -
| 1 fz(;zzi)]=E,,+.,[ T 7400 Pt ) Tt o F i) |
T S

= ﬂﬂ[iljl fi(ﬂti)fn—l(ﬂn—tn_lfn)IS(lltn_l)

we have, if we assume (2. 4) for n—1,

—

By 11700 [= B T 700 o Tipeta o FlsCr ) |
. ]

XE| Tl 7400 FrorCTopmty o7 15,

=F #[le f i(ﬂti):lEv[zljl f i(#%)}

Thus the proof is completed by induction.

We now define w=w,+w,eW for w,, woe¢ W by wmw)=p(w:)+ pw,), =0 if it
belongs to M; for all £=0.
Then we have the following

PROPOSITION 2. 2. For any bounded J]..-measurable function G,
(2. 5) E W [G]=EP Q@ EP[Gw:+w:)]

if p,v and ptveM,, wheve PP=P,, PP=DP, and EPQEP denotes the expecta-
tion by the product measure PP Q PP®.

Proof. For fi,fs , fo€C¥ and 0=#,=4,=---=#,<co, we have, by Lemma 2. 2,

Bl f (ptey@0)) - F e, @)
=EPQEPLf () F e, 01)) (a2, @2))-+ gt (w2))]
=E P ® EP[F1(pu, 1)+ p11,(02)) -+ Fnpte@01) + 0, 2))]
=EP QEPLf (0,1 +w2)-+ Frpren w1 +w))],

where we note that w,+w,eW, PPRPP-a.s. because |[|m(w)||=||x]] and
[l(wo)|=|lv]] by Proposition 2.1, and hence |[|p(w1)+ mws)l|=|pll+Iv]=lp+v]|=1
PP ®PP-a.s. for all =0 since p+veM,.

Therefore, by Proposition 1.2, (2.5) holds for the function G(w)
=Fy(pe, ) Fopre () Frn(pe,(w)) where Fy, Fy, -+, FreC(My). Thus we have (2.5)
for any bounded J7.-measurable function G by the standard argument.

From this proposition, we can see the probabilistic meaning of the branching
property which is originally defined by means of a semigroup {7:}: there are no
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interactions between particles in a cascade process and they move independently
each other and obey the same probability law.

The notion of homogeneity can also be expressed by (2.7) in the same way
as Proposition 2. 2. We first show the following

LEMMA 2.3. For any integer n=1, fi, 1z, -+, f2€C¥, and 0=H ===t <oo.
.6) Euo 11 70 | =B {1 70|

if aeS and peM.
Proof. Since, by Lemma 1. 2 (ii) and Lemma 2. 1,

Eaul Filpu)l=Toy fola )=(Ti, f D)l s(@- 1)=0a(T:, F1)|s(p2)

and
0u( T F2)ls(@) = (T2, F1)s(a@) = T, fs(awbos)= Tosbant(3:)

Y VAN PN
= Ttlﬂzoafl(al)= Ttlﬁaf1($5x)—':(Ttlaa,fl)ls<x),

7~
A N\ N
Eaoll f i(pe 1= (T2,001) | s(p2) = T, 00 S 1(p2)

A A
=E0./: ()= E.Lf (a- )]

Thus (2. 6) holds for »=1. Then (2.6) is verified by induction for all #»=1 as
follows. Assume (2. 6) for n—1. Then

Eaﬁ,u[zl-i f i(ﬂti)] = an[tfi ]? i(flti)Emn_lf n(#tn—tn_l)]
n—3 e
= B T 0 Topety TG |
— T —
|

~E, n Fila ) for(Tonee F)lsl@ e, )

-1
_E, nlfxa%i)Tt,,_tn_lfnwm_l)]
1=

=F

—7:1:[1 fz(a : /lti)E,utn_l[fn(a . ,Utn—tn_l)]]

R

~E{ T A mifotaep) |

and the proof is completed,
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Define a-weW for aeS and we W by ula-w)=a-p(w), then we have
ProposITION 2. 3. For any bounded IJ].-measurable function G,
@.7 Ea JGw)]=E,[G(a-w)]
if aeS and peM,.

Proof of Proposition 2.3 is completed in the same way as that of Proposition
2. 2 making use of Lemma 2. 3.

This proposition suggests a homogeneity property of a cascade process.

Put M,=M(p;) where M(p) is defined by (1.4). Then M, is right continuous
and has left limit at each #=0 because of Lemma 1.3. We shall denote P,=PFy;,
and Eo=FEqs,, a€S, from now on.

ProprosiTION 2.4. For all pe,
2. 8) P (M, is non-increasing for all t=0)=1.

Proof. When p=ade, Pu|lll=a)=1 by (2.3) and hence Py (M,=M,)=1.
When p=ad.+bd, we have, by Proposition 2. 2,

P (M;=Ms)=Pas 00, (Mi=(aV 0)) =P Q PP (Mw:+wz) =(a\/ b))
=P QPP(Mi(w)=(aVb), Miw:)=(aVb)
=Py (M, =(aVb)P(M;=(aV b)) = Pu(M; = a) Py(M,<b)
and hence
P(M,=M)=1.

In the same way, P.M,=M,)=1 holds for u=3"., xi0». For any peM, take ¢>0
such that u((0, e])=M(y), then we can write as p= Yz, €0z, + o Where ||po]| = M(p).
Since, then,

P (My=Mo)=P,(M;=M())=Pxz, rise, (Me=M(p2)) Puo(Me=M(p2))
=P, (M =M(p)Z P (M= ||pol) = P(llpul| =l 0ol =1,

we have P(M,=M,)=1 for any peM.
Now, by the Markov property,

Pp(MsEM)=Ey[PPS(Mo§M—s)]=1, 0=s=t<oo
and hence we have
P(M;=M,, 0=s5=t<oo)=1

by the right continuity of .
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Put W’'={weW; My w) is non-increasing for all #=0}, then W’eJl.. and hence,
by Proposition 2.4, we can restrict the sample space W to W’. Thus we take

W' as our sample space from now on, writing it again W.

We now define a Markov time z; which will play an important role in study-

ing a cascade process.
Let d be 2/3<d<1, and define

. Mi(w)

inf {s; =dt,
(2. 9) ra(w)= { Mo(w) }

+oo if {-}=6¢.
Since

M,
{ra=t}= (—A‘Jf éd} € Jls,
7q¢ is an Jl,-Markov time. Moreover it satisfies rq(a-w)=rtqw) for any «eeS.
any 0=¢=1, define
inf {s; Myw)=¢},
(2. 10) o(w)=
+oo  if {--}=¢,

then ¢, is also an J7,-Markov time and the following will be usefull later:

My(w)
My(w)

=t+ogm@i),  qw)=Mw)d,

raw)=t+pam(wy), plw)= d,

@.11)

if t<rg(w)< oo, where d=pw)<1.

For

We can assume t; is finite except a trivial case. To see this, we first show

the following

LemMA 2. 4. If Pirg=00)>0 for all d (2/3<d<1), then each neM, is a trap,

ie. P(u=p for all t=0)=1.
Proof. Put a=Py(rgq=0o0). Then
a=P,(M;>d for all s=0)

=Pi(M;.>d for all s=0)

=E\[M,>d; P,(M;>d for all s=0)]
for any ¢=0. Putting =M+, we have

P,(M;>d for all s=0)
=P ® PO(Myw:i+ws;)>d for all s=0)
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=P Q PP(Msw:)>d for all s=0)
=Py (M;>d for all s=0)
since Mw:)=M(p')<1—d<d. Moreover,
Po(M;>d for all s=0)
=P,(Mya-w)>d for all s=0)
= Pi(eMy(w)>d for all s=0)
=P(M;>d for all s=0)=a
for any e@eS. Thus we have
a=E\M:;>d; Py (M;>d for all s=0)]<aPy(M;>d).

Therefore, a>0 for all d (2/3<d<1) implies Pi(M,>d)=1 for all d (2/3<d<:
and hence Pi(M;=1)=1. Since

Pa([lz=aaa)=Pa(M=d)=P1(M=1)=1,
we have T,f(ad.)=f(a) for all feC¥, and, by the branching property,

A
TF(w=(T:)ls(w)=7(p)
for all peM,;. Therefore T,=1I (identity), which concludes the proof.

ProposiTION 2.5. [t holds PJrq<oo)=1 for any d (2/3<d<l) and a
neM,—{0}, except the case wherve each peM, is a trap.

Proof. 1If any peM,—{0} is not a trap, there exists d, (2/3<d,<1) such th
Pi(rq,<c0)=1, by Lemma 2.4. Since t4=tq, for d=dy, Pi(rg<c0)=1 for ai
d (dy=d<1). Clearly Py(rg<oo)=Pi(rg<c0)=1 for aeS, and

Pys 108, (ta<00)= PP Q PP (ra(w:+ws) < co)
= PP Q PP(ralw:)< oo, ta(ws)< o)
= Po(tqa<0)Py(rg<00)=1.

Thus, by the same argument it holds P.(rg<co)=1 for u=X7, x:ds. For a
neM;—{0}, we write p=73] x:0z,=pa+p’ Where pg= X z;2m00a £idz; and M(p") <My
Then

Py(7d<0°)=Pp(0'M<p)d<00)=Pff} ®Pf«zl)((fmmd(wn)V0M<p>d(w2)<00)
=P, (01wa<00)Pulonpna<oo)=P,,(r4<c0)=1

for any d (dy=d<1).
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Since tw)=rdw)trawd,) if  p,x0, and rpw)=rt4w) if zdw)<oco and
Hregwd (w) = 0;

P(r2<00)Z P(fw; taw)+rawdy) <ooh)+ Pura<oo, prey=0)
=E,[ra<00, ey *0: Py, (ra<0o)]+ Pulra<co, prey=0).
Therefore, if dy,=<d<1, we have
P (t;2<00)Z P(ta<00, pt:;5¥0)+ P ra<00o, 1t,,=0)
=P, (rqg<o0)=1

for any peM;—{0}. Thus we have P.r;n<co)=1 for any d (dy=d<1) and any
r€M;—{0}, and hence P,(rq<oco)=1 for any d (2/3<d<1) and peM,—{0}.

By Proposition 2.5, we assume P, (rg<oo)=1 for any d (2/3<d<1) and any
r€M,—{0} from now on. We remark that it follows from the last part of the
proof of Proposition 2.5 that M, decreases to zero and hence yp; converges to zero
almost surely when # tends to infinity.

Since M, is right continuous, it is obvious that P.(rs>0)=1 and hence it can
be made P.(rq=t#,)<1, taking #>0 to be sufficiently small. Moreover we have
the following

LEmMMA 2.5. Set

{41(t)=Px(Td§t)r
Gn+1(D)=Exlqn(t —7a); t=7dl, n=1.

(2.12)

Then q.(t) does not depend on x€S and for any t>0 it holds q.(H)<1 for suffi-
ciently large n.

Proof. By Proposition 2.3 and rga-w)=rqw), it is clear that g¢,(f) does not
depend on x. By definition g,(¢#) is non-decreasing in #=0 and non-increasing in
n=1. Take #,>0 such as ¢(t,)<1. Then we show g.(n#)<1 for all =1 by
induction as follows. Since

qni1((n+1)to) = Exlgn((n+1)te—a); (n+1)fo=74]
=Eulqu((n+1)te—17a); to<ta=(n+1)t]
+ Ez[gn((n+1)to—ta); ta=to]
= qn(n o) Po(lo<ta=(n+1)to) + Polca=to),
we have, by assuming g.(z £,)<1,
Gni1(R+1)t0) = Polra=t0) <1
when Pu(ty<ta=(n+1)t)=0,
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and
Gni1((n+1)t) < Poto<ta=(n+1)to)+ Po(ra=t,)
=Pr(ra=(n+1)t0)=1

when Pu(ty<t¢=m+1)t;)>0, and hence gn+1((+1)t)<1.
Therefore, for a given #>0, taking » large enough to satisfy #=# ¢, we have

IO =qu(n t)<1.
LEMMA 2. 6. The nonnegative bounded function u(t) which satisfies:
(2.13) W)= Eu(t—14); t=14], O0=t=T
is necessarily zero for any fixed T>0.
Proof. Put ||lu||=supes:sr |#()]. Then
u@)=|[ul|Ptzra)=|lullg:(#),  0=t=T.
Now, assume |u(t)| =|lu|lgn(t), 0=t=T. Then
lu(®)| =|lullEslgn(t—7a); t=7a]
=lullgn:(®),  0=t=T.

Thus we have [|u||=||u||g.(T) for all »=1 and hence #=0 since g¢.(T)<1 for
sufficiently large » by Lemma 2. 5.

§3. Underlying process.

The process (M;) which is obtained by tracing out a particle with the maxi-
mum energy (or mass, etc.) of a given cascade process (x;) is not generally a
Markov process. However, we can obtain a nice Markov process (z;) on S=[0, 1]
which is equivalent to the process (M) till the time z,. We shall call the Markov
process (x;) the underlying process of a given cascade process (u:), because it can
be considered to represent the mode of movement of each particle of which the
cascade process consists.

In this section we shall construct the Markov process (x;) and prove some
properties of it, especially the relation between the processes (x:) and (M,).

We will fix d (2/3<d<1) and put zg=r in what follows. Set B(S) the set of
all bounded Borel functions on S and B+(§) the set of all nonnegative functions
in B(S).

For feB*(S‘), we define u,(¢, z; f) (n=0,1, 2, ---) successively by

wo(t, z; )=0,
(3.1 {

Uns1(t, 25 [)=E[f(My): t<z]+Ez[un(t—7, M;; f): t=7]



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 419
for »=0. Then it is plain to see
0=tn=thni:1=||f]| for #=0,
where || f||=supzes | f(z)|, and the limit

is a solution of the following equation:
(3.2) u(t, x5 )=E[f(M): t<<]+ Eslult—z, M; f): t=7].
We now define an operator 7¢ on B(S) by
Tf(@)=ult, z fH)—ult, z ),
where f*(x)=max(f(x), 0) and f~(x)=max(—f(z), 0). Then we have the following

LemMmA 3.1. T¢f(x) is a unique bounded solution of (3.2) for _all feB(S-),
and each of T¢ is a nmomnmegative contvaction linear opevator on B(S) such that
Té¢=I and T¢l=1.

Proof. The uniqueness of a solution of (3.2) is as follows. For feB(S), let
u(t, ) and 7(¢, ) be two bounded solutions of (3.2). Then

u(t, x)— i, x)=E[u(t—7, M.)—#(t—z, M.): t=7].
Set v(¥)=supzez |u(t, x)—i(t, x)|, we have
|u(t, 2)—dit, x)| = E[v(t—1): t=7],
and, since the right-hand side is independent of z,
v = ELfv(t—1): t=7).

Thus, by Lemma 2. 6, we have »(#)=0, and hence u(¢, z)=d(t, x).
Therefore T@f(x) is a unique bounded solution of (3.2), and the rest of the
lemma is obvious from the definition of 7.

Now, let C; be the set of all continuous functions on S such that f(z)=0 for
0=zx=(1-—d))d. Then C,cC4 if d=d'.

LEmMA 3.2. (i) For feB(S) and acS,
(3.3) 0.Tf(x)=TE0.f(x), weS,
(i) T¢ maps CS) into C(S), especially it maps Ca into C,.

Proof. (i) Since Tgf(0)=s(0), (3.3) is clear for ¢=0. Let ¢>0, then from
the homogeneity of the cascade process,
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Tif(ax)=Eaol f(M): t<7]l+ Eaol TE (M) t=7]
=Eo[f(Mfa-w)): i<z(a@-w)]+Es[ T awn [(Mawi@-w)): tZ(a-w)]
=Eu[flaMh): t<c]+E[TE. flaM.): t=z].
Thus we have
0o TEf(2)=Eo[0of(My): t<7]l+Esl0eTE M) t=7],

and hence 0oT¢f(x)=T¢0.f(x), by the uniqueness of a solution of (3. 2).
(i) If B(S)>fn |0, T¢fn |0 because we have from (3. 2),

lim TZfu(z)=FE[lim T, fu(M.). t=7]
and limn.e T¢fa(z)=0 by Lemma 2.6. Since, moreover, T¢ is a linear operator

on B(S), there exists a system of probability measures {Pg(x, dy)} such that
T¢f(x) can be expressed by

T?f(w)=S§f(y)Pz‘(x, &), feBd).
Since, by (3. 3),

THf(@)=T{0. /)= S 0:f(y)PE(L, dy)= S Say)P{(1, dy),

we have T¢feC(S) if feC(S).
For the case feC;, we have T¢feC; by the definition because M, is non-
increasing.

Lemma 3. 3. When 2/3<d=d'<1,
(3.4 TEf=T¢f
for all feCg.

Proof. Put r4=t and 74 =7’. Since a solution of (3.2) is unique, it is suffi-
cient to show that TZf(x) for f=0 is a solution of the following equation:

*) u(t, ®)=Eo[f(M): t<t'1+Eslu(t—7', M.): t=7'].
To begin with, we recall that 7T¢f(x)=liMn-w %.(t, ), Where
Unii(t, ©)=Ez[f(M): t<7]+ Ezltnt—7, M): t=1].
Since <’ =,
I=EL[f(My): t<c]l=Eslf(M): t<<'1+Exlf(M): o/ =t<z].

Since (w)=1'(w)+ozawF) when /(w)<r(w), we have, by a strong Markov pro-
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perty of i,
Eslf(My): o =t<z]=ESlE, [ f(Mi-5): t—s<0zas-rt T/ =8, o' <zl
where, if we put p.=M.0y + ', then M(p')<x(1—d), and hence
E, [f(M;-s): t—5<044]
ER: Q ERU(M-swi+we)): t—5<oza1+w,)]
ER: QERf(Me-w:)V Mi—s(w2)): t—5<(02a(w:)V 0za(ws))]
=E3: QEP[f(M-w1)): t—s<oza(w:)]
=By [f(M;-): t—5<0zd).
Thus we have

I=Eol f(M): <71+ EolEn [/ (M,): r<rp]r=tm[ st <]
p=xd/M;’

We next consider the second term.
I=E[unlt—7, M.): t=x]
=Eglu.t—7, M.). t=7, iz, e >+ Eunlt—7, M) t=7, v=1'].
The first term of the above can be written as
BB, [tn(r—02a, M, ,,): 7Z004lr=i— t=1', t>7'].
As in the case of I, the integrand is equal to
ER QEPRtn(r—osa(wi+wsz), M, cw 1wp@i+ws)): ¥Z0z4(ws+ws)]
=ER: QERun(r—os4w1), Moygwp @) Moyycwpwi)>a(1—d), r=0z4w))]
EQR Q@ EP[tha(r—0za(w1)s Mo, z00p @)V M,y 0 @2)): My, g0 @r)
=z(1—d), r=oz4wi)l,
where the second term is zero because u.(f, )=0 for 0=x=(1—d)/d, and so
=Ey fenr—0z4, M, ,5): M,,;>x(1—d), ¥=02d]
=By [thn(r—024, M, ,,): ¥=0z4).
Thus we have

= FE[Ey [thn(r—1p, M. )t 1’——Tp]r—t—f iz, o> Eglun(t—7', M) t=7=7],

=xd/M,’'

and hence
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(**) Uity )= Ex[f(My): t <21+ Eglun(t—7', Mo): tZzr=1']
+ Ex[{Ew [f(My): 7<7]
+ Ey [thn(r—15, M.,): rzrp]};:ﬁ/’r:r,': t=c, t>7'].
If we assume
Un(t, ©) = E[f(Mp): <71+ Eslun(t—7', Mo): £27']
for all d’(=d), then, since p=d in the last term of (**), we have
Uni1(t, ) Z E[f(My): t<7']+ Eglun(t—7', Mo): tzZ7=1']
+ Exltn(r, Mo )y=y—ort 127", ©2>7']
=FE[fIM): t<<'1+Eslun(t—7', M) t=7'].
Going back to (**) and using this inequality,
Unii(t, ) SEf(M,): ¢ <1+ Exlun(t—7', Mo): t=zc=1']
+Eolthnii(t—1', Mo): t=7, ©>7']
SEf(My): ¢ <21+ Eglthniit—7', Mo): t=7c=1']
+ EglthniE—7'y, M) t=1', ©>1']
=E[f(My): ¢ <2+ Egltbnin(t—7', Moo): t=7'].
Therefore we have, by induction,
wn(t, £)=EL[fIM): ¢ <21+ Eslutn(t—7', M) t=7']
for all =0, because it is obvious for »=0. We also have
Unii(t, ®) ZE[f(Me): t<2']+ Eslun(t—7', Mo): t=7']
for all #=0. Letting » to infinity in the above two inequalities, we have
TEf(@)=Exl f(M): i <21+ Eol T f(Meo): t277],
and complete the proof.
LEMMA 3.4. For feCq,
3.9) TiTY=Ttsf, 1 s20.
Proof. By the definition,
Tt f(@)=Esl f(Myis): t+5<cl+ Eal Ths- f(M.): t+s=7],

where r=r4. Since T¢T¢f(x)=T¢,f(x) is obvious for =0, we assume zeS.
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IEEx[f(ML.;_s): t+s<T]
=EI[EII[[f(M8): §< 0] £<7],

where, if we put p=Mx,+4’, then M;>zd and M(p')<x(1—d) because <z, and
hence the integrand is equal to

ERQEP[f(Mswi+wz)): s<ozd(ws+ws)]
=E,QER[f(Mwn): s<oza(ws)]
=Eun [f(M): s<0zd].
Thus we have
I=FELEn [f(M): s<tplp=aimy: t<7].
I=E [T f(M): t+s=7]
=Ea[Tts- S(M): 227l + Eol Ttys- SIM): t<t=t+5]
=Ea[ Tl (M) 127l Eol B[ TE 0 (Moy,): $Z0aal: t<2].
As in the case of I, the integrand of the second term is equal to
ERQEPITL . ,scwyrwp f(MsyywywpWitws)): $Zoza(w:+ws)]
=ERQERITY- q0wp Moy @)V Moy Ws)): SZ0za(wn)]
=ERQERITE pqwpfMoygcwp): Moyyowpw:)>a(1—d), sZoza(ws)]
+ER,QEPIT- 0 pywp S Mopgcwp NV Moggawp@2)): My =a(l—d), sZoza(wi)]

where the second term is equal to zero because T'¢feC,, and hence we can con-
tinue as

Ex [T, S(M, 00 M, >a(l—a), szozd=Eu [TE, . /(M,,,): $Z0zd].

Thus we have

U=Ey[T¢e- f(M.Y): tZcl+EofEy [TE  f(M.,): SZtplpmaamy: t<7],
and hence

Tt @)= BllBS ) s<esl + BUATE oy M) 9Zllymny 1]

+E [T s f(M): t=7].
Making use of Lemma 3.3 for the first term of the right-hand side, we have
Tt f2)=E T (My): t<cl+Eo[Ths- SIM): t=7].

Now, consider the above equality as an equation for a function of a variable (¢, x)
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where s is fixed, then we have

Tt (@)=T¢ T (w)
from the uniqueness of a solution of (3. 2).

Now we shall extend the semigroup {7¢} on C, to a semigroup {7 on
Co=1{/€C(S): limzeo fx)=0}. By Lemma 3.3, we can define T9f for all feC,
= Uss<ic1Cq as Tif=TEf if feCy Since, then, 79 is a bounded linear operator
on C,, T¢ can be uniquely extended to an operator on C,. Then we have the
following theorem.

THEOREM 3. 1. {T% is a strongly continuous contraction semigroup of non-
negative linear operators on Co. Moreover it satisfies

(3 6) 0.1 f= Tgﬁaf
for feCy and aeS.

Proof. In the equation (3.2), we have lim, o u(t, z; f)=f(z) from the right
continuity of M; and hence

*) 1}{? Tif(z)=f(x)

for feC,. By the limiting procedure, we have (*) for all feC, and hence the
strong continuity of {779} follows.® (3. 6) follows from (3. 3) and the remainder of
the theorem follows by the limiting procedure from the argument on C,.

By Theorem 3. 1, there exists a strong Markov process {W?°, x;, £° J1}, P%: z€S}
on S such that TUf(z)=FES%[f(z;)] for feCo, where W° is the set of all right con-
tinuous functions w® [0, {°%w))—S with left limit and z,w®)=w'(), J1} is a o-field
generated by the sets {x;€E}, 0=s=¢, Ee B(S), and P% is a probability measure
on JN%=Viso J? and E% denotes the expectation by P%. We shall call the
Markov process (x:) the wunderlying process of a given cascade process (u).

In what follows, we shall study some properties of the underlying process,
particularly its relation to the process (M;). We remark that the process (x;) can
be considered as the strong Markov process on S where 0 is a trap and z(w®)=0
for ¢={°w).

LEMMA 3.5. For xzeS,
3.7 P (z is non-increasing for all t=0)=1.

Proof. Take feC, such that f(y)=0 for y=<z. Since f is a function in C; for
such d as (1—d)/d=z, T f=TgfeCs and hence Tf(y)=0 for y=(1-d)/d==.
Thus, P%(x;>x+e,)=0 for any sequence ¢, | 0, and we have

4) See, e.g., p. 233 of Yosida [17].
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Pz, >x)=lin% Pole;>x+e,)=0,

or P%(x:=x)=1. From this, it follows
P(wszx) =E%[P% (wo = a1-5)] =1
for any 0=s<¢<oo. Since x; is right continuous, we have
Pl(zs=x, for all 0=s<t<o0)=1.

Put Wo={w’e W () is non-increasing for all ¢=0}. Then, by Lemma 3.5,
we can take W° as a sample space of the underlying process (x,) and so we shall
denote it again by W° in the following.

We define 7% and ¢ of the underlying process (x;) in the same way as in the
case of the process (M,):

inf {t: 3 éd],
3. 8) = Zo
inf {#: x=¢},
3.9 a‘,’={
+- oo, if {}=0¢.

Then, % and ¢° are also J73-Markov times.
For w°eW?° and aecS, let a-w® be a sample path in W° such that z(a-u’)
=axw®), t=0. It should be noted that «%(@-w®)=1<%w").

LEMMA 3.6. For any bounded J1%-measurable function F and aeS, it holds
(3. 10) EY L [Fw)]=E%[F(a-w")], xz€S.

Proof. When Fw®)=f(z ), feCo, (3, 10) reduces to (3. 6). (3.10) is verified
as usual by induction for F(w®)=7si(z:;,(w")fel@e, @)  Sfulwe, W) where n=1,
Si, oy o+, fu€Co, and 0=t,=<t,<---=t,. Hence (3.10) holds for any bounded -
measurable function F' by the standard argument.

LemMa 3.7. For any feB(S),
(3.11) ELlf(My): ¢<cad=E%flwm): £<2%),  weS.
Proof. 1t is sufficient to show (3. 11) for f=0, feC,, and x=1. For, since
E [ f(My): t<zdl=Elf(Mx-w)): t<zolz-w)]=E[0.(M): t<zd],

and
ESf(ar): t <Y =E0. /(). £<7Y],

(3. 11) is equivalent to
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B0 f(My): t<za]=E02f(x): t<7y].

Let g,eC, be a sequence such that 0=¢,=1 and gu(x) | X@n(x) as n—oo.
Then fo=f-9,€Co and T?f,(x)=0 for x=d. Hence we have

tSa(D)=Elfa(Me): t<zal+EA[Ti-co fu(M,): tZta=Eilfu(Mo): t<zd],
that is,
EAlfn(z)l=E f(w)gn(zn)] = Es[f(Mo)gn(Ms): ¢<za].
Letting # to infinity, we have
Eflf(wo): >d]l=Eslf(Me): M>d, t<za].
Since x;>d is equivalent to #<7% and M;>d to t<74, We have
Eilf(xe): t<zgl=Erlf(M): t<zd].

We remark that, by putting f=1 in (3. 11), we have Pi(t<trq)=P%(t<7Yy), or
Po(ra=t)=PoL(z4 =0).

LeMmMA 3.8. For any feCq and geC([0, o)), it holds
3. 12) Ealf(M:p)g(za): ta=t]=E%[f(2:0)g(za): y=t], weS.

Proof. Put t=74 and °=z%. As in the proof of Lemma 3.7, it is sufficient
to show (3. 12) for x=1 and #>0.
Putting #=(k/n)t, k=0,1,2, ---, we define 7, and 5 by

=Lk if i <tc=t,
=1 if H-1<=ts.

Then it is clear 7z, | = and 7% | z° as #—co.
Now we calculate the following :

EXf(z)g(cn): t=2]

= ;Eg[f(-rtk)g(tk): te1<t'=ti}
k=
i t
= BB By | ey 2| s teace]
k=1 - n p=d/1tk_1
n t
= BB B, [ Aoy 2| hecs],
k=1 - n p=a/My,

where we made use of Lemma 3.7 in the last step. On the other hand, we have
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By Sl = 5 |= Tonso—Ei] oy > L]
=Ey[f(M/n): z <rp]+Ey[Tﬁ/n-,pf(M,p>: = ﬂ
— By o > = |

t
=Ey|:T2/n_,,,f(M,p): p= ;]
and hence

Ejlf(zg)g(en): t=7°]

o 0 . t .

=% g(tk)El[EM_l[Tt,,,_,p FOLY: <p= ;]p=d/M%_l. tor <]
n t

= BB By, | Tin fOL): TP“Z]W/M%_j o<,

where, by putting s, , =M., _,0u, re + 1/, we used the branching property. Apply-
ing Markov property of () at time #_ 1, We have

Ellf(z)g(cn): t=2]

[g(tk)Ttk— f(M) tr-1 <t=t]

Il
?M:

= El[g(fn) Tgn-rf(Mr): Tét])
and hence, by letting #n—co,
Ef(z,0)9(z"): ' =t]=E\[fM)g(c): c=t].

We remark that it can be shown by Lemma 3.7 and Lemma 3. 8 that the
two processes (x, P%, t=7%) and (M,, Py, t=7r,) are equivalent, that is, they obey
the same probability law.

It is seen by Theorem 3.1 and Lemma 3.5 that the process (—log x;, PJ) is a
nondecreasing additive process on [0, co] with oo as a trap. Then it is well-
known that the Laplace transform of —log x; is represented in the form:®»

E[e—e(-log 2] = g—t¥(a), a>0,

(3.13)
da)=ma +S (A —e~)/(du),
(0,001

5) See, e.g., Ito-Mckean [6], pp. 31-32.
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where m is a nonnegative constant and /(dux) is a measure on (0, co] such that

U
S@,m] e Udu) < +oo.

In addition, it is known that

0

(3. 14) E‘;[EP f—log a5, —log xs)iI:E&[Spds S(M F(~1log s, —log :cs+u)l(du):|6)

for any Markov time p and for any feB([0, c0]X[0, co]) such that f=0 and
flz, £)=0 for z€[0, co]. From the discussion on the additive process (—log x:, P%),
we have the following statements on the underlying process (z:, P5%).

ProPOSITION 3. 1. There exists uniquely a measurve k(da) on [0,1) and a con-
stant m such that

S (1—a)k(da) < +oo,
0,1)

(3.15)
m=0,
and
(3. 16) A ()= —muxf'(x)+ gm 5 k(da)(f(za)—f(z)>  xeS

Jor all feC0, 1] where A® is an infinitesimal genmervator of the underlying process.
The set C0,1] is a core of A° on C[0,1]. Moreover, it holds

(3. 17) B Dot w) |=E2 | as Sm o(a, az)i(da) |

s=p

Sfor_any Markov time p and for any geB(§ ><§) such that ¢=0 and g(x, x)=0 for
z€S.

ReEMARK 1. The measures / and % satisfy the following relation:

(3.18) k(A):S Jlaw, 2310,

{u: e %e

REMARK 2. The measure % and the constant m determine the underlying
process.

§4. Branching measure.

In the preceding section we constructed a strong Markov process called

6) See, Ikeda-Watanabe [4] and Watanabe [16] (cf. Motoo [10]).
7) This 1s easily obtained from the expression of a generator of an additive process
for which it 1s refered to Sato [11], Chap. 3.
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underlying process, describing the behavior of each particle of which a cascade

process consists, while the purpose of this section is to construct a measure

II(dp)—this will be called a branching measure—on M,—{5,;} which gives the law

according to which new particles are born when a parent particle has splitted.
For ¢ (0<e<1/2), set

B*={F: F is a nonnegative bounded Borel function on M, and
satisfies F(p)=0 if M(p)>1—¢}.

Taking FeB*, we concern with the quantity

3 P (3 )|

for zeS, where r=14 (2/3<d<1) and r,=tAf. Then we have

1 z
—m]l#slléﬁ——<2, P,—a.s.

P

Moreover, since F((1/M;_)-ps)=0 if M(1/M;-)+ ps)= M/ M;->1—¢, the number N of s
such that s=r and F((1/M;-):s)=0 has a bound:

log d +1

N—EKGETg(l——_e)— .

Thus it follows

5 F( A} -m) = ZF<%-/JS)§ Al

S=tg $st

with ||F||=sup,es|F(p)|. In addition, we have by the homogeneity of the cascade
process ()

P 5 oL (e i)

=5 273 4))

which means the left-hand term does not depend on ze€S.
We now define #,(¢), n=0, 1, 2, .-+ successively by

uo(1)=0,
41 [unu(l‘):EzLZ F<_Ml—: ﬂs>]+ Bfiteo: =5, n=0.

B4

It is easy to see that u,(f) does not depend on zeS and 0=w,(f)<uy. () for all
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n=0. Therefore, limp.e #,(f)<-+oc0 exists and we denote it by Ay(#; F). Then,
by the definition, A4(#; F') is a solution of the following equation:

4.2) u(t):E,[ 5 F(—Ml—_— : ,us>:|+Ez[u(t—T); =)

=
Moreover, it is plain to see that #,(f) is non-decreasing in #
4. 3) n(S) = tn(t) for 0=s<t<o0
and we have as a limit

4. 4) q(s; FYS Ayt F) for 0=s<t<oo.

LeMMA 4.1. For any 0<T<oo, Ay(t; F) is bounded in t€[0, T) and vight
continuous in t.

Proof. Each of wu,(t) is obviously bounded, or more precisely |u,(f)|
=K4||F||1+n). Moreover, since Eu[Xis<. F((1/M;-)-ps)] is right continuous in ¢,
we can see by induction that #,(¢) is right continuous in ¢ for all .

Since

Un41(8) = wn(t) = Esltn(t —7) —thn—1(t—7); t21],

we have
(*) an(t) = Eolan(t—1); t=1]
where @,(¢)=SUPogs<: |[#n+1(S)—#a(s)|. Using notations in Lemma 2. 5,

an() = anOq(t),
and hence by the inequality (*), we have

) ZE [ ot —7)q:(t—7); t=7]
San-2(D)E[qi(t—1); t=c]l=ano(8)qa(D).

Thus, we have by induction

n(8) = @n-m(t)qm(?)

for 1=m=n.
By Lemma 2.5, there exists a positive integer #, for any fixed 7>0 such
that ¢,,(7)<1. Since

@nngt M T) =@ m-13n041( T)Gng(T) =+ Za(T)gno( T)™

for any m=1 and 0=k <n,, it follows
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2 aT)="8 3 tmayed D)= 5, 3% aThan(T)"

ng—1 o
= 2, aT) 2 gn(T)"<+oo.
Therefore, wu.(f) converges uniformly in 0=¢{=<7, and Ay F)=liMuw u,(t) is
bounded in ¢€[0, 71 and right continuous in ¢

By Lemma 2.6, it is easily seen that the bounded solution on [0, 7] of the
equation (4.2) is unique for any 7>>0. Thus, A4y(# F) is a unique solution of
(4. 2) in this sense, and especially we have

4.5 ot F+G)=Ay(t; F)+Au®; G), it aF)=aAy(t; F)
for F, GeB* and a=0.
LemMA 4.2, If {F.}CB°® satisfies Fuo(p) |0 as n—oo, then Ay(t; Fo) |0 as

n—00.

Proof. Since Ay(t; F)=0 for FeB:, (4.5) implies A4(f; F,) is non-increasing
in n, so that lima_. A5(¢; Fu)=A(t) exists and A(¢) satisfies the equation:

A@)=E:[A(t—1); t=1],
because Ex[Ysse, Fu((1/Ms-)-ps)] | 0 as n—oo. Hence A(f)=0 by Lemma 2. 6.
Now, we set
By={FeB" F is ¢7'(®¢)-measurable},

where ¢q is defined in §1. FeBjy means that F(x) depends only on ¢q(p), or
F()=F() if ea(p)=pa(p).

LeMmA 4. 3. For 2/3<d=d'<],
Aty F)=Ay (6 F)
if FeBy.
Proof. Put rq=t and 74 =7’. Since the equation (4.2) has a unique solution,

(& F)=Ay.(t; F) follows if we show that Ay(#4; F) satisfies

Ay(t; F)=Fs| X F<—1: : #s>]+Ex[Az(t—r’; F); t=¢'].

S§ri

For later use in §5, we shall show the above equation for any Markov time
o which satisfies p<t (obviously, ¢'<z).

Let Ay(t; F)=liMno %, (f), where wu,(f) is defined by (4.1). Putting B()
=FEu[Yso F () Ms2)- p1s)], We rewrite u,,1(¢) as follows:
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Uni()=FEs 2 F (]_Vfl: '#S)]+Ex[74n(t_7); t=r]

$Sty
1 1
=Ez[ P F<M— . /Js)]‘l"E:cI: P F(“*‘—" . #s)]-i-Ez[un(t—r); t=1]
S=<pt §— pt<s<tg 8~

=B(t)+Ex[ 5 F(%p) t=p, r>p]

p<s=ry
+Eglun(t—1); t=7, ©>pl+Elunt—1); t=v=p]
=I+II+III+1V, say.

1
II:EZ[E [ F( ’ s—r>-J ; g ’ ]
“e r<s§(§vxd)/\t M(s—r)- a r=p t o T>p

1
=Ez[E [ F( - )] s t=p, ]
“e sgazdz/\:(t—r) M— He r=p e T>p

Putting p,=M,0u,+ ¢’ where M(y')<x(l—d), and making use of the branching
property, the integrand is equal to

i 1

W —
MP®E# L_s_s_axd(wléﬂz)/\(b_r) M, _(w,+w,) ps(w1+ws)

B 1
— D @ — (s .
EMP@E” _séaxd(u%:/\(t—r) F( M;_(wr) (# (u)1)+# (wz))]

1
— P ORQED Fl—m . ]
Eu®Fy _ssww%w—o <Ms-(uh) ﬂs(uh))

1
=l % (3]
o s§aIdZ/\(L—'r) M, "

because FeBj and

1 M) _ a(l—d) _1-d
M(M—(Uh) ' ﬂs(WZ)>— M-(uh) < xd - d

Thus, we have

II=E3[EM,,[ 3 F(J—ﬂ)] 120, w0,
sérp/\(t—’r) 8= ;:{‘;d/}l!p

Hl= EulE, [un(t—7—020); t—=¥=02d)r=p; tZ=p, >p],
where again putting p,=M,0ux,+ " and using the branching property, we have

M= EolEy [tnt—1r—1p); t—1=1,)=, ; tZp, >p].
p=zd/Mp
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Therefore #,.1(f) is expressed as

Un1(8)=B@)+ Ezlua(t—p0); t=7v=0]
I e =)

+Ey[vn(r—1p); rgrp]} D t=p, ‘r>p].

r=t—p
p=xd/Mp
y=Mp

Now, if we assume
(**) Un() = B@)+ Exlunt—0); t=0]
for any Markov time p=r, then it follows from (*)
e Un1(B) = B)+ Eglun(t—p); t=1=p]+ E[u(t—p); t=p, >p]
. =B(t)+ Eslun(t—0); t=0l,
and again applying this to (*¥), we have
Uni1(8) = B@)+ Ealun(t—0); t=c=pl+Ealtn(i—0); t2p, t>0]
=B@)+ Exltina(t—p0); t=p].

Since (**) is obvious for z=0, (**) is verified by induction for all =0 and (***)
also. Thus, letting n—o0, liMp-e #,(f)=A%(¢; F) satisfies

at; F)=Bl)+E[As(t—p; F); t=p].
LemmA 4. 4. For FeBy,
G@+s F)y=Ayt; F)+Ay(s; F), 0=t, s<oco.

Proof. This is shown in a similar way as in the proof of the semigroup

property of {79}
Putting A(t)=A4(t; F) and B@)=E.[Yss F((1/M;-)- ps)], we have

A{t+3s)=Bt+s)+EJA(t+s—7); t+s=7)

=B(t)+Ez[ 5 F<Miu_ pu)]-l-Ex[A(t-{—s—r); t+s=d]

TE<US T

i <]
M, Pu s T

+EJ[A(E+s—1); t<7, t+s=r]+EfA{t+s—1); t=7]

=B(t)+Ez[ by F<

{<USTy4s

=I+I1+1I141V, say.
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1
II=Ex[E [ F( : ,,_)]; ]
" t<us(t+§a)/\(t+s> M- t<e

1
=E3[Eﬂ,[us§iAsF< . m)]; t<f].

If we put p,=Mox,+ 4’ where M(y')<z(1—d), we have by the branching property
that the integrand is equal to

N
uSopg(wi+w)As Mu-—(wl +ws)

=008y 5 F gy (it )|

1
j—y ~¥¢)) E® —_—
Ed®E; [us«:z;wx)/\sF< My-(w1) # (uh)>]

1
al uSEzAs Mu— #

since FeB: and

E9, ®E;%>[ : yu<wl+wz>)]

1 _ Muwy) _ z(l—d) 1-d
M( M,—(wy) '”“‘“’”)’ M) ~ zd 4

Thus, we have

1
= F M, u)] ; ]'
II E [Eﬂt[ugsz/\rp (Mu— a p=xd/M} t<T

Applying the same argument as above, we have
Il =EL[E, JA(S—024a); SZ0zal; £<7]
=FEuEx,[A(S—1p); SZtplp=zaruy; t<1].
Therefore, we have

A(t+5)=B@)+E,[A(t+s—1); t=1]

+Ex[{Ey[ b F(»l-—-yu>]+E,,[A(s—rp); sgr,,]}wm ; t<r].

USSATp u-
p=xd/My

Since the integrand of the third term is equal to A(s) by Lemma 4.3 because
p=d, we have

A(t+5)=B@)+EJA¢+s—1); t=]+E[A(s); t<1],

or
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A@t+s)—A@)— A(S)=E [A(t+s—1)— A@t—1)— A(s); t=].

Now, if we fix s and put u(@#)=|A{F+s)—A@F)~A(s)|, then u(f) satisfies the in-
equality:

@)= Ep[u(t—1); t=7].
By Lemma 2. 6, u(¢) is identically zero and this verifies
A(t+s)=A@)+ A(s).

By Lemma 4.1 and Lemma 4. 4, A4 F) is a linear function of ¢ and hence
can be written as

4.6) Aut; F)y=tLy(F)

for all FeBy. It follows from (4.4), (4.5), and Lemma 4.2 that Ly(F') has the
following properties:

(i) Ly(F)=0 for all FeBy,
(ii) Ly(F+G)=Ly(F)+Ly(G) for all F, GebBy,
@n (ili) for any sequence {F,} in Bj such that
Fo(p) | 0 as n—co, Ly(F,) |0 as n—oo.

Moreover, we have by Lemma 4. 3 and by the definition of Bg,

(iv) Ly(F)=Ly(F) for FeBy, if d=d,
“s (V) LyF)=Li(F) for FeBy, if ¢'=e.
By (4.7), there exists a finite measure /I3 on (M, ¢z'(B¢)) such that
ITy(- O Ms, ) =115(+),

4.9
4.9) o(F)= SM F()IT3(dp)

for all FeBy, where M, .=M,N{y; M(ux)=<1—¢}. By the property (iv) of Ly(F),
¢ is a restriction of /74, on ¢7*(B¢) if d<d’. Therefore, we see by Lemma 1.5
that there exists a unique measure //° on @, such that

II'(- 0N M, )=11°(-),
(4. 10)

Ty =13 gg)
Since (v) of (4. 8) implies
(4.11) (-)=1"(-NM,.)
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if e/<e, I (-)=limg¢/o II*(-) is a o-finite measure on (M, B,) which is concentrated
on the Borel set My=M,N{x: M(p)<1}. Moreover, we have

(4.12) a<F>=S F(y)lmdm:S F(,u)]]‘(dp)=gﬁ F()I(dg)

Mz,s 2,e

for all FeBy.
Now, since Ay(t; F)=t¢ Ly(F) is a solution of the equation (4.2) for FeBjy,
we have

tL‘d(F)zE,[Z F<——1;~ -ys>]+Ex[(t—r)L:i(F); t=r]

SSrtg

and hence

(4. 13) Ex[ P F< M} - -gs)]=Ex(n)L:i<F)=Ez(n)Sﬁ2F(p)H(dy)

sStp
for all FeUgcecisz By. Let ByM,) be the set of all nonnegative, bounded and
¢a'(Bf)-measurable function F' on M, such that F(x)=0 if M(g)=1. Then, (4.13)
is valid for all FeBy(M:).
Finally we shall show that the support of I7 is on Mi:—{5:}. Set Eq

=ﬁ2 n {IUGMZ; ”SDd(/l)” >1}) then EdGSDEl(QEi), XEdeBd(MZ)S) and Zsér; xEd((I/M—) -‘1,(3)-_—‘0
a.s. (Py) because for s=tq

(=)=

P M- )| = M;_ )za-a11
Therefore, by putting F=Xz, in (4.13), we have II(E;)=0 because Ey(r;)>0
for ¢>0. Thus, it follows II(limgr; Eg)=0, where limg;; Eq= Uss<a<t Ea
=Jl72/\{,ueMz; [lgll>1}. Therefore, the measure II is concentrated on the set
Ml—{51}=ﬁzn{yeMz; llel|=1}, or we can consider I as a Borel measure on

M, — {04}

mdn)=1  as. (Po).

THEOREM 4. 1. There exists a Borel ‘zeasm'e II(dp) on My—1{6:} such that

@19 £ 5 Flam) |-Bsene . Paamap

for a_l_l FeBy(M,) and for d (2/3<d<1). In addition, for any nonnegative function
g€ B(S) satisfying ¢g(1)=0,

(4. 15) . otitan={  s@kaa)

or k(da)=[uceaa II(dy), where k(da) is the measure on [0, 1) defined in Proposition

8) Zg(y) is an indicator function of a set E, ie. Xg(p)=1 if peE, =0 if p¢E.



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 437

3. 1. Moreover,
4. 16) S (L= M(p) 1 (dps) < +oo.
Mi—{51}

Proof. The first statement (4.14) is already proved. Since the condition
(4.16) follows directly from (4.15) and (3.15), we shall show (4.15) only. First
of all, we choose a nonnegative function geB(S) such that g(x)=0 for 1—e<z=1
and g(x) is a constant for 0=x=(1—d)/d. Then, g(M(p))e Bs(M,) and (4. 14) implies

g e Ll )], sonn

On the other hand, we have

2 2ol =7l 255

and FEu(r;)=FE%(}) since the two processes (i, PY%, t=7%) and (M, Py, t=7,) are
equivalent as seen in §3. Moreover, since (3. 17) implies

B Zo(3

we have (4.15). Finally, since (4.15) does not depend explicitly on 4 and e, we
have (4.15), by letting d 11 and then ¢ |0, for all nonnegative functions geB(S)
satisfying ¢(1)=

)]=Eg<zg>gmyl)g<a>k<da>,

II is in general o-finite and uniquely determined by (4.14). We shall call 1/
a branching measure of the cascade process (p).

§5. Fundamental equation for a cascade semigroup.

In the preceding sections we have constructed the underlying process (z;) and
the branching measure /I of a given cascade semigroup {7;}. We intend here to
obtain a system of integral equations which are satisfied by T.f in terms of (z;)
and I1.

It has been proved in the proof of Lemma 4.3 that Ay(f; F)=¢Ly(F) satisfies
the equation:

o F>=E,[ 5 F( i #)]+Ez[A:z<t—p; F); t=]

SSpAt

for FeBy and for any Markov time p such as p=r;. Hence we have

£ 5 P4 m) [=Eerone)

SSpAL
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for such p and FeByM:), where

H(F>=L:1<F>=S P,

M-

Thus, by letting #—oo, we have

5.1) Ex[ z F(L_ - ﬂ>] = E(o)I(F).
LEMMA 5.1. For FeBuM,) and geB(S),
5.2) Eag[éth(—-lT - ,us>g(Ms_)]=Ex|:S:g(Ms)ds]H(F).

Proof. It is sufficient to show (5.2) for FeBy and geC(S), ¢=0. We define
for any ¢>0 a sequence {p}nz0 of Markov times by

00=0,

~ inf {s: |g(M;)—g(Mp)| =¢}
p‘_{+oo, if (1=,
Pni1(0) = pa(w) +o:(w7,) for n=l,

where w;fn means w:n(t)=w(pn+t) for ¢=0. Since g(M;) has a left limit at each
s=0, we have p,—co as n—co. Now, we decompose the left-hand side of (5. 2)

into the sum:

1 ® 1
Ex[ Z F( M. * F‘s)g(M—):I: Z Ex[ Z F(——— . pla)g(]w:,_)],
sstp §— n=0 fg/\pn<s§rt/\pn+l 83—

while

i 1
n=blat) 3 F(gem)]
L Tt/\pn<8§‘rt/\pn+1 §—

1
=F, _Q(Mpn) X F<M_s- . ,Us); Pn<1z]

P<SStENp, 4y

B 1
=FE; g(Mpn) Ep I: Z F(“‘_— . /ls):l 5 Pn<‘l‘t]
B n sS(p+rIADA @+p)—p s— p=on

q=xd, MPn

since =(w)=pa(w)+1,W},), g=xd|M,, if pu(w)<z(w). Since we can replace E,,, in
the above integrand by Eu, because FeBy(M;) and since we have ((p+rz)AZ)
AP+ p)—p=1t,=74, if follows from (5. 1) that

Li=Elg(M,,)En, [(p+td NOAN(P+01)—Plp=0, - H(F); pu<zi].

q=xd/Mp"
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Now, replacing Ex, by E,,, again and using a Markov property at time py,

In = Ezlg(M,,)(Pri1 ATe—0n) II(F); pa<7i]

- E,[S""“A"g(M,,n)ds] JI(F).

Pty

Since we have in addition

> B\ qomyas |- 11wy =] " aotyas |-,

n=0 pptt

we can carry out the following estimation:

£ 2 7(5 - w)oa |- 2] (" owmoas |-

sSty

i 1
Z E-”[ Z F( M. * /A?)Q(M~)]
n=0 rgApn<x§r¢/\pn+1 s~

-SEfy 2 (gen)|

rt/\pn<SSrt/\pn+1 s—

=

+ g‘oEx[g(M,,,,) Y F(L : /zs)]—Ew[S: g(Ms)ds]H(F)‘

q/\pn<s§rL/\pn+1 §—

§—

+ 5B " g, - aoy1as |- 1)

ppAte

o 1 [ Pp1/ATL
=2r] ¥ Flg ) e Z B 7 as [y
n=0 Tt A <SSTtNpy 4 g $— n=0 enAtt

=5E,L§tF< Ml,_ : yx)]+eEz(‘t'z)'H(F)

=2eE(c)[I(F)
=e(2tII(F)).
Since ¢ is arbitrary, we have (5. 2).

Define a mapping ¢ on M¢ into M. such that ¢u(¢(v))=v and ¢@)(S—Ss)=0
for ve M?.

LEMMA 5. 2. The mapping ¢: (ME, BE)y—(Ms, B:) is measurable.
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Proof. Put _J={Be P s (B)epg}, then J is a sub o-field of B, To
show the measurability of ¢, it is sufficient to show DB, For feC¥ and

veM¢g,

Fpon = exp( | og fporaa))

= exp(SSd % log f1 (x)v(dx)) ,

and hence f(¢(u)) is a @PB¢-measurable function of v. Thus, it follows from Pro-
position 1.2 that Fo¢g is PB¢-measurable for all FeC(M,). Since ¢ (F-YE))
=(Fo)"Y(E)e B for Ee B(R'), we have F-}(E)e ] and hence FeC(M:) is always
J-measurable, and this implies B.C 1.

By Lemma 5.2, ga=¢ops is a measurable mapping of (M, ¢ (B¢)) into
(M, B;). Therefore, Bsy(M;) is coincident with the totality of nonnegative bounded
Borel measurable functions F on M, which satisfy the relation F=Fo@s and
F(p)=0 if M(p)=1.

LemMA 5. 3.
1 tg At
6.9 B T (o) Mers) |=2] (" asl  nanred, m, 9]
sStgAt — 0 Mm—{a1}

Sfor any nonnegatiz_)_e bounded measurable function F(u,y,s) on the product meas-
urable space MyX S x[0, co] which satisfies F(y, y, s)=0 if M(p)=1.

Proof. Since FopseBy(M,) is valid for a nonnegative bounded Borel meas-
urable function F' on M, which satisfies F(x)=0 if M(p)=1, we have the equality
(5. 3) if we show the following:

1 T
(*) B 2 P (g m)o0tonis) | =] V" soyncras e
$=vyp 8—
for FeBy, geB(S), g=0, and %eC([0, co]), ~=0.
Take 6>0 for a given ¢>0 such that |A(s,)—A(s;)]<e¢ whenever |s;—s,|<a.
Then, we divide the time axis into 0=#<#t <<+ <fp<--—oo such that
tu1—tn <8 for all =0, and decompose the both sides of (*) as

s=tp

Tt Atnt1

] [ sannsyas jnm)= ] " qonnsys |,

¢ty

Since, by the equality (5. 2),
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1
Bl 2 (g oMo |
TNt <sStgAtn 41 s—

TgNtn+1 2
0

g(Ms)ds]H(F)—Ex[S Mng(Mg)ds]H(F)}

= Bltas) [E[S

0

= EZ[S"”"“g(m/e(tw)ds]mm,

TtAly

we can estimate the following:

B T F (51— we)ationis) |- 2] (" aupioas e

$S7y §~

=|E = P51 m)atomes) |- iE[éF(—M}— oM |

Sty §—

+ P a0ttt |- B (" oaynesras ||

£ed

T Aty <sSttAtp41

=y T ) oM — i) |

F(
Tt At <8STEAln 4l

+ 3B " it - nislas [

n=0 Tt ALy,
Tt At

n+1
g(Mods]H(F)

Tt\tp

]

Tt At <sStgAlnt1 ( $—

=e i E:c[
n=0

= eE, ;;f(% : ys>g(Ms_):|+eEx[S: g(Ms)ds]l'[(F)

= ZeEx[S: g(Ms)ds]H(F)

= e(2t|lg|| T(F),
where |lg||=supyszs1 |g(x)| < +oco. Since >0 is arbitrary, we have the equality (*).

COROLLARY.

Ex[s 2 G(@alps), S)X(.Ms<:vd§1%_)]

StgAt

. 4) o
=E[S dsS (G @M ), S)X(MM(#)<xd)]
0 Mi—1{31}

for any mnonnegative bounded measurable function G on the product measurable
space My [0, oo].
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Proof. Putting Flu, y, $)=G(@a(y- 1), SU(M(y-p)<zd=y) in (5.3) and noting
that @ay- 1)=0u(y-@a(py)) and A(M(y-p)<zd)=XMy ga(p)<zd), (5.4) is easily
shown.

THEOREM 5. 1. For feB%, u(z)=T.f(xdz) is a solution of the following (Sq)-
equation:

w(@)=E5[f(w); t<tol+ESlu-o(2); zoy=ad, t3=1]
(Sa) ¢
+E‘;[S dsS H(dp)X(st(p)<xd<xs)12t_s(xs-y)].
0 Mi—{31}
Proof. Put r4=r7 and z%=1"
T.f (w82)=Eal f (12)]
=Eo[f () t<7l+Ealf(); t=7)

=I+1II, say.
From feB%,
I=E,[f (Midn,); t<tl=E[f(M); t<7]
=E5[f(x); 1<°]
by Lemma 3. 7.

I=FEL[E, [f(pu-ols-s t=7]
=Eu[ T/ (p); t=1]
=BT f(p); Me=ad, t=t]+Eo[ T f (1.); M.<zd, v=f]
=II,+1I,, say.

R s T
Since (7:f)|seB% and T,f =(T1.f)|s for feB%, we have by Lemma 3. 8

II1=E‘7;[Tt_ff(M5MT); M,=(L‘d, Z'ét]
=E?v[Tz—rOfA($t05x,o); To=xd, T°={].
Finally, we begin with rewriting the term II,:

IIZ=E$[T‘1—QJ?(#Q); M"t<xd]

=Ex[ 5 Ty f(,ls)x(Ms<xd)].

sSty

Since th°¢d= th’
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112=Ex[ by ﬂ—sf(tﬁd(ps))X(Ms<xd§Ms—)],

s=TL

and hence applying (5. 4) for G(y, $)=Ti-sf (&),

-2
{4
I

by Lemma 3. 7.
Since #(p)="T.f(y) for wu(x)=T,f(xd,), it follows from the above arguments
that #,(x) satisfies the (Sg)-equation.

dsS H(d#>Tt~sf(¢d(Ms'ﬂ))X(MsM(ﬂ)<xd)]
Mi—{5;}

)

s\ g T O MM ) <) |
Mi—{51}
Tg A
dsS n(dym_sﬂxs-y>x<x8M<m<xd>]
Mi—1{51}

=F

=E,
0

=E

dsS (@) Thms f - ﬂ)X(st(y)<xd<xs)]
Mi—{1}

By putting f=1 in Theorem 5.1, we have

(6.5) P(ze=ad, r‘,‘tét)—l—E‘;[S:dsS H(d,u)X(st(/J)<xd<xs)]=P‘;(r?lgt).

Mi—{;}

Put C={feC¥; f(z)=1 for 0<z=(1—d)/d), then CXcB% and U C%=C¥.

2/3<d<1

THEOREM b. 2. Two cascade semigroups {T"} and {TP} coincide, ie. TP=T@
for all t=0, if the underlying processes and the brvanching measures ave both coin-
cident, respectively.

Proof. Let (a, P%) and Il be the underlying process and the branching
measure, respectively. By putting % =<°, it follows from Theorem 5.1 that

| TP F (@ds)— T f ()|
éE?Z‘[I Tégrof(xroawro) - Tg?fof(xroa.l‘,o) I y Leo= xd! To é t]

+ E"I[Stdsg II(dp)| Tgi)s]?(xs-ﬂ) - T?_)sf(xs- X (s M) <xd<xs)]
0 Mi—{31}

for any feC%. Since Ga(p)=Xajes, %0z, for p=3 zdseM; and the number of
;8 In Sg is not greater than d/(1—d), and since in general

{17 = [Lotwd =l

for any f and ¢ such as [|f]|=1 and |lg]|=1, we have
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A A d
sup | TP f (s 1) — TEsf(ms p)| = 14 (17998
HEM -
sststo
where
any= sup | T Faba)— T f (230
x

0=ststy

Therefore, we have by (5. 5)
d 0 0
Tty = 77 @y Pe(x"=10),

and in addition @;,,=0 for a sufficiently small #>0 because limy, o P%(z°=<#,)=0.
Thus, it holds T® f(z6.) =T f(xdz), and hence

A T N R
TP =TPNs=TCNls=TPf

for all ¢ such as 0=¢=t, where £, depends only on d. Since both {T{®} and
{T®™} are branching semigroups (i.e. semigroups with branching property) and
(T f)|seC¥ (i=1,2) if feC%, the equality T f=T®F holds for all 0=¢<oco and
feC¥%. Moreover, it holds TPPF=T®F for all FeC(M;) and 0=¢{<oco by Proposi-
tion 1.2 and the fact C¥= U C%.

2/3<d<1

§6. TUniqueness of the underlying process and the branching measure.

We shall show in this section that the underlying process and the branching
measure of a given cascade semigroup are uniquely determined by the system
of (Sg)-equations. The meaning of the assertion is formulated in the following
(Theorem 6. 1).

Let I7(dy) be a measure on M,—{5;} such that

6.1) \,. o, Q=MD < oo

and 77 a nonnegative constant. Then, define a Markov process (&, Py on S =10, 1]
whose infinitesimal generator A on C[0, 1] has a core C*[0, 1] and is given by

(6.2) Af(@)y=—maf()+ Sw ])E(da)(f(m) —f(x))
for all feC0, 1], where
6.3) 5 (da) =S [dp).

{m M(p)eda}

Note that the underlying process and the branching measure satisfy all of the
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above conditions (see Proposition 3.1, (4.15) and (4.16)). Moreover we remark
two relations:

(6. 4) Eof@)=E.l flaks)
for aeS and feB(S), and

6. 5) E| 5 o(@. fs)]zE‘x[SstSng(@, aﬁs)ls(d@]

for a Markov time p and geB([0, 11X [0, 1]) such as ¢g=0 and ¢(x, 2)=0.
Set

S’d(x’ t; f, u)zE-I[f(ft); t<fd]+E:c[ut—?d(£7d); @?d=xd) %dét]

(6.6
+E~l.1;|:g dSS ﬁ(dﬂ)x(fsM(/l)<$d<£s)ﬁt—s(fs'ﬂ)];
0 Mi—{3,}
where
©.7) Fa=inf {s: BofFo=d), =400 if ()=

THEOREM 6. 1. Let {(&, P.), I(dp)} be a pair of @ Markov process on S and
a measuve on M,—1{0,} which satisfy (6.1), (6.2), and (6.3), and T; be a cascade
semigroup. Then, (X, B is the underlying process and [I(dy) is the branching
measure of the cascade semigroup T, if, for any d (2/3<d<1) and for any feC%,
wl(m;, £)="Tif(%ds) is a solution of the equation:

(6. 8) ut(x; f):§d(x) t; f) M)'

In view of Proposition 3.1, Theorem 4.1, and Theorem 5.1, it is sufficient
for the proof of Theorem 6.1 to show: Let {(z®, P®), II'¥(dp)} (i=1,2) be two
pairs satisfying (6.1), (6.2), and (6.3). Then (z®, PP)=(z?, P$) and [I*(dp)
=1I19(dy) if, for any d (2/3<d<1) and for any feC¥, ux; F)=T.f(xd,) satisfies
two equations: w,(z; /)=SP(x, t; f, u) (=1,2) where T, is a given cascade semi-
group.

We need several lemmas for the proof.

LEMMA 6.1. PQEP=H=P@EP=t) for all t=0, where =’s are defined by
6.7) for z{¥’s.

Proof. Put P=:%® (j=1,2) for a fixed d (2/3<d<1). Since ®(a-w®)
=r@W(®) by the definition, PP (r“=¢) does not depend on zeS by (6.4). Hence,
it suffices to prove the lemma for z=1. Taking a sequence {f,}CC¥ such that

O<x§d)

L
Su() lf(x)={
0, d<z=l,
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we have
EPLfuaf®); t<c¥] | EP[f®); 1<) =0.
Since (%, fn)=Tif n(@dz)=1 for x=d, we have
EPlu-o(x8y; f); 2h=d, 1P =t]=PP () =d, t¥=1)

and

dsS IO M) < d<a) sl -5 T2) (- ;1)]
Mi—{51}
as @M <a<an)

M1—1{31}

dsg EO(da)t(x ”a<d<x“’)]
0 0,1

(DAL

e e e o
o~ o o~

— Egi)[

=E§i>[ Y x(x;i><d§x§i_>)]

s<e(DAL

— P(i)(»’vffZ) @® ét).

dsS k“>(da)x(x§“a<d§x§“)]
[0,1)

0

Therefore, the relation SP(1, #; fr, #)=SP, t; fn, #) for all » implies
PP=d, V=0)+PP(aih<d, P=0)
=PP%=d, P=H+PPa%<d, 9=,
ie. POEP=H=PP(®=t).
LEMMA 6. 2. For any d (2/3<d<1),
(@0, PP, t<P; zeS)=(a?, PP, t<?; zel).
Proof. When feC% satisfies f(x)=1 for x=d, we have by (6. 8)
1.7 (0:)= EP[flafP); t<c @]+ PP(c®={)
for i=1, 2, and hence by Lemma 6.1
EP[fa); t<rD]=EC[f(?); t<®].
This is easily shown to be valid for all feB(S). Moreover, Since

EPUfa); t<c®]=EP[0:fla®); 1<),
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we have
EP[fz); t<cP1=EP[Aaf); 1<

for any d (2/3<d<1), any zeS, and for any FeB(S).
Now, it is shown by induction

EQLf (@) o)+ Sulw); tn<td
) = EPU @) uaf)) - folafl); ta<e?
for all n=1, 0=t,<tx<+++<fn, and fkeB(§) (k=1, 2, ---, n), since, if we assume (*),
we have for another f,.1€B(S) and tp.1>,
ERU () Sl Frra(@iny); tnra<td

= QU () S oDE G sl s tn <],y ta< )
= ESUA) Sl B s hseta)s tri— a7 tn<]
= EQU@) a2 s 02usmia)s b=t <o),y <8
= EQLi(@0)fa(o2) Faer(32, ) tuss <.

LEMMA 6.3. For any feC¥%,

SM o }H(n(dﬂ)%(M(p)<d)f(y)=S )H(z)(dy)X(M(y)<d)f(y),

Mi—{

Proof. Put tP=7P, t@'=¢®, and @"=:{ (G=1,2) for 2/3<d"’"<d<d’ <L
We have by (6. 8) for feC¥

T (0) = E[fa®); t<cV]+E@[ Ty f(d0a); 28y=d, ¥ =t]
t "
+ Ef"[s dsS TP M) <d< 59 T F (P -,,)]
0 Mi—{81}
_1® 11O+, say.

119 = EO[T, o f(dos); alhy=d, D=t r®<cD"],
t

o =] { as{mowmuer Mo <a<a <o) T |
0

t A
+ E}“[S dsSH‘i’(dp)X(x?’M(p) <A<z =d) Tooyf (0 -y)]
0

=1IIP4+1IIP, say.
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III;“:E{“[S . dsSH‘”(dp)x(:c?’M(p)<d<x§”)Tt F - y)]

_E(i)[E(z(i) [S dsSH(z)(dp)X(xgz)M(#) < d< w(t)) Tu sf(x('b) :I ; T(i)’ét' ‘L'(i)l <T(i):|.

u=t—c(8)’
Putting y=28), and p=d/«¥)y (=d) in the last term, the integrand is equal to

E[S dsSmw(dp)x(x@M(ﬂ)<yp<x9>> s (@ 1) ]

On the other hand, we have by (6. 8)

Tuf W) =EPLA@P); u<ciPl+EP [ Tu-ip ] hdyn); ,%2>=y15, 7P =u]

+ | (| as{ oo Moy <up<a) Tuesflo0 -1 |
Therefore,

IR =EP[Ticw f (2800, ); o =t, 79 <2®)]

_E(L)[E(l) [f(x(z)), u< Tg”]u:l-—r(’f)’ ; 1'.(i)’ ét, z.(11)' < T(i)]
P=d/z Gy

——E“)[E“m [ Tueep [ (doa); ofp=d, i Stlu=e—y; <" =t, 7 <2V

p=d/ T((z) ’

= O[Ty Fafydag ) < St 29 <e0]— EP[fa®); <@ St<c]

_E;i)[Tt_r(i)f(dad)’ x§f2)=d T(i)ét’ @ <T(i)<2.(i)”]-

Thus, it follows from Lemma 6.2 that I®=I® [I®O=II® and IIIP=III?, and
hence IIIP=III®». Moreover, we have

tim- 0= { 700 <) 7
tlo
by the right continuity of z® in # and by the inequalities:
[X(z®PM(p)<d<d’ <aP) Toes f (2§ xz)léX(M(/«tK % <1>
and
ITD(dp)x| M d
7z (< -7 ) <tee

Therefore,
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(ro@aman<arfo={noamm<aio.

LemmMA 6.4. Two finite measures Q. and Q, on (M, ¢3*(BE)) are coincident,
if they satisfy

| =\ Faudn
m m
for all feC¥.
Proof. Let Q¢ be the induced measure on (M¢, $B¢) of @; by the mapping
¢a (i=1,2). By putting fa=f|s, for feC%,
[ teun={ Fapivuan={ 7
My My My
for i=1, 2, because f(u)=falpa(y) for any peM,. Thus, we have

S,,gf «L)QE ()= SM,ffd(v)Qé‘(du).

Moreover, since we can prove as Proposition 1.2 that _{fs feC%} is dense in
C(M¢), we have

SMg PR = SMgF(v)Q?(du)

for all FeC(M¢), and this implies Q¢ =Q¢. Hence, @:=Q, is obvious.
LEMMA 6.5. IITO(dp)=II(dpy).
Proof. By Lemma 6.3 and Lemma 6. 4, we have
IV oy @y =TIy g2y o0 {peMy; M(p)<d},

because {peMy; M(p)<diepz'(Bf). Since {peMy; M(p)<d)c{peMy; M(x)<d'} for
d<d’, we have

IPgyapy =1 ®lopygpy on {neMy; M(p)<d}
for any @’ (d=d’'<1), and hence, by Lemma 1. 4,
IO=]I® on {peM;; M(p)<d}.
Thus, we have by letting d 11
IO=[® on M —{5).

LEMMA 6.6. (0, P®)=(x?, P®).
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Proof. Let T{® be the semigroup of the process (z{”) (i=1,2). Putting
H=c® and for feB(S),

T f@)=EL[f()]
=EPIfafP); t<eO)+EPLflatd); 12:¢]

T

=[®4+1I®, say.
M9=EP[TEw f(z); t=c¥]
=EP[T2.wf(z8); alh=xd, t=r?]
+EP[TE.wf(28); 8 <zd, t=c¥]
=1+, say.

II;”:ESP[ ¥ TE A ”<xd§x§i_))]

sst(DAL

(DAL
=E§§’[S as koo e "a)x(x“)a<xd§x§”)]
0,1

0
=E‘,,?>|:St dsS EO(da) T, f(:c§i’a)x(x§“a<:cd<:c§”)]
0 [o,1)

By Lemma 6. 2, we have I®=I® and
NP =EP[TE.w fxd); =2zd, t=t].

Moreover, since k®(da)=k®(da) by Lemma 6.5, we have

t
II§2) =E%)[S dsS k(x)(da) T‘”sf(x‘”a)x(x“)a<xd<x“) ]
0 o,

Thus,
TP flx)— TP flx)
=EQ[TE.0 flxd)— T2.wf(zd); x80=2d, <V =1]
t
+ E;)[S dsg O dat(Pa < 2d < 2O) (T, floPa)— T, f(xma))]
0 0,1 -
and

|79 f(a) ~ TS| S A POy =ad, <01
t
+At,Eg>[g dsS k“’(da)x(xg‘)a<xd<:c“’]
0 0,1

=A;:P§é’(r<“ ét)



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 451
for ¢=¢#, where

Av= sup |T®f(x)— TEf ().
S

ZE€
Osest!

Hence, Ayv=A.PP(®=¢t). Now, taking # >0 such that PP(z®=¢)<1, we have
A,=0, and hence T f=T@f for any ¢=¢#. Since both {T®} and {T®} are semi-
groups and ¢ depends only on d, we have T®=7T% for all #£>0, and this implies
(P, PP)=(xP, PP).

The proof of Theorem 6.1 is completed by Lemma 6.5 and Lemma 6. 6.

§7. Generator of the cascade semigroup.

Let {73} be a given cascade semigroup and A° the infinitesimal generator of
its underlying process (x:, P%). Then, by Proposition 3.1, CY0,1]c 9(A°% (the
domain of A°), and for feC'[0, 1],

Af(@)=—mazf'(z)+ S l)k(da)(f (za)—f(@)),

fo,

where m is a nonnegative constant and k(de) is a measure on [0, 1) such that

E(da)= S 1(dy)

{p: M(p)eda}

with the branching measure I7(dy) (see (4. 15)).
This section is devoted to the infinitesimal generator of the cascade semi-
group {73}

Lemma 7.1. PY(re=1t)=0() as t|0.

Proof. The formula (3. 16) gives

nm%Eﬂf(x»]:S k(da)f(a)
t10 [0,1)

for any feC'0, 1] such that f{1)=s’(1)=0. Take a sequence {f,} in C*[0, 1] such
that f,(1)=r»(1)=0 and
1, r=d,

Falz) | X(:c)E{
0, d<z=1

then we have

i RS lim - Bl = kdaf.a)
ti0 tlo o,
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for all ». Hence, by letting n—co,
—1
lim——E?[X(x:)]éS k(da)x(a)=g K(da)< +co.
TR [0,1) [0,d1

Since Ei[X(x)]=PYx:=d)=P%rq4=t) for x€S, we have the result.
LEMMA 7.2. For feC¥n(A®, (Tif)ls—f)t converges weakly to Bf in
Cl0, 11, where

7.1) Bf(z)=A%(z)+ SM

-

o H(dp)(f (- p)—flaM(p))).

Proof. Suppose feCiNnP(A®, take d’ such that d<d’<1, and put 7% =7’
Then, by Theorem 5. 1,

T.f(08:)=E%[f(a); <1+ ES[Tieo f(2d"020); zo=2d’, ' =t]
+ E%[St dsg H(dmx(xsM(p) < 2d’ < x5) Ti-sf (25 ;1)].
0 My—{o1}

Moreover, we have
T2 f(x)=E%[f(x); t<"1+EG[ T f(e); t27']
=E%[f(wr); 1</ |+ ES [T flzd"); x0=2d’, 7' =i]

+ E‘;[Stdsgm,l) Mda) Uz <ad' <o) Ty f(xsa):l,

0
since, in the last term,

ES[T o f(e); zo<axd’, '=t]

=E‘;[ >0 T s flxs)X(zs<zd’ éxs_)]

SSt/AL

_ E;[StIAtdsS HAOTL, f(xsa)x(xsa<xd’§xs)]

0 fo.
by the formula (3.17). Hence, we have

T.f (205)—f(z) _ Tef(@)—f(a)
t

p +I+11,

where
1 ¢ . 7|
- dsS I(d X, M) < od? < f e 1) —f(st(p)»J

and
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1 0 2 ’ 0 ’ r !
=5 B4 [ Lo f @d'350) = Tiov flad'); wo=ad', o' =1]

+ %E‘;[S:dsgﬂ(dy)x(st(ﬂ) <zxd' < xs)

X A(Toesf o )= F v ) = (T4 aFar()~f e MG |
Since f(z-p)=fxM(y)) if M(y)=d, and since
W awsMp) < 2d < 2d’ < ) =X<M(y) < —ddT) HaaM(pr) < 2d < ad' <),
we have

lim I= lim%E%[StdsSlI(dy)x(M(p)< —;i,)
0

0 tlo

x X(st(ﬂ)<xd<:cd’<xs)(f(xs'#)—f(st(#)))]
=Sﬂ(dﬁ)X(M(ﬂ)<d)(f(x-#)—f(:vM(#)>)

=Sn<dm<f<x~m — F@M()),

where the convergence is easily seen to be weak in C[0,1]. By the formula (5. 5),
we have

1
1= Py’ sup 17— Fll+ sup 1727~
Ossst 0sss<t

and hence, by Lemma 7.1 and the strong continuity of 7; and 7% II is shown to
converge weakly to zero when ¢ tends to zero. Finally, the proof is completed by
the weak convergence of (TUf—f)/t to A°f for fe P(AY).

LEMMA 7.3. Let A and D(A) be the infinitesimal generator and its domain
of {T)). If feC¥N D(A®), then feD(A) and

@.2) Af= 5 ALE0

for n=2 xiﬁziGMh and Af(0)=0.

Proof. Assume feCin D(A°). For p=3 x:id,€M;, we pick up s such that
z:>(1—d))d and rewrite them as i, @, -+, 2, Where zn=d/(1—d) is obvious.
Since (T:f)|seC3,
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T/ ()~ (=T (zmzl) f(z xiaxi)

Il
i

F(@ids)— n §ieD)

i € Tof (wi6a)—f(w:)) ﬂf(xj) ﬂ th(xkaxk)

Il
nM:

if »=2, and hence, by Lemma 7. 2,

mﬁw - é B [[fle)  if nz2
— Bf(z) if n=1
—0 if n=0,
or
im Tzf(/t)t—f(#) _y ]JB’{E:T;) 70

where the sum in the right-hand side is taken over all z; in pg=3 »0,; because
Bf(x:)=0 if z;=(1—d)/d. Since

7= 7l =| [ 2:f e [l

= 7 T NIs=7,

we have by Lemma 7. 2 the boundedness of (7 F—F)t as t| 0. Moreover, since

5 Bf(z)
5Tk 7=\ - 7

is continuous in peM; because Bf/feC,, (T.f— f)/t converges weakly, and hence
FeD(A) (see Dynkin [1]) and

I

S Bf(z)

Af(p ) pdz) f(p)

=% i) FG if p=o0.

By putting p=x6, in the above, we have Af(xd,)=DBf(x), and this completes the
proof since Af(0)=0 is obvious.

By Lemma 7.2 and Lemma 7. 3,
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(7.3) AF (@ba)=A'f(z)+ SM | 1) - )= Fo M)

-

for feC¥n P(A°%. In addition, if feC*[0, 1], A% (x) is given by the formula (3. 16),
and hence we have the formula:

@. 4 Af(wt?x)=—mwf’(x)+g RUCRTEIESO)

1—{8

for feC¥ncCo, 1].
Since fePD(A) for feC¥n P(A), we have

(7.5) 2 _arf

in the strong sense of derivative. Therefore, u(2)=(T.f)|s(x) satisfies the
equation:

8 )
(7. 6) _%ﬂ = Adiy(5).
LEMMA 7. 4. w=(T.f)|seC¥NCY0, 1] if feC¥NCO, 1].

Proof. Since
4 A A
(@)= T f (20z)= T 02 (01) = Er[02/(1e)]

=E1[exp<g—;~ log f(xy)ﬂc(dy)>:|,

#,€C¥ is clear and that w(x) is continuously differentiable in x follows from the
expression:

duw) [ (S 1 )S f'(@y) ]
7 = L €XP ” log fay) pu(dy) T w(dy) |-
Let D be the linear hull of all f’s such that feC¥NC0, 1], then Lemma 7.4
implies that D is T-invariant. Since D is obviously dense in C(M;), Watanabe’s
lemma (see [14]) assures that D is a core of the closed operator A.
Let us complete the above arguments by the statement:

THEOREM 7. 1. The infinitesimal generator A of a cascade semigroup {13}
has a core D=_r{f; feC¥nC0, 1]}, and if feC¥NCY0, 11, then

Af()=7 %ﬁiﬂm

Sfor p=3; %0z,€ My, where
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Af(xﬁx)=—mxf'(x)+g RUCRGCIRETON

M-

and AF(0)=0.
By putting w,=(T.f)|s, feC¥NCHO, 1] implies u,eC¥NCH0, 1] and in addition
u(x) is a solution of the nonlinear equation:

Oulw) _ - 0ux) oo
7.7 a o +SM1_(m”(d#)(m($ ©)—ul(x)),

to+(2)=f().

ReEMARK. Theorem 5.2 can be immediately seen from the first half of
Theorem 7. 1.

§8. Construction of the cascade semigroup.

Let {(x:, P%), II(dy)} be any pair defined in the beginning of §6 which satisfies
(6. 1), (6.2), and (6.3). Then, all of this section are intended to construct the
cascade semigroup {7;} with (=, P%) and II(dyp) as its underlying process and
branching measure.

In view of Theorem 6.1, the problem is reduced to solving the system of
fundamental (S,)-equations (2/3<d<1):

wi(w; £)=Sa(x, t; 1, u)
(Sa) =EY[f(w); t<cd +E%ths-ci(d; 1)y ®oy=2d, ta=t]

+E%[S:dsgm_{al} H(dpX(zsM(p) < 2d < 5) ut_f(?f) (s -,u)]

for all feC¥, and to construction of the cascade semigroup {7;} such that u(x; f)
=T,f(xd5). This problem will be answered in Theorem 8.1 at the end of this
section. But for this we need many lemmas.

To begin with, it should be remarked that the process (x;, P%) corresponds to
a nondecreasing additive process (y;, P?) by the transformation y,=—log x; whose
Laplace transform has the form exp(—#¢(a)), Where

o) =ma+ S(o " (A—e*)(du) for a>0

and

l(du)=S k(da).

{a; —log a€cdu}
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Lemma 8. 1. (i) PuLa>0)=1,
(ii)  Eealflz)]=E%[fax)] for feB0,1],
(iii) PY%Y(x; is non-increasing in t=0)=1, and

L
(iv) Ph(ra=t)=P(x.,=d, fdgt)+E;[S dsS k(da)x(xsa<xd<xs):l.
0 [0,1)
Proof. (i) is obvious by the right continuity of the sample path, and (ii) and
(iii) are seen from the above remark. Finally, (iv) is shown by the formula (6. 5)
as follows:

Pl(ra=t)— PY(x.y=2d, ta=t)

= Piany<ad, we=t)=F2| ¥ Ho.<ad=a.) |

sStg At
g Al 13
=Eg[8" dsS k(da)x(xsa<xd§xs)]=E3,[S dsS k(da)x(xsa<xd<xs)].
0 [0,1) 0 0,1)

By Lemma 8.1 (iv), the (Sg)-equation has always a solution #,=1 for f=1.
The independence of P%(r¢=¢) on z is seen from Lemma 8.1 (ii) and the defini-
tion of z4. For simplicity, we denote % by 74 or ¢ in this section.

For feB%, we define {u?(x); n=0} by

{uﬁ(x)sl,

8.1)
W z) =Sz, t; f, u™)  for n=0.

LeMMA 8.2. 0=ui'=ul=1 for all n=0, and the lmit ul(x; [=ul(x)
=liMn_ #?(x) is a solution of the (Sa)-equation such that uleB%.

Proof. The first half of the lemma is easily shown by induction. Since the
process (z,) is nonincreasing, it can be proved #;eB¥ for all =0, and hence
uleB%. Since

ir)=it( 3 win)= 1 )

z;>(1—d)/d Z,>(1—-d)/d

is a product of finite number (=d/(1—d)) of factors for any v=73 x.0s,€ M, uf is
shown to satisfy the (Sg)-equation by letting #—oo in (8. 1).

By Lemma 8.1 (i), there is a constant #d)>0 for each d (2/3<d<1) such
that (d/(1—a))Py(ra=#(d))<1.

LeMMA 8.3. The (Sy)-equation has a unique solution in BY for t=<i(d) and
for feB%. In particular, the unique solution uf(-; f) is in C¥ for t={(d) and for
feCt.
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Proof. We first remark the following. Since the number of #’s such that

2;>(1—d)/d is less than d/(1—d) for any p= 3, x:0-,€ My, We have

Fe-il=| T fer= 1 ge|sgorlif—dll
z3>A=d)/d zi>(A-d)/d

for f, ge B¥, and hence
17— lln= 5 1 =alls
M=1—d '
Now, let #, and v, be two solutions in B¥ of the (S;)-equation for feB¥

Then,
(@) = vi()| = E% [t~ (2d) — 01— (2d)]; 2=

+E&[S‘dss H(dmx(st(m<xd<ms>1m-s<xs-p)—m-.g(xs-m]
0 Mi—{51}

=zd, t=t]

<ES (= 0oy 2e=2d, v=1]

+nef (s M) <ed<a) g v |

Therefore, by putting A=sup.<.a) ||#:—2:]|, Wwe have

where r=7q4.
t(d)

AE°[S dsS k(da)x(xsa<xd<xs)]
0 0,1

A=APY(x.=xd, r<l‘(d))+

<A.
=413
and this implies A=0, i.e. u,=v, for ¢=t(d). Thus, the uniqueness assertion has

been proved.
Now, we shall prove #7eC% for all » if feC}. In fact, since
ui ™ (x)=Su(=, t; 1, u")
=Ei[flx-xp); t <7+ ESui-(2d); x.=d, t=t]

t
+Eg[S dsS }H(d;z)X(st(p)<d<ms)t2§'_,(xxs-y)]
0 Mi—1{0;

and #? s(zxs-p) is continuous in x if #7eC¥, w™(x) is continuous in x and #{*>0,
if u?eC*% because u?*'eB%. Thus, we see u7eC} for all n by

and hence #?*eC¥
induction.
Since
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o7 () — ui(2)| = ES{uf_(xd) —ui=X(xd)|; x.=zd, =]
t
+e| (as| e <ad <alit o p— it |
M —{3
=An-1- _4 P4y(r=#d))
= N 1_d T =
for t=t(d), where An-1=SUpi=uay |47 —u?7"||, we have

Ap=Ans- Po(r=i(d)).

d
1-d
Thus, Y, A, is convergent and it follows that #? converges uniformly in
xz as m—oo for t=#d), and hence u¢ is a continuous function for 7=#d) if

feC¥%. Moreover, since ufeB% and ul(x)=E%[f(x); t<z]>0 for #=#d) because
P%(z>Hd))>0, we have uleC¥ for ¢t=#(d) and feC}.

LeMMA 8.4. If wu; is a solution in B% of (Sq)-equation for feB¥, then u; is
also a solution of (Sa)-equation for f and t=i(d), where d’' is any number such
that d<d’'<1.

P1’00f. Put Ta=T, rd»=z", and
p(t! Z, dl)=ut(x)'—sd’(x’ t; f’ u)~
Moreover, if we put

p=_ sup |p(¢, x, d")|,

0=tst(d), 0<r<1
d=<d’<1

to show p=0 is to verify the lemma.
Now, since #; is a solution of (Sy)-equation, we put

ui(x)=Sa(x, t; 1, u)
=E%[ f(xs); t<c]l+E%[u-(2xd); x.=2zd, =]

+ E‘;[S:dsgﬂ(d;z)x(st(/z) < 2d < 2 )i—s(s- ;z)]

=I+II+I11.
I=E%[f(); <1+ EL[f(m); o/ =8, 1<)
=1+, say.

Since ’(w)<z(w) in the second term I, it holds o(w)=r1'(w)+rp(wF) where p(w)
=xd|z.(w)=d, and we have
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L=E%[ES [f(xr); r<tplr=i— ; /=, o/ <z].
p=xd/x,’

I=E5[u-(2d); w=xd, 1=1'=1]
+ EY [t (xd); z.=2d, v/ <t={]
=IIl+Ilz, say.

Mo =ES[ES [thr—e(2d); Tepy=2d, Tp=Tlr=t— ; 'S8, v'<7].

p=xd/x;’

III:—E&[S:dsSIZ(d;z)X(st(y)<xd<md’<xs)zit_s(x.,-p)]

11
+ E°[S ds S (@t (s M) < 2d < 2y = 2d") o5 [.t):l
0
= III1 + IIIz, say.

IIIz=E‘3¢[E‘;t»[grds$H(dy)X(st(/z)<wd<xs)12r-s(xs'ﬂ)] s =t ‘r'<z':|.
0 ’

r={—1
Hence,
L4 11, +111,
=E%[{E%[f(xr); r< el Eilltemep(ub); oy=1br £=7]
+E;;[S dsSH(dmz(st(p)<yp<xs>m_s<xs-m]} o=t z'<r]
0 r=t—rc’
g:;ﬁ/x,’
=E%}[ut—f’(xr’) _P(t_ T,y Ly .’L'd/.l‘,l); T’ét, T, < T].
Moreover,

it~ 23|  as{ @t <ot <z o )|
= -] §\as{ n@reasati <ot <adictor i)
= 2| (Cas{mapnaazantoy <ot <oy iomi) |
=& " as{paaneizoac<od <oyu-iza)

=—Eg[ 5 X(xdgxs<xd’<xs_)ut_s(xs)]

SSt/AL
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= — B[N @@ =207, <20 )ths— o py(®er p1)]
=—FE%[u—o(2.); T/ =8, o' <1]
+ E% o (xd”); o' <7, /=t zo=2d']
—E%[ur—o(2d); o' =1c=t, z.=xd<zd’].
Therefore,
o(t, 2, d)=E%[ts—.(x.)—pt—7', 20, 2d]2.); T/ =E, ' <7]
— B[t o(2); o =t, o' <7]
+ E% [ (2d’); /<7, v/ =t, 20=2d’]
— E% o o(2d"); z0=2d’, < <t]
=—FE%o(t—1', zo, 2d]z.); =t 7' <],
and if ¢=#d),
lot, z, d")|=pP%(<' =t, v'<7).
Applying this inequality to the above equality, we have for ¢=#d)

lo(t, x, AN S EL[oP% (p=7, tp<TDr=t—c ; T/ =t, 7' <7]

p=xd/x.’

SPEY[PL (tp=1)r=t— ; T'=E, /<1]
p=zd/x;’

=pP%(r=¢, v'<7)
=pP5(r=Hd)),
and hence
p=pP%(r=Hd)).
Since P%(z=#d))<1, we have p=0.

LEMMA 8.5. Let wu(x; f) be a solution in B% of the (Sai)-equation for feB%.
If a positive number v is such that the (Su)-equation for amy feB% has always a
unique solution in B¥% for t=r, then it holds

wess(; )=u(x; us(; 1))
for t=r and s=t(d).

Proof. Since wu,(x)=ux; f) is a solution of the (S;)-equation, we have
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e s(x)=Sa(x, t+S; f, o)
=E%[f(%ers); 1<)+ E%[th45-(2d); z.=2d, t=t+5]

-I-E&I:S:Hdugﬂ(dy)x(xuM(y)<xd<xu)u"c+s—u(xu-y)]

=I+II+1III,

where r=74. Using a Markov property at time #, we develop the terms in the
right-hand side as follows.

I=ES[ES [ f(#s); s<tplp=sasa; t<1].
I=E%uss-(xd); xz.=2d, t=1]
F+E%[tsrs-(2d); x.=2d, t<t=t+S5]
=II,+1I,, say.

IIZ=E§[E?,t[us_,p(xd); .’l«'fp=.1'd, TpéS]p:zd/xt; t<T]-
t t+s
IIIEE‘;[S duSH(d,u)-'-]-}-E%[S duSH(dp)-u]
0 t
= III; + IIIZ, say.

IHg=E3;|:SsduSH(dp)X(zuHM(‘u) < 2d< B )ils—ulTuse- p):l
0

=E‘;[E‘;t[S:dugﬂ(dp)x(xuM(y)<xd<xu)ﬁs_u(xu-y)]; t<f].

Thus,
I+1L+111,

=E‘L[{E2[f(:vs); $<tpl+ Eyltts—c(yD); Tepy=yp, 7p=5]

+Ez[SZduSHumme(m<yp<xu>ﬁs_u<xu-p>]}y=xt ;1< ]

p=xd/.zt

=FE%us(x,); t<7]

for s=#d), where we applied Lemma 8.4 because p=xd/x;=d. Therefore, for
S=Hd),

e s(x) = E%lus(x,); ¢ <1+ E%[trrs—(2d); z.=2d, =t]

+ E[S: duSH(dy)X(xuM(p) <2d <Yl rsul T p)].
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When we fix feB¥ and s=#d) in the above equation and regard u;s(x) as a
function of variables # and x, we have

Uss(T; [)=thr1s()=1e(x; s+ 1))
for =7 by the assumption of the lemma.

LeMMmA 8.6. (i) The (Si)-equation for feBf has always a unique solution
u(x; 1) in BY for all t=0, and (ii) the solution satisfies the iteration property

8.2) tss(; 1) =ulz; us(-; 1))
for all s,t=0. Moreover, (iii) if feC%, then u,(-; f)eC¥ also for all t=0.

Proof. (i) Let wyx; f) and v(z; f) be two solutions in B¥ of the (Su)-
equation for feB% (such a solution exists by Lemma 8.2). Then, by Lemma 8.3
and Lemma 8. 5,

wees(m; 1) =uim; us(-; 1))
and
Vers(m; ) =vilw; vs(+; 1))

for s=¢#d) and t=#d). However, since the right-hand sides of the above equalities
are the same by Lemma 8. 3, we have wu,(x; f)=v/z; f) for ¢=2td). Thus, repeat-
ing the same argument, we have w.(x; f)=wvx; f) for all ¢=0 because #d)>0.

(ii) By Lemma 8.5 and (i) above, (8.2) holds for s=#d) and any ¢=0.
Therefore, if s, u=<#d) and ¢=0, then

Usrsru(; F)=tses(t; uu(+; 1))
=ux; us(+; ua(+; 1))
=u(x; Usru(+; 1)),

which shows (8.2) for s=2#(d) and #=0. Repeating again the same argument,
we have (8. 2) for all s, #=0.

(iii) If feC%, then wu/(-; f)=ul(-; f)eC}s for ¢=#{d) by Lemma 8. 3. Using
the iteration property (8.2) for ¢, s=#d), we have u,(-; f)eC} for t=2{d), and
hence by applying the result to (8.2) again and again, we have u(-; f)eC§ for
all 2=0.

LemMaA 8.7. If feB% and d<d'<1, then
(8. 3) ul(x; =ul (x; f) for all t=0.

Proof. First, note that BXc B¥ if d<d’'<1. By Lemma 8.4, u#(x; f) satisfies
the (Sg)-equation for f when #=#(d), and hence, by the uniqueness property of
Lemma 8.6 (i), we have (8.3) for t=#d) and any feBj}. Therefore, using the
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iteration property (8.2) for s, t=#(d),
ulys(w; 1)=ui(@; ui(-; ))=ui(@; ud'(-; f))
=ul' (z; ud'(+; f))=ulis(z; 1),

which shows (8. 3) for ¢=2¢(d). Thus, the equality (8. 3) for all t=0 follows from
the same procedure.

The following lemma was first given by Ikeda, Nagasawa, and Watanabe [5],
however for later use, we need some more detailed statement.

LEMMA 8.8. For any positive integer n and 0<py, psy ey D < oo, let
Qp(i=1,2, -+, n) be a given finite Borel measure on Mp. Then, there is a unique
Jinite Bovel measure Qps..ip, 0% My ....p, Such that

(8. 4) F(@ogrrnn(di) =[] SM Fe@ulds)

SMFF"""”’TL 1=1

for all feC¥. Moreover, if we write

Qpy+t 0, ZQp, R @, ® - R Qp, = zill@Qf’i’

then

Qp1 ® ng = sz ® QP1
and
@5 11 @@ = 11 1ul.

wheve ||Q,|| means the total mass of a measure Q.

Proof. Let us consider the case n=2. We show the existence of the measure
@p+p, SUch that

F(w)Qp1+p2(dw)=SM Qm(dmg Quuld) Flpu+)
»1

SMP1+P2 Mpq

for all FeC(Mp,.,) (the uniqueness of such @p.p, is immediate from Proposition
1. 2). However, the existence is obvious from the fact that the right-hand side of
the above equality is a continuous linear functional of FeC(Mp,.p,).

The lemma can be shown similarly for the case #=3 and the second half of
the lemma is obvious.

LemmA 8. 9. Fm; {ut(z; f); n=0} defined by~(8. 1), there exists a sequence of
probability measures Q4(t, x, dv) on My such that Qi(t, x, M;)=1,
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®.6) i (z; f)=S 700, @, dv)
My

for all feC%, and Q¢ =, E) is measurable in (t, z) for Ee B, fixed.

Proof. For n=0, take OQY(¢, x, dv)=0,(dv) the unit mass concentrated at
0eM,. Thus, the proof is done by induction as follows. Put #«?(x; f)=u}(x) and
assume the statement of the lemma for ». Then, we put

N @) =ES[f(@); t <]+ ES[ul(zd); z.=xd, t=1]
+E%[S:dsgﬂ(dp)x(st(#) <wd <zt (z- ,J)]
=I+II+1I,
where r=r,. By putting
ISPt @, dv)=E% [0z, (dv); t<7]

for the first term I, we have
1=\ e s )
M

for all feC¥, where X9 x, dv) is a measure in dv for fixed (¢4 x) satisfying
2P, 2, My— M,;)=0 and is measurable in (¢, ) for dv fixed. For the second term
II, since

H=Eg,[g F0 =z, 2., dv); m.=2d, z‘ét]

(3

for feC%, we have, by putting

29, x, d)=E%[Q3(t—7, x., dv); z.=ad, t=1],
n={ o590, 2 a)
My

for feC%, where Y% is also a measure with desired property. Finally, for the
last term III, let us first define Q%(¢, pa(y), dv) by

Qr(t, o), d)=Qu(t, 21, )R - Q@ Q3(E, Tmy dv)

for ga(p)=Xm: 285, Then, Qut ¢u(w), dv) is a probability measure on M, for
(L, pa(p)) fixed, satisfying Q3(f, ¢a(s), My,)=1 and is measurable in (¢, x) for dv
fixed, It follows from the assumption that, if feC%,
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aw= ] wi(z)= Fo)Quct, xi, dv)

zi>(1-ad)/d 1’{>(1—d)/dSM@i
= 70@u e, ),
My
where p=3 x:0,,€ My, and hence
t A ~
III=E°3[SOdsSH(dy)x(st(y)<xd<xs)g FO)T3—s, pulzs 1), dv)].
Mz
Thus, by putting
t ~
SO, 1, dv)=E‘},[S dsSH(d,u)%(st(,u)<xd<xs)Q2(t—s, a1 du)],
0

we have

III=S FW)Z9, 7, dv)

My

for feC¥, where X§ is a measure with the desired property.
Therefore, the sum

QuH(t, &, dv)=3P(, x, dv)+ 391, x, dv)+IP(t, =, dv)
is a measure in dv for fixed (¢, z) satisfying Q2 x, My—M,)=0 and is meas-
urable in (¢, x) for fixed dv, and it satisfies

)= SM 7G5, o, dv)

for all feC%. Moreover, Q%+, z, My)=1, since u*"(z; 1)=1.
Lemma 8.10. Let wudx; f) be the ~soluti0n of the (Sa)-equation for feCh.
Then, there exists a probability measure Qq(t, i, dv) on M, for any pe M, such that

P “ ~
®.7) - 1) (")=S F)Galts 1 dv)

M
for all feC%.

Proof. By Lemma 8.9 and the weak*-compactness of a set of probability
measures on M, there exists a probability measure Q.(#, z, dv) such that

wlw; f)= SM 700 ult, 2, dv)

for all feC%. Moreover, the existence of @d(t, u dv) for any peM; and (8.7)
follow from Lemma 8. 8.
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LemMma 8.11. (i) There exists a wunique probability measure Qu(t, p, dv) on
(M, 93'(BE)) for t=0 and pe M, such that

o~ N
il F) <“)=SM FOQults 1 )

for all feC¥, and (ii), if d<d’'<1,
Qd’(ty Uy d”)lw;‘(Qf)=Qd(t> 12) dV)-

Proof. (i) Since f is measurable with respect to ¢z}(B%) for feC¥% (Lemma
1.4 (iv)), we can take Qu(t, 1, d)=Qlt, p1, dv)l,z¥(ap) in (8.7) instead of Qalt, p, dv).
The uniqueness of such a measure is immediate from Lemma 6. 4.

(ii) From Lemma 8. 7, it follows that

S 70)Qult, 1 d»>=S FO)Qult, m dv)
M M

for all feC* (cC%), and hence, by Lemma 6. 4,
Qd’(t’ s du)[y’;l(.@l‘i)=Qd(t> y223 d”)'
LEMMA 8.12. There exists a unique probability measuve P, p, dv) on (M, Bi)
for t=0 and pe M, which satisfies

o~ .
8.8) - 1) ()= SM FO)P 1 dv)

for all feC¥.

Proof. It follows from Lemma 8.11 and Lemma 1.5 that there exists a
unique probability measure P(Z, u, dv) on (M, B,) for fixed ¢=0 and peM, such
that P(t, p, dv)|,71(2)=Qul?, 1, dv). Moreover, the equality (8.8) is obvious for
feUq C5=C¥ from Lemma 8. 11 and the construction of P(¢, p, dv).

LeMMA 8.13. Define a family of operators {Ty, =0} by
(8.9) =\ FOPE, o),
M
then T, is a nonnegative lineav opevator on C(M,) such that T;1=1 and ||T||=1,
and Ty=1 (identity).

Proof. Since T,feC(M,) for all feC¥ by Lemma 8.12 and Lemma 8. 6 (iii),
it follows from Proposition 1.2 that T.FeC(M;) for all FeC(M:). The remainders
of the lemma are obvious.

LemmA 8. 14. For feC¥ and t=0,
(8. 10) T.f (u4+v)=T.f (1) T.F ()
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Jfor p, ve My such that p+veM, also.
Proof. By Lemma 8. 12, we have
T (et ) =il 5 )prb)

~ ~ . .
=w(-; F) ) wl-5 L))=Tef () To f (v).
Lemma 8.15. For FeC(M,) and t, s=0,
(8.11) TiisF=T, T F.

Proof. 1t is enough to show (8.11) for functions F=f, feC¥.
p=x0;€M,;, we have

N S
Tirsf (20z)=ters(+; f)@dz)
=ups(x; [)=udz; us+; f))

N
= Tots(+; F)(xds)=T. Tsf (x52)

When

by the iteration property (8.2). Therefore, for any p=3; :ds,€M, since

Tevsf €CML),

Tt+sf(#)= Illn;l Tc+sf< Z -Tiax,;)

xi>e

and, by Lemma 8. 14,

4 R S
Tt+8f< 2 xiar;‘) = zl-l. Tivsf (2i0z) = xll Tiu(-; f)(®:0z;)

Zi>e

_7 u(/\f)( zzxiaxi) ~T.T, f‘( M xiazi),

Zq > Zj>e

we have

Tovsf ()= Hff,l TJ;f( P xiéxi> =TT f ().

Zj>e

LEmMMA 8.16. For FeC(M,) and for peM,

8.12) lim T.F(:)=F ().

Proof. Let feC%. Since wuy(x; f)=T.f(xds) is a solution of the (Ss)-equation

for f, we put
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u@; f)=E%fa); t<7l+E%lwozd; ); z=ad, t=1]
t s
+E%[S dSS TH(dp)X (s M pr) <xd <5) ey -5 S ) (s -/1)]
0 My—1{31}

=I411+411],
where r=r4. By the right continuity of z;, we have
I-f(z) as t]0,
and
II+II=Py(r=t)—0 as ¢]0.

Hence,

wx; f)—flx) as t|0.
Therefore, for any p=X x:.,€ M, noting u.(-; f)eC%,

S S
TF (@) =ul-; ) ()= wu-; f)( 2 xi5zi\)

zi>1—-d)/d

= T s )~ I df(xi)=f<y> as t|0

x,>(1—-d)/d x,>(1~d)/:

since the number of s such that x;>(1—d)/d is less than d/(1—d). Thus, we
have

lim T.f(w)=F ()

for all feC¥ and peM,. Moreover, since 7; is a bounded linear operator, we have
(8. 12) for all FeC(M,).

LemMA 8.17. For feC¥ and acS,

R A
(8. 13) T:f(ada)=T:0.1(61).
Proof. Let feC¥ and put z4=r7.
wazx; [)=Ey:lf(x); t <21+ Eyslu-(axd; f); x.=axd, t=t]

t T
+Eaz[godsgﬂ(de<st(m<axd<xs> sl 1) (s -m]
=E%[faxy); t<7]+E%[u-(axd; f); z.=zd, t=i]

+Eg[S:dsSH(dy)x(st(p)<xd<xg>ut:(? ) (azs- y)]
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by the property (ii) of Lemma 8. 1. Therefore,

But-; FY3)=ESl0af(@); < c]+ESDatier(-; f)ad); 2.=ad, r=t]
t —_— T
+E&[Sodsgn<dmx<st(w<xd<xs> Oatns (-3 1) (s -y)],

and hence 6qu.(-; f)(x) is a solution of the (Sg)-equation for 6,feC¥* such that
Oqu+; £)€C%. By the uniqueness of the solution, we have

Oatti(+5 [)(@)=0uz; Oaf),
or
ulaz; f)=uz; 0uf).
Hence,
T.f (ada)=ui@; [)=ul; 0of)
— 16,7 50).

The family {7, t=0} defined by (8.9) is a semigroup on C(M:) and satisfies
(8.12) and T,=1, so that it is seen to be strongly continuous in #=0 (see, for
example, Yosida [17]). Moreover, by Lemmas 8.14 and 8.17, {7} is a cascade

semigroup (Definition 2. 1).
Now, we have arrived at the following theorem.

TuEOREM 8. 1. Given a nonnegative constant m and a Borel measure II(dy)
on My,—{0:} which satisfies

S (L— M) I(dp) < +oo.
M1—{31}

Let (x;, P%) be a vight continuous strong Markov process on [0, 1] generated by A%
PD(AYDCYO, 1] and, for feC0, 1],

af@y=—mo-ge o @M.
M1—{(51} -

Then, there exists a cascade semigroup {Ti; =0} such that ufz; f)=T.f(x0s) is a
solution of the following non-linear integral equation for feC¥ (2/3<d<1):

ulw; f)=E%f(ze); t<zal+E%[ste—ci(xd; 1), 2ey=2d, ta=t]

+ E‘;[S:a’sgm_{m (At M) < 2d < 2 g o o3 ) (@ .,,)].
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Moreover, the cascade semigroup {1} has (z, P%) as its underlying process and
II(dp) as its branching measure.

The last part of the theorem is due to Theorem 6. 1.

ConcLupING REMARK. Let (m, II) be a pair of two quantities m and I7 such
that = is a nonnegative constant and /7 is a Borel measure on M,—{5,} satisfying

(4. 16).

Then, the preceding theorems 3.1, 4.1, 5.1, 5.2, 6.1, and 8.1 make it

clear the fact that a cascade semigroup is completely characterized by its underly-
ing process and branching measure, or in other words, (m, Il) via the system of
Sundamental (Sy)-equations (2/3<d<1).
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