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CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION

BY TETSUO FUJIMAGARI AND MINORU MOTOO

Introduction.

A mathematical theory of cascade processes with infinite cross section has
been developed by Harris in his book ([3], Chap. VΠ).υ By a cascade process
with infinite cross section, we mean a process in which each particle splits in-
finitely often in any finite time interval. In our paper, we will treat a model
which satisfies "Approximation A " in Harris' book. Our model is less general
than Harris' one in the sense that it consists of only one type of particles such
as electrons. On the other hand, it includes the case where the particle may split
into infinitely many new particles simultaneously and may lose its energy con-
tinuously.25 Inspired by recent developments of the theory of continuous state
branching processes ([7], [8], [9], [13], [14], [15]), we shall define a cascade process
as a branching Markov process satisfying a condition of homogeneity on a certain
space of discrete measures. Each measure in the space represents a configuration
of a system of countably many particles. Moreover we shall specify the process
by its characteristic quantities.

In § 1, we investigate fundamental properties of a space Mp of measures.
Any element μ in Mp (0<p<oo) has a form ΣΓ=i^A^ ( 0 0 * ^ 1 , Σ7=ι%i^P) or 0,
where δXί is a unit measure concentrated at xt. A measure μ=Σί^χt corresponds
to a configuration of a system of particles, with energy xι ( ί=l , 2, •••). The total
mass ||μ|| = Σ ι # ί of μ represents the total energy of the system. Endowed with
weak*-topology, the space Mp is considered as a compact metrizable space. In
§2, we first define a cascade semigroup on the space of continuous functions on
Mi. It has the branching property and certain property of homogeneity in addi-
tion to usual ones of conservative Markov semigroups. Then, we define a cascade
process (μt) corresponding to the cascade semigroup, where μt is considered to
specify the state of the system at time t In § 3, we derive an underlying process
(xt) on [0,1] where xt may be considered as the energy of each specific particle
at time t. It is shown that (—log xt) is an increasing additive process. In §4, a
branching measure Π on Mλ — {&} is introduced. The measure represents the law
of splitting of each particle. It has a close connection with the Levy measure of

Received November 12, 1970.
1) Historical notes and physical meanings of the theory are also seen in the book

(Chap. VII, § 1 m [3]).
2) Even in this case it is different from " Approximation B " in § 2 of [3].
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the underlying process (xt) (see (4.15)).3) The underlying process is uniquely
determined by a branching measure 77 and a nonnegative constant m. The con-
stant m represents a rate of continuous loss of energy of each particle. In § 5,
using the underlying process and the branching measure, we derive a system of
(Sy-equations. They are fundamental integral equations, and their unique bounded
solution is given by the cascade semigroup. The system of (Sd)-equations is an
analogue of the equation given by Skorohod [12] (see, also, [5]). In §6, we show
that for a given cascade semigroup the underlying process and the branching
measure are uniquely determined through (Sd)-equations. The result is used in
§ 8. In § 7, we have the expression of the generator of the cascade semigroup.
A non-linear evolution equation for the cascade semigroup is derived by using the
branching measure 77 and the nonnegative constant m. The equation corresponds
to that given by Harris (Theorem 11.1 of Chap. VII in [3]). In § 8, we start
with a process (xt) on [0,1] and a measure 77 on Mλ — {<y satisfying centain con-
ditions which are known to be necessary for an underlying process and a branch-
ing measure. By solving (Sd)-equations constructed by (xt) and 77, we obtain a
cascade semigroup. Moreover, it is shown that (xt) and 77 are the underlying
process and the branching measure of the cascade semigroup. Finally, we have
the following result: There is a one-to-one correspondence between cascade
processes and pairs (mf 77), where m is a nonnegative constant and 77 is a meas-
ure on M1 — {δ1} such that JMI-^} (1—M(μ))Π(dμ)< + oo where M(μ) = maxιxi for
μ=Σιxiδx.€M1. 77 is the branching measure and m is the constant mentioned
in §4.

Main results of the paper were published in [2] without detailed proofs. We
would like to express our thanks to Professores N. Ikeda, M. Nagasawa, and S.
Watanabe for their valuable opinions and encouragement.

§ 1. Preliminaries.

In this section we shall present several notions which will be necessary to
formulate cascade processes.

First of all, to define the state space, let S be an interval (0,1], and set

Mp={μ; μ is a measure on S such that μ=0 or

and \\μ\\ = ΣιXi^P]

for each p φ<p<oo), where Xiδx. is a measure which is concentrated at a point
xι and has a mass xι at the point, Σz denotes a finite or countably infinite sum,
and \\μ\\ is the total mass of a measure μ. Setting p=l, Mλ will be the state
space of cascade processes.

For introducing a topology on the space Mp, let Co be the set of all con-

3) 77 is σ-finite, but not necessarily finite. If 77 is finite, the process has a finite
cross section.
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tinuous functions on S vanishing in a neighborhood of 0, then there exists a
countable family {fn} of functions in Co such that 0 ^ / w ^ l for all n^\ and the
linear hull X{fn} is dense in Co with the uniform topology.

Given such an {/n}, set

p(μ, y ) = Σ J "755Γ K/n> μ) — (fn, l>)\

for each μ, VGMP, where (/, μ) is defined as

if,μ)=\

for any Borel function / on S and any measure μ on S. By the definition, it is
clear that p(μ, v)^2p for all μ, v$Mp.

Then, we have the following

PROPOSITION 1.1. (Mpy p) is a compact metric space and the convergence with
respect to p is equivalent to the weak*-convergence, i.e. for {μn}c:MPf μ€Mp, μn-^μ
in p if and only if (/, μn)^>(f> μ) for all feC0.

Proof. (Mpy p) is obviously a metric space and the equivalence of convergence
in p and weak*-convergence is also easily shown. Hence, we have only to show
the compactness of (Mpy p). To begin with, it should be noticed that a bounded
closed set in the dual space Co of Co is compact with respect to the weak*-
topology and the space Mp can be considered as a set in Q in the usual way.
Therefore, as the boundedness of MpcQ is clear, it is sufficient to verify the
closedness of Mp in C'o.

Let {μn} be a sequence in Mp converging to some continuous linear functional
/€Cό, then / may be identified with a measure μ on S which satisfies ||μ||^/>. If
infinitely many μn are equal to 0, then obviously μ=0eMp. Hence it is sufficient
to consider the case μn=Σι^χ^ for all n. If we denote the restricted measure
on [ε, 1] (0<ε<l) of a measure //on S by μ\ε, then μn\e converges weakly to μ\e as
n-*oo, if μ({ε})=0. Let / i n | t =Σf=i^ ί^ j , then Nn=(fo, μn\) for a continuous func-
tion fo(x)=x~1 on [ε, 1] and this converges to (/0, μ\,)=N if μ({ε})=0. From this,
Nn=N for all sufficiently large n and so we can choose a subsequence {nk} of {n}
such that Nnk=N and x1k converges to some xt as &^oo for all i (l^i^N).
Thus μnk\t converges to Σf=i^A έ and we have // | 6 =Σf=i^A ί if μ({ε})=0. There-
fore, taking a sequence εn | 0 such as μ({en})=0, we can conclude μ==Σt^χv i e.

μ£Mp.

We remark that the topology of Mp does not depend on the choice of {fn}
because it is equivalent to the weak*-topology by proposition 1.1.

Next we define a function / which will play a fundamental role in formulat-
ing the branching Markov process. For this? set
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B * = {/;/ is a Borel function on S

such that 0^/^l and f—\ in some neighborhood of 0}

and

C* = {e~ψ\ φeCo and φ^0}czBf.

Then we define f(μ) for any fsBf and any μ$Mp by

(1.1) f(μ)=exp(^s~ logf(x)μ(dxή,

where logO=— oo and 0-°°=O. It follows by the definition that 1 = 1, / is a Borel
function on Mp, 0 ^ / ^ l and /(0)=l, and if /€C0*, then / > 0 .

We will consider / for feCf almost all time, partly because of the following
proposition.

PROPOSITION 1. 2. The linear hull X{f; fsCf) is dense in the space C(MP) of
all continuous functions on Mp with the uniform topology.

Proof. If /€C0*, then x~λ logf(x)eC0 and so fGC(Mp) by the definition. Thus
Proposition 1. 2 follows from the theorem of Stone and Weierstrass.

We shall state some of properties of /.

LEMMA 1.1. (i) // /, gcB*, f{μ)g{μ)=fg(μ) for any μzMp. (ii) If feBf,
f(μ+v)=f(μ)f(ι>) for any μ,v£Mp such as μΛ-vQMp also, (iii) If fsBf, f(μ)
=ϊlif(xi) for any μ=]

Proof (i) f(μ)ΰ(μ)=exp\\— logf(x)μ(dx))exp([~ log g(x)μ(dx)j

=expί\— \ogf(x)g{x)μ(dx)\=f g(μ).

(ii) / Q

(iii) Since feBf, f(x)=l on (0, ε) for some ε>0 and so

f(μ)=expA — log f(x)μ(dx)) = expA ^ — log f(x)μ(dx)j
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when μ=Σι%iδχr

We now define a multiplication of aeS and μeMp by

fΣ axidaxi if μ=Σ Ziδχi9

(1.2) a μ=\%

[0 if μ = 0,

and set

(1.3) 0af(x)=f(ax)

for any Borel function / on 5. Clearly a-μ€Mp, θafzBf for fsBf and Θa
for /€C0*.

LEMMA 1. 2. (i) For β ^ aeS, a-μ is a continuous mapping of μ on Mp. (ii)

// aQS and fsBf, f(a-μ) = €f(μ) for every μ£Mp.

Proof, (i) Let {μn} be a sequence in Mp which converges to μ. Since

(φ, a μn) = \ φ(x)a n̂(rfa?) = \ aφ(ax)μn{dx)

and aφ(ax)GC0 for any ̂ €C0, (p, « //Λ) converges to

\aφ(ax)μ(dx) = (φ, a-μ).

Thus a-μn-^a-μ as n—*oo.

(ii) When μ = Σ ^Ai> it follows from Lemma 1.1 (iii) that

and

Cf{μ) = Π θaΛxt)=Π /(ear,),

so that we have the lemma.

We define a function M(μ) on Jfp by

max Xi if ^M=Σ a ? ^ ,
(1.4) M0ι)= ι

0 if μ = 0,

which will play an important role to characterize a cascade process.

LEMMA 1. 3. M(μ) is a continuous function of μ on Mp.

Proof. Let {μn} be a sequence which converges to μ. When μ=0, choose a
function /€C0 such that / ^ 0 and / = 1 on [ε, 1] for 0 < ε < l . Since (/, μn) con-
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verges to (/, μ)=0, (f,μn)<ε and so M(μn)<e for all sufficiently large n. This
implies M(μn)-+0=M(μ) as n—>oo.

As for the case μ^O, put a=M(μ)>0 and choose a function/^Co such that
/ L ^ O and

ίl if

10 if

for each sufficiently small ε>0. Since the limit of (fu μn) is (fu μ)^
(fiy μn)>0 for all sufficiently large n and so M(μn)>a—ε. Similarly, choosing a
nonnegative function / 2eC 0 which satisfies

ίl if

[0 if ,

we have M(μn)<a+ε for all sufficiently large n. Therefore we have M(μn)->M(μ)
as n-^oo.

Finally we shall introduce some more notations which are of technical use in
sections 4, 6, and 8.

For any d (2/3<rf<l), set Sa=(ίX-d)ld, 1] and

M$ = {μ] μ is a measure on Sd such that μ=0

or μ = ΣiXiδχi(ziSSd) and ||μ||^>}.
Then, introducing weak*-topology on M% as in the case of Mp, M% is also a
compact metrizable space. For μeMp, denote the restriction of μ on Sd by φd(μ)
=μ\sd, then φd maps ufp onto Λf̂ . Set

£*={/; / is a Borel function on 5 such that

O g / ^ 1 and / = 1 on S-Sd]

and denote the Borel fields on Mv and J f | by $v and ^ , respectively. Then we
have the following lemma.

LEMMA 1.4. (i) φd is a continuous mapping from Mv onto Mj>. (ii)
ψΛBi)c:Bp and if 2β<d<d'<l, φΛ£i)^<p?>(&p)- (iϋ)
(iv) If f^B%, f is a (p2\£Bp)~measurable function.

Proof (i) Denote C0(Sd) the set of all continuous functions with compact
support on Sd and define /€C0(S) for f€C0(Sd) by

_ if on Sd,

\θ on S-Sd

Let {jMn} be a sequence which converges to μ in Mp, then for each /€C0(Sd),
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ψμ \ μn = (f,μn).
Sd JS

Thus letting n-+oo, we have ψd(μn)-^φd(μ) in M$. (ii) It is clear from (i) that
<P~A£idp)c:$p. If Be&$, φlKφd>{φ2\B))) = Ψd \B) and in addition φd.(φlι{B))s&$'
since it is shown in the same way as (i) that a mapping M$fBμ-^μ\sd^M$ is con-
tinuous, and μ\sd=ψd(ψdKμ))' Thus we have (ii). (iii) V ί ^ ^ c j p is obvious
from (ii) above, and so, noting the fact that <BP is equal to the minimal <τ-field on
Mp with respect to which all continuous functions on Mp are measurable, in order
to prove (iv) it is sufficient to show that all continuous functions on Mv are

For each nonnegative function geC0(S), there exists such a d (2β<d<l) that
0=0 on S-Sd. Then, if d<d'<1, (g, μ) = (g\sd', ψd'iμ)) for any μeMp. Since
g\sd'GCo(Sd>), (g\sd'> v) is a continuous function of v on M$' and so (g, μ) is φd%<Bp')-
measurable. It follows from this that / is Vd^^D-measurable for any
Therefore, from Proposition 1.2, all continuous functions on Mp are
measurable, (iv) If

sd

— log f{x)Ψd(μ)(dx)\

for all μzMp, and the right hand side of this equality is a <£$-measurable func-

tion of ψd(μ), so that / is ^(i5$)-measurable.

Furthermore, we shall state the following extension theorem.

LEMMA 1. 5. Let {Λd: 2/3<d<l} be a family of measures such that each Λd

is a finite measure on (Mp, φ2\^Bί)) and if 2β<d<df<\, Λd is the restriction of
Λd' on (pdXlBp). Then, there exists a unique measure A on (Mpy <BP) such that Λa
is the restriction of A on φ2\<£ί)

Proof. Set Λ*(A)=Λd(A) for Asqrd\SB$). Then A* is well defined on Vd φϊKBi)
and a finitely additive set function on it. Let A be any set in Vd<Pd\-@p)> then
A=φd\Ά) for some d and A£<£$. Since Λd{')=Ad{φd

Λ{')) is a finite Borel measure
on the compact metrizable space M$, there exists for any ε>0 a compact set K
such that KdΆ and

Since φd is continuous and Mp is compact, ψ~d\K) is a compact subset of A and
in ψ~d\^ί)' It follows from this fact that A* is countably additive in VdφdKlBp)-
Thus A* can be extended uniquely to a measure A on V'dψd\^v) — ̂ v This A
is a required one and the uniqueness of A is obvious.
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§ 2. Formulation.

We now define a cascade semigroup and a cascade process.

DEFINITION 2.1. {Tt; t^O} is said to be a cascade semigroup when it satisfies
(a) {Tt\ t^O} is a strongly continuous and contraction semigroup of nonnegative
linear operators on C(Afi) and Γt 1 = 1 for ί^O, (b) Ttf(μ+v)=Ttf(μ)Ttf(v) for any

/€C*, if jH, y and ,w+»€j#i, and (c) Ttf(ada)=Tt£f(δ1) for any /eC0*, if aeS.

By the general theory of Markov processes (see, for example, [1]), there exists
a strong Markov process {W9 μt, ϋϊt, Pμ\ μ^Mλ] on the state space Mλ with right con-
tinuous sample paths with left limit at each t^O such that TtF(μ)=Eμ[F(μt)],
where W is the space of sample paths and μt(w)=w(t) for WQW, Ult is a σ-field of
subsets of W generated by the sets {w; μs(w)£A} for Az<£(Mi) and s€[0, t], and
Eμ[ ] denotes the expectation by the probability measure Pμ on (W, Ẑoo) in which
tJϊoo is the smallest σ -field including Jit for all t^O. We shall call the Markov
process (μt) a cascade process. The property (b) in Definition 2.1 will be called
a branching property of the semigroup (or of the process (μt)) which is an
abstruction of the independence of each particle of the cascade process (cf. Ikeda,
Nagasawa, and Watanabe [5]), where we interprete a state μ=Σ%Xiδχi€Mi as the
existence of particles with energy (or mass etc.) xit i=l, 2, •••. The property (c)
in the definition is an analogue of the "Approximation A" of Harris' book [3]
(p. 167) representing a homogeneity of a medium in some sense. This will
become clear in later sections.

In the following, we shall study some general properties of a cascade semi-
group {Tt} (or of a cascade process (μt)).

LEMMA 2.1. Let (Ttf)\s be the restriction on S of Ttf defined by {Ttf)\s(x)
= Ttf(xδx) forfεC*. Then, {Ttf)\stC* and

(2.1)

for all

Proof Put μ\ε=Σχι^Xiδχi for any μ=ΣιXiδχί£M1, then μ\~>μ as ε { 0 and

Ttf(μ) = \im Ttf(μ\ε)

by TtfsC{Mi). Since the branching property (b) implies

Ttf(μ\ε)= Π f

we have

(2. 2) J

On the other hand, there exists 0 < « < l for each /eC0* such that f{x) — l for
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0<x<ε. Since

— logf(xy)μt(dy)jjt

it follows Ttf(χδx) = l if 0<x<ε. Therefore (Ttf)\seCf follows from the con-
tinuity of the mapping x-*xdx. Thus, (2.1) follows from (2. 2) and

by Lemma 1.1 (iii).

It is shown that the total mass in a cascade process does not exceed the
initial one.

PROPOSITION 2.1. For any μeMly

(2. 3) Pμ(\\μt\m\μ\\ for all f^0) = l.

Proof. Take a sequence {φn}c:Co such as ^w^O and φn]l for ^—>oo, and put

Then, since fneC£ if λ^O, it holds

and

for any Λ^O. Moreover, since Ttfn(μ) turns out to be an analytic function of λ
in the whole complex plane from the expression:

the above two equations hold for all real λ. Thus we have

for any μ^Σz^ίδx^Mi and any real λ because fn£C(Mi) implies Ttfn£C{Mi).
Since

( φn(ax)μ(dx)\g^«
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for Λ>0,

Π TtCfnifiO^nEδι[θ£fn(μt)]^ΊlEδJ
I t I

for λ>0. On the other hand,

as n—>oo for λ>0. Therefore we have

or

for all λ>0. Thus, letting ^-^oo, we have

Pμ(\\μt\\-\\μ\\>0) = 0,

or

for all /^0. Moreover, by the right continuity of μt(w), we have

Pμ(\\μc\m\μ\\ for all ^ 0 ) = l.

The branching property may be extended in Proposition 2. 2 below, but for
this it needs the following

LEMMA 2. 2. For any integer n^l, / i ,/ 2 , •••> fn£Cf, and O^tι^t2^'-^tn<oo,

(2. 4) EμJf\ MμH)\ = Elf\ UμtΛ E\\[ MμH)\
Lι=i J Lt=i J Lι=i J

ί/ /ί, v and μ

Proof. (2.4) is reduced to the branching property for n=l. Since, by the
Markov property at time tn-u

γiUμH)E Jniμt^
t=i n ~ λ

where by Lemma 2.1

and



412 ΊΈTSUO FUJIMAGARI AND MINORU MOΊΌO

we have, if we assume (2. 4) for n—1,

Thus the proof is completed by induction.

We now define W—WI-\-W2QW for Wi, w2zW by μι(w)=μt(wι)+μt(w2), t^O if it
belongs to Mi for all t^O.

Then we have the following

PROPOSITION 2. 2. For any bounded Ul^-measurable function G,

(2.5) ^ + , [ G ( ^ ) ] = ^

if μ,v and μ+v£M1} where P?=Pμ, P12)=PV, and E™®E®> denotes the expecta-
tion by the product measure P

Proof. For /i,/ 2, •••, fn^Cf and 0 ^ Λ ^ 2 ^ ^ Ξ 4 < ° O , we have, by Lemma 2. 2,

= Ef® E™

where we note that Wι+w2ζW, P£υ(x)P£2)-a. s. because ||μί(wi)||^i||μ|| and
i | H | by Proposition 2. 1, and hence \\μt(wi)+μt(w2)\\^\\μ\\ + \\v\\ = | |μ+HI=l
2)-a. s. for all t^O since μ+v£Mι.

Therefore, by Proposition 1.2, (2.5) holds for the function G(w)
=F1(μtl(w))F2(μt2(w))'"Fn(μtn(w)) where Fi, F 2, •», Fn€C(Λfi). Thus we have (2.5)
for any bounded ^oo-measurable function G by the standard argument.

From this proposition, we can see the probabilistic meaning of the branching
property which is originally defined by means of a semigroup {Tt}: there are no
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interactions between particles in a cascade process and they move independently
each other and obey the same probability law.

The notion of homogeneity can also be expressed by (2. 7) in the same way
as Proposition 2. 2. We first show the following

LEMMA 2. 3. For any integer n^l, flff2, —, fn^Cf, and O^t1^t2^'"^tn

(2.6) ^

if asS and

Proof. Since, by Lemma 1. 2 (ii) and Lemma 2.1,

and

Ea.μ[fi(μtl)] = ( ThCfi) I s(μ) = Ttfyi

= Eμ[Cfi{μtJ\ - Eμ\fla μh)}.

Thus (2. 6) holds for n=h Then (2. 6) is verified by induction for all n^X as
follows. Assume (2. 6) for n-1. Then

rn-2 Λ ~ ^ — Λ η

= Ea,,,\ Π/i(^ίί)/«-l(^M-«n-l/«)ls0^κ-i)

= ^ [ " Π Λ(β

and the proof is completed.
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Define a wsW for <ZQS and WGW by μt(a-w)=a μt(w)t then we have

PROPOSITION 2. 3. For any bounded 71^-measurable function G,

(2.7) Ea.μ[G(u))]=Eμ[G(a-w)]

if a£S and

Proof of Proposition 2. 3 is completed in the same way as that of Proposition
2. 2 making use of Lemma 2. 3.

This proposition suggests a homogeneity property of a cascade process.
Put Mt — M(μt) where M(μ) is defined by (1. 4). Then Mt is right continuous

and has left limit at each t^O because of Lemma 1. 3. We shall denote Pa=Paδa

and Ea=Eaδa, aeS, from now on.

PROPOSITION 2. 4. For all

(2. 8) Pμ(Mt is non-increasing for all ί ^ 0 ) = l .

Proof When μ=ada, PaQ\μt\\^a) = l by (2.3) and hence P α ( M ί ^ M 0 ) = l .
When μ=aδa-\-bδb, we have, by Proposition 2.2,

=Pa(Mt ^(aV b))Pb{Mt ̂ (av b)) ̂  Pa(Mt ^ a)Ph(Mt ^

and hence

In the same way, Pμ(Mt^M0) = l holds for ^ = 2 ? - ! ^ ^ . For any μtMu take ε>0
such that μ((0, ε])^M(μ), then we can write as μ= Σxfe* Ziδχi+μo where \\μo\\^M(μ).
Since, then,

PΣx.^Xίδχί{Mt^^^

we have Pμ(Mt^M0) = l for any
Now, by the Markov property,

and hence we have

by the right continuity of Mt.
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Put W' = {weW; Mt(w) is non-increasing for all t^O}, then W'εϋΊo* and hence,
by Proposition 2. 4, we can restrict the sample space W to W. Thus we take
W as our sample space from now on, writing it again W.

We now define a Markov time τd which will play an important role in study-
ing a cascade process.

Let d be 2/3<rf<l, and define

(2.9)

if

Since

inf Is; ') ^d\,

r<z is an ^2rMarkov time. Moreover it satisfies τd(a'w)=τd(w) for any #€S. For
any O^ε^l, define

finf {s;
(2.10) , ( θ H

l oo if {.-} = Λ

then σ, is also an 32ΓMarkov time and the following will be usefull later:

(2.11)

. . . Λ . , Mo(w) ,

m(wt)> 4(w) — MQ(w)d,

if t<τd(w)<oo, where d^p(w)<l.
We can assume τd is finite except a trivial case. To see this, we first show

the following

LEMMA 2. 4. // P1(Γ d=oo)>0 for all d (2/3<rf<l), *A*» ^cA /̂ eiffi w a trap,
ue. Pμ(μt=μ for all f^0)=l .

/. Put α=P 1(rd=oo). Then

a=P1(Ms>d for all 5^

^Pi(Ms+t>d for all 5^

=E1[Mt>d; Pμt(Ms>d for all s ^

for any t^O. Putting μt=MtδMt+μ', we have

PH(Ms>d for all s^O)

for all
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=P{M\®P?\Mt(wi)>d for all s ^

=PMt(Ms>d for all s^

since Ms(w2)^M(μf)<l—d<d. Moreover,

Pa(Ms>d for all 5 ^

=Pi(Ms(tf w)>d for all s ^

-Pι(aMJiw)>d for all s^O

^Px{M8>d for all s^0)=a

for any azS. Thus we have

a^E![Mt>d; PMt(Ms>d for all s^0)]<α

Therefore, a>0 for all d (2/3<rf<l) implies P1(Mt>d)=l for all rf
and hence Pi(Mί=l)=l . Since

we have Ttf(aδa)=f(a) for all /eCf, and, by the branching property,

for all μeϋfi. Therefore Tt — I (identity), which concludes the proof.

PROPOSITION 2.5. It holds Pμ(Td<oo) = l for any d (2β<d<l) and a:
— {0}, except the case where each μGMi is a trap.

Proof. If any μsMx — {0} is not a trap, there exists d0 (2j3<do<l) such th
Λ(τd0<oo)=l, by Lemma 2.4. Since τd^Td0 for J ^ J 0 , Pi(r<f<oo)=l for ai

). Clearly Pa(Td<oo)=P1(Td<oo)=l for α€S, and

PaSa+ub(τd < oo) = Pg> (g) P(ί\τd{w1 + M;2) < oo)

Thus, by the same argument it holds Pμ(τd<oo)=l for μ=Σι=ι%iδχi For ai
^eil/i —{0}, we write μ=ΣxiδXi=μd+μ' where ^ = Σ ^ ^ ω d ^ A i and M(μ')<M(μ
Then

for any d (dQ^
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Since τd2{w)^τd{w)Jrτd{wtd) if μ ^ O , and τd2(w) = τd(w) if τd{w)<^ and

= Eμ[τd<co, μτd^0: Pμrd(τd<co)]+Pμ(τd<oo, μrd =

Therefore, if do^d<l, we have

= Pμ(τd<oo) = l

for any μGMi — {0}. Thus we have Pμ(τdn<co)=zl for any d (do^d<l) and any
i-{0}, and hence P^(rd<oo)=l for any d (2/3<J<l) and

By Proposition 2. 5, we assume Pμ(τd<oo) = l for any d (2/3<J<l) and any
fi —{0} from now on. We remark that it follows from the last part of the

proof of Proposition 2. 5 that Mt decreases to zero and hence μt converges to zero
almost surely when t tends to infinity.

Since Mt is right continuous, it is obvious that Pμ(τd>0)=l and hence it can
be made Pμ(τd^t0)<l, taking /0>0 to be sufficiently small. Moreover we have
the following

LEMMA 2. 5. Set

(2.12)

Then qn(f) does not depend on XQS and for any t>0 it holds qn(t)<l for suffi-
ciently large n.

Proof. By Proposition 2. 3 and τd{a-w) = τd{w), it is clear that qn(t) does not
depend on x. By definition qn(t) is non-decreasing in t^O and non-increasing in
n^l. Take to>O such as qx{U)<l. Then we show qn(nt0)<l for all n^Λ. by
induction as follows. Since

+Ex[qn((n+l)t0-τd); τd^

^qn(n

we have, by assuming qn(nt0)<l,

qn

when Px(to<τd^(n+l)to)=O,
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and

when Px(to<Td^(n+l)to)>0, and hence qn+i((n+l)t0)<l.
Therefore, for a given t>0, taking n large enough to satisfy t^nto, we have

LEMMA 2. 6. The nonnegative bounded function u{t) which satisfies:

(2.13) u(t)^Ex[u(t-τd

is necessarily zero for any fixed T>0.

Proof Put | |« | |=supo^^r|«(0|. Then

Now, assume \u(f)\^\\u\\qn(t)9 O^t^T. Then

\u{t)\^\\u\\Ex[qn{t-τd)\ t^

= \\u\\qn+i(t),

Thus we have |M|^|M|# W (T) for all n^X and hence zι=0 since qn(T)<l for
sufficiently large n by Lemma 2. 5.

§ 3. Underlying process.

The process (Mt) which is obtained by tracing out a particle with the maxi-
mum energy (or mass, etc.) of a given cascade process (μt) is not generally a
Markov process. However, we can obtain a nice Markov process (xt) on S = [0,1]
which is equivalent to the process (Mt) till the time τd. We shall call the Markov
process (xt) the underlying process of a given cascade process (μt)f because it can
be considered to represent the mode of movement of each particle of which the
cascade process consists.

In this section we shall construct the Markov process (xt) and prove some
properties of it, especially the relation between the processes (xt) and (M*).

We will fix d (2/3<d<l) and put τd=τjn what follows. Set B(S) the set of
all bounded Borel functions on S and B+(S) the set of all nonnegative functions
in B(S).

For fcB+(S), we define un(t, x\ f) (n=0,1, 2, •••) successively by

\uo(t,x; / ) = 0 ,
(3.1)

l ( ί , x; f)=Ex[f(Mt)\ t<τ]+Ex[un{t-τ, Mτ;
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for n^O. Then it is plain to see

0^un^un+i^\\f\\ for n^O,

where \\f\\=supx£s\f(x)\) and the limit

u(t,x; f)=\ιmun(t,x\ f)
n—»oo

is a solution of the following equation:

(3. 2) u(t, x; f)=Ex[f(Mt): t<τ]+Ex[u(t-τ, Mτ; /): t^τ].

We now define an operator Tf on B(S) by

Tff(x)=u(t, χ; f+)-u{t, χ; /"),

where f+(x)=max(f(x), 0) and /-(#)=max(—/(#), 0). Then we have the following

LEMMA 3.1. Tff(x) is a unique bounded solution of (3. 2) for all /GB(S),
and each of Tf is a nonnegative contraction linear operator on B(S) such that
Tί = I and Tf 1=1.

Proof The uniqueness of a solution of (3. 2) is as follows. For fsB(S), let
u(t, x) and u(t, x) be two bounded solutions of (3. 2). Then

u(t, x)-u(t, x) = Ex[u(t-τ, Mτ)-ϊί(t-τ, Mr): mτ].

Set v(t)=supx€s\u(t, x) — u(t, x)\, we have

\u(t, x)-u(t, x)\^Ex[v{t-τ)\

and, since the right-hand side is independent of x,

Thus, by Lemma 2. 6, we have v(t)=O, and hence u(t, x) = u(t, x).
Therefore Tff(x) is a unique bounded solution of (3. 2), and the rest of the

lemma is obvious from the definition of Tf.

Now, let Cd be the set of all continuous functions on S such that f(x)=0 for
0^x^(l-d)/d. Then CdaCd, if d^df.

LEMMA 3. 2. (i) For feB(S) and

(3.3) θaTff(x)= Tfθafix), xεS,

(ii) Tf maps C(S) into C(S), especially it maps Cd into Cd.

Proof, (i) Since Γf/(0)=/(0), (3.3) is clear for a=Q. Let α>0, then from
the homogeneity of the cascade process,
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Ttf(ax)=Eax[f(Mt):

=Ex[f(Mt(a w)):

=Ex[f(aMt): t<τ]+Ex[Ttrf(aMτ): t^τ].

Thus we have

ΘaTtf(x)=Ex[0af(Mt): t<τ]+Ex[θaTtrf{Mτ): feτ],

and hence θaTtf(x)=T}θaf(χ)9 by the uniqueness of a solution of (3. 2).
(ii) If B(S)Bfn i 0, Tffn I 0 because we have from (3. 2),

lim Tΐfn(x)=Ex[\\m TtJn(Mτ): t^τ]
n—*oo n—*oo

and lining Tffn(x)=Q by Lemma 2. 6. Since, moreover, Tf is a linear operator
on B(S), there exists a system of probability measures {P?(x, dy)} such that
Tfftx) can be expressed by

\ t ( χ , dy),

Since, by (3. 3),

^ i t ( h dy),

we have TffsC(S) if feC(S).
For the case f€Cd, we have T?feCd by the definition because Mt is non-

increasing.

LEMMA 3. 3. When

(3.4) Tff=Tff

for all

Proof. Put τd—τ and τd' = τ\ Since a solution of (3.2) is unique, it is suffi-
cient to show that Tff{x) for /^0 is a solution of the following equation:

( *) u(t, x)=Ex[f(Mt): t<τ']+Ex[u(t-τ', Mr.): mτ'].

To begin with, we recall that Tff(x) = limn-«> un(t, x), where

un+i(t,x) = Ex[f(Mt): t<τ]+Ex[un(t-τ,Mτ): mτ].

Since τ'^τ,

I=Ex[f(Mt): t<τ]=Ex[f(Mt): t<τ']+Ex[f(Mt): τ'^t<t\.

Since τ(w) = τ'{w)+σxd(w}) when τ\w)<τ(w)} we have? by a strong Markov pro-
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perty of μt,

where, if we put μτ,=Mτ,δMτ>-\-μ', then M(μ')<x(X — d), and hence

Eμτ\f{Mt-s)\ t-s<σxd]

= Efy (g) Ef [f(Mt-s(w1)VMUw2)): t-s< (σxd(μ>i)V^

f{Mt-s(w1)): t-s<σxd{wi)]

t-s): t-s<σxd}.

Thus we have

l=Ex[f(Mt): t<τ']+Ex[Eχt.[ΛMr):

We next consider the second term.

=Ex[un(t-τ,Mτ): t^τ, mτ', τ>τ'] + Ex[un(t-τ, Mr): t^τ

The first term of the above can be written as

Ex[Eμt>[Un(r-<*χd, Mσχd): r^σxd]r=t-τ>' t^τ', τ>τ'].

As in the case of I, the integrand is equal to

i)): MσχdCwi)(wi)>xQ.-d), r^

where the second term is zero because un(t, x)=0 for 0 ^ x ^ ( 1 — d)/d, and so

=EMτ,[un(r-σxd, Mσχd): Mσχd>x(X-d), r^σxd]

= EMτ,[un(r-σxdi Mσχd)\ r^σxd].

Thus we have

ll=Ex[EMτ,[Un(r-τp, Mτp): r^τp]r=t-τ> : t^τ', τ>τ'] + Ex[un(t-τ',Mv,): t^τ=τ']

and hence
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(**) UnUt,x) = Ex[f(Mt): t<τ'] + Ex[un(t-τ',Mτ,):mτ=τ']

+Ex[{EMAf(Mr): r<τP]

+EMt'[un(r-Tp, MT): r^τp]}r~t-r> : t^τ', τ>τ'].
p=xd/Mτ*

If we assume

un(t, x)^Ex[

for all d'(^d), then, since p^d in the last term of (**), we have

unUt, x)^Ex[f{Mt): t<τ']+Ex[un(t-τ'\Mτ,)\ mτ=τ'

+ Ex[un(r, Mτ,\=ι-τ>: t^τ', τ>τf]

= Ex[f(Mt): t<τ']+Ex[un{t-τ',Mτ,): t^τ'].

Going back to (**) and using this inequality,

un+i(t, x)^Ex[f(Mt): t<τ']+Ex[un(t-τ',Mt.): ί ^ r = r ; ]

+ Ex[un+1(t-τ',Mτ,): mτ', τ>τf]

+ Ex[un+i(t-τ'fMτ,): mτ', τ>τf]

= Ex[f(Mt): t<τ']+Ex[un+i(t-τ',Mτ,): t^r*].

Therefore we have, by induction,

Unit, x)^Ex[f(Mt): t<τ']+Ex[un(t-τ',Mτ,): mτf]

for all n^O, because it is obvious for n=0. We also have

«»+i(f, x)^Ex[f(Mt)\ t<τr]+Ex[Un{t-τ'yMτ,)\ t^τr]

for all n^S). Letting n to infinity in the above two inequalities, we have

TtRx) = Ex\ΛMt): t<τ']+Ex[Ttτ>f(Mτ,): t^τ%

and complete the proof.

LEMMA 3, 4. For feCa,

(3.5) T?Tϊf=T?+sf, t,s^0.

Proof. By the definition,

T?+sf(x)=Ex[f(Mt+s): t+s<τ]+Es[T&t-rf(Mr): t+s^τ],

where τ=τd- Since TfTtf(x) = T?+tf(x) is obvious for x=0, we assume x€S.
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l=Ex[f(Mt+s): t+s<τ]

=Ex[Eμt[f(Ms): s<σxd\: t<τ],

where, if we put μt=MtδMt+μ', then Mt>xd and M(μf)<x(l — d) because t<τ, and
hence the integrand is equal to

ι+w2)): s <axd{wx+w2)]

\ ) \ s<σxd{wι)]

=EMt[f(Ms): s<σxd\.

Thus we have

l=Ex[EMt[f(Ms): s<τp]p=χd/Mt: t<τ].

11=Ex[T?+s-τf(Mτ):

=Ex[Tf+s.rf(Mτ): t^τ

=Ex[Tf+β^AMr): mτ]+Ex[Eμt[Ttσχdf(Mσχd): s^σxd]: t<τ].

As in the case of I, the integrand of the second term is equal to

s^σxd(wί+w2)]

l ^ s^σxd(wι)]

M.xdiWlάw1)^x(X-d), s^σxd(Wl)]

where the second term is equal to zero because T?f€Cdi and hence we can con-
tinue as

EMt[Ttσχdf{Mσχύ): Mσχd>x{l-d), s^σxd\=EMt[Tta

Thus we have

ll=Ex{Tί+s..ΛMτ)\ mτ]+Ex[EMt[Ts

d..pf(Mτp): s^τp]^xd/Mt: t<τ],

and hence

T?+sf(x)=Ex[{Ey[ΛMs): s<τp]+Ey[Ttτpf(Mτp): s^τv]}y=Mι : t<τ]
d/M

Making use of Lemma 3. 3 for the first term of the right-hand side, we have

Ttsf(x)=Ex[Tff{Mt): t<τ \+Ex[Tt+.-ΛMt): mτ].

Now, consider the above equality as an equation for a function of a variable (t, x)
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where s is fixed, then we have

T?+sf(x)=T?Tff(x)

from the uniqueness of a solution of (3. 2).

Now we shall extend the semigroup {Tf} on Cd to a semigroup {T°t} on
C0-{/€C(S): lim^o/(a?)=O}. By Lemma 3.3, we can define T\f for all /eC0

= U2/3<d<iC(ί as T\f—Tff if feCd Since, then, T°t is a bounded linear operator
on Co, T°t can be uniquely extended to an operator on Co. Then we have the
following theorem.

THEOREM 3.1. {T°t} is a strongly continuous contraction semigroup of non-
negative linear operators on Co. Moreover it satisfies

(3.6) θaT°tf=Ίϊθaf

for /eCo and aeS.

Proof In the equation (3.2), we have limtιo u(t, x; f)=f(x) from the right
continuity of Mt and hence

(*) \xm
Ho

for /eC0. By the limiting procedure, we have (*) for all /€C0 and hence the
strong continuity of {T°t} follows.4) (3. 6) follows from (3. 3) and the remainder of
the theorem follows by the limiting procedure from the argument on Ca

By Theorem 3.1, there exists a strong Markov process {W°, xt, ζ°, 572, P%: XGS}
on S such that To

tf(x)=E%[f(xt)] for feC0, where W° is the set of all right con-
tinuous functions w°: [0,ζ°(w))-*S with left limit and xt(w0)=w°(t), ml is a afield
generated by the sets {XSGE}, O^s^t, Ee<B(S), and P% is a probability measure
on m0oo=Vt>o3l°t and E% denotes the expectation by P%. We shall call the
Markov process (xt) the underlying process of a given cascade process (μt).

In what follows, we shall study some properties of the underlying process,
particularly its relation to the process (Mi). We_ remark that the process (xt) can
be considered as the strong Markov process on S where 0 is a trap and
for mζ\w0).

LEMMA 3. 5. For

(3. 7) P% (xt is non-increasing for all £^0) = l.

Proof, Take /eC 0 such that f(y)=0 for y^x. Since / is a function in Cd for
such d as (l-d)/d=x, TQ

tf=Tff€Cd and hence T°tf(y) = 0 for y^(l-d)/d=x.
Thus, P°x(xt>xJrεn)=0 for any sequence εn | 0, and we have

4) See, e.g., p. 233 of Yosida [17].
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.n-»o

or P°x(xt^x) = l. From this, it follows

PQ

x(χs^xd=E°x[P%s(xo^xt-s)] = l

for any 0^s<£<oo. Since xt is right continuous, we have

P°x(xs^xt for all O^

Put W° = {w°sW°: w\t) is non-increasing for all t^O}. Then, by Lemma 3. 5,
we can take W° as a sample space of the underlying process (xt) and so we shall
denote it again by W° in the following.

We define τ°d and σ°ε of the underlying process (xt) in the same way as in the
case of the process (Mt):

i n f Γ 7 =

+ 00, if

ίinf {t: xt^ε)

(3.8)

(3.9) ί]
l + oo, if {...} = ̂ .

Then, r°d and σ" are also /̂2J-Markov times.
For w°€W° and ^zeS, let a-w° be a sample path in W° such that xt(a'WQ)

= axt(w°), mθ. It should be noted that τ°d(a wQ)=τ°d(w0).

LEMMA 3. 6. For any bounded ^Immeasurable function F and aeS, it holds

(3.10) E

Proof. When F(w°)=f(xt(w0)), /eC 0, (3,10) reduces to (3. 6). (3. 10) is verified
as usual by_ induction for F(wo)=fi(xt1(wo))f2(xt2(tvo))''fn(xtn(tv0)) where « ^ 1 ,
/i,Λ,—,/n€Co, and 0^t1^t2^"'^tn. Hence (3.10) holds for any bounded ^So-
measurable function F by the standard argument.

LEMMA 3. 7. For any feB(S),

(3. 11) Ex{f{Mt): t<τd}=E%{f{xt)\ t<τ%], xeS.

Proof It is sufficient to show (3.11) for / ^ 0 , /€C0, and x=l. For, since

Ex[f(Mt): t<Td]=

and

E%[f(xt):

(3.11) is equivalent to
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): t<τd]=E\[θxf(xt): t<τ°d].

Let gn€C0 be a sequence such that 0^gn^l and gn(x) f X(d,ϊ](x) as n-*oo.
Then fn=f gn£Co and T°tfn(x)=0 for 3^<f. Hence we have

Tlfn(l)=E1lfn(Mt): t<τd]Λ-E1[TUdfn(Mΐd): ^ τ ώ ] = f i [ Λ ( M ί ) : t<τd],

that is,

Letting n to infinity, we have

Ei[f(xt): xtXn^EΛfiMt): Mt>d, t<τd].

Since xt>d is equivalent to ί<τ°d and Mί><i to £<τ<z, we have

Ellftxt): t<τ°d]=E1[f(Mt): t<τd].

We remark that, by p u t t i n g / = 1 in (3.11), we have Pχ(t<τd)=P%(t<τo

d)y or

LEMMA 3. 8. For any f€Cd and geC([0, oo]), it holds

(3. 12) Ex[f(Mτd)g(τd): τdm=E%W*ήί)θW)> ^m

Proof. Put τ-τd and τ°=τ°d. As in the proof of Lemma 3. 7, it is sufficient
to show (3.12) for # = 1 and t>0.

Putting tk=(k/ri)t, k=0,1,2, •••, we define rTO and τ?> by

rn = ί* if h

τ°n = tk if tk

Then it is clear rn | τ and τ°n | τ° as n-+oo.
Now we calculate the following:

Λ " 1 L W Jp=d/xt

^ \f(xt/n): τ^^-Ί : t
^ L n J2?=ώ/Λftfc_i

where we made use of Lemma 3. 7 in the last step. On the other hand, we have
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=Eυ[f(Mt/n): ^ < τ p

and hence

= ΣO^EJEM
) f c l L *-

= Σ (Kί*)£iΓ^(t \τtln-,pf{Mΐp): τ ^ ^-
*=i L *-1L n t k

where, by putting μtk_1

z=Mtk_1δMt +μ'> we used the branching property. Apply-
ing Markov property of (μt) at time h-u we have

= ΣEί[g(tk)TlkΓtf(Mt): ί M
fc=l

= EMτn)T°n-τf(Mτ): τ^tl

and hence, by letting n—»oo,

We remark that it can be shown by Lemma 3. 7 and Lemma 3. 8 that the
two processes (xt, P%, t^kτd) and (Mt, Px, t^τd) are equivalent, that is, they obey
the same probability law.

It is seen by Theorem 3.1 and Lemma 3. 5 that the process ( — log xt, PI) is a

nondecreasing additive process on [0, CXD] with oo as a trap. Then it is well-

known that the Laplace transform of — log xt is represented in the form:5)

ψ(a) = ma + \ (1 - e~au)l(du),

J(0,oo]

5) See, e.g., Ito-Mckean [6], pp. 31-32.
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where m is a nonnegative constant and l{du) is a measure on (0, oo] such that

:+oo.

In addition, it is known that

(3.14) £i[ΣΛ-log xs-, -log tf,)Ί=£°JT& [ /(-log xt9 -log
Ls^p A LJo J(o,oo]

for any Markov time p and for any /ei?([0, oo]χ[0, oo]) such that / ^ 0 and
fix, x) = 0 for XG[0, OO]. From the discussion on the additive process (—log xt} P%),
we have the following statements on the underlying process (χt, P%).

PROPOSITION 3.1. There exists uniquely a measure kida) on [0,1) and a con-

stant m such that

\ i ) i ) < + 00,
(3.15) jJ

and

(3.16) A°fix)=-ntxf'ix)+[ k(da)(f(xa)-f(pή)P
J CO, 1)

for all /GC^O, 1] where A0 is an infinitesimal generator of the underlying process.
The set Cx[0,1] is a core of A0 on C[0,1]. Moreover, it holds

(3. 17) E%\Σ Q(x-> x.)\=E%\[Pds [ gixs, axs)kida)\
Ls^p J LJo J[o,i) J

for_any Markov time p and for any gζBiSxS) such that g^O and gix, x)=0 for
xeS.

REMARK 1. The measures / and k satisfy the following relation:

(3.18) k(A)=[ lidu), Ae$[0,l).
J{u:e~uGA]

REMARK 2. The measure k and the constant m determine the underlying
process.

§ 4. Branching measure.

In the preceding section we constructed a strong Markov process called

6) See, Ikeda-Watanabe [4] and Watanabe [16] (cf. Motoo [10]).
7) This is easily obtained from the expression of a generator of an additive process

for which it is refered to Sato [11], Chap. 3.
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underlying process, describing the behavior of each particle of which a cascade
process consists, while the purpose of this section is to construct a measure
Π(dμ)—this will be called a branching measure—on Mi — {δi] which gives the law
according to which new particles are born when a parent particle has splitted.

For ε (0<e<l/2), set

Bε={F: F is a nonnegative bounded Borel function on M2 and

satisfies F(μ) = 0 if M(μ)>l-ε}.

Taking FGB% we concern with the quantity

for x€S, where τ=τd (2/3<rf<l) and τt = τΛt. Then we have

1 x 1
P β - a . s .

Moreover, since F((l/M,_)•/*,)=() if M((l/Λfβ_) JM,)=M,/M8_>l-e, the number iVof s
such that s^τ and F((1/MS_) ^ S )^F0 has a bound:

" lθg(l-ε)

Thus it follows

+1.

with ]|F||=sup^€Λf2|F(//)|. In addition, we have by the homogeneity of the cascade
process (μt)

which means the left-hand term does not depend on x€S.
We now define un(t), n—0,1, 2, ••• successively by

r«o(*)sθ,
( '1} jj«»+i(0=£*[Σ

It is easy to see that un(t) does not depend on XGS and 0^un(t)^un+1(t) for all
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n^O. Therefore, limn-co«n(0= + 0 0 exists and we denote it by Ae

d(t; F). Then,
by the definition, Ad(t; F) is a solution of the following equation:

(4. 2)

Moreover, it is plain to see that un(t) is non-decreasing in t:

(4. 3) un(s) ^ un{t) for 0 ̂  5 < ί < oo

and we have as a limit

(4.4) A d(s; F)^Ad(t\ F) for 0^s<*<oo.

LEMMA 4.1. F<?r any 0<Γ<oo, ^4e

d(ί; F) is bounded in te[O, T] and right
continuous in t.

Proof. Each of un{t) is obviously bounded, or more precisely \un(f)\
^K'a\\F\\(l+ή). Moreover, since Ex[Σs£HF((l/Ms-) μs)] is right continuous in t,
we can see by induction that un(t) is right continuous in t for all n.

Since

we have

where an(t)=supo^s^t \un+1(s) — un(s)\. Using notations in Lemma 2. 5,

and hence by the inequality (*), we have

Thus, we have by induction

for l^m^n.
By Lemma 2. 5, there exists a positive integer n0 for any fixed Γ>0 such

that qno(T)<l. Since

for any m^X and 0^k<nQ} it follows
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Σ an(T)=nΣ Σ amno+,c(T)^nΣ Σ
n=n0 k=0 m=l k=0 m=l

Therefore, un(f) converges uniformly in O^t^T, and Ad(t; F) = \ιmn->ooUn(t) is
bounded in ί€[D, T] and right continuous in t.

By Lemma 2. 6, it is easily seen that the bounded solution on [0, T] of the
equation (4. 2) is unique for any T>0. Thus, A'd(f; F) is a unique solution of
(4. 2) in this sense, and especially we have

(4. 5) Ad(f, F+G)=Ad(t; F)+Aε

d(t; G), A'd(f, aF)=aAd(t] F)

for F, GeBε and α^O.

LEMMA 4.2. // {Fn}<zBε satisfies Fn(μ)l0 as n-*oo, then Aε

d(t;Fn)l0 as

Proof, Since Ad(t; F ) ^ 0 for FGB% (4. 5) implies Ad(t; Fn) is non-increasing
in ny so that l i m ^ o o ^ ^ ; Fn)=A(t) exists and A{f) satisfies the equation:

A(t)=Ex[A(t-τ)'f mτ],

because Ex[Σs^rtFn((l/Ms-)'μs)] | 0 as n-^oo. Hence A(t) = 0 by Lemma 2. 6.

Now, we set

e: F is ^ ( ^

where φd is defined in §1. F$Bd means that F(μ) depends only on ψd{μ), or
if

LEMMA 4. 3. For β

AM F)=AΆr, F)

if FcBd.

Proof Put τd=τ and τφ — τf. Since the equation (4. 2) has a unique solution,
^(f; F)=Aε

d,(t; F) follows if we show that Aε

d(t; F) satisfies

Aε

d(t; f ) =

For later use in §5, we shall show the above equation for any Markov time
p which satisfies p<τ (obviously, τ '<τ).

Let i4i(ί;F) = limn_oo«»(0, where un(t) is defined by (4.1). Putting B(t)

s-) μs% we rewrite unvι{t) as follows;
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;mP, r>P]

+Ex[un(t-τ); mτ, τ>p]+Ex[un(t-τ); mτ=

=I+II+III+IV, say.

X •μs-rX] mp, T>p\

\
A

'*=P' T>P
p

Putting μ^MfiiipΛ-μ' where M{μ')<x{l—d), and making use of the branching
property, the integrand is equal to

Σ

Σ

because F€i?e
d and

M8-(wi) xd d

Thus, we have

11= EJEMI Σ F(-JT-'M Ifep, τ>p\,
s<ZτΏΛ(t-r ) \Ms- I λr=p

111= Ex[Eμp[un(t-r-σxd); t-r^σxd]r=P; t^p, τ>p]>

where again putting μp=MpδMp+μ' and using the branching property, we have

]r=P mp, τ>p].
p=xd/Mp
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Therefore un+1(f) is expressed as

un+1(t)=B(t)+Ex[un(t-p)] mτ=p]

+Ey[un(r-τp); r^τp]\ : mp, τ>p[
J r=t-P J

d/

r=t-P
p=xd/Mn

Now, if we assume

(**) uJf)^B(f)+Ex[Un(f-p); mp]

for any Markov time p^kτ, then it follows from (*)

un+i(t)^B(f)+Ex[Un(t-p); mτ = p]+E*[un(t-p); mp, τ>p]

=B(t)+Ex[un(t-p); mp],

and again applying this to (*), we have

un(t-p); mτ=p]+Ex[un+i(t-p); mp, τ>p]

Since (**) is obvious for n=0, (**) is verified by induction for all n^O and (***)
also. Thus, letting n-^oo, \imn-+co un(t)=A'd(t; F) satisfies

A'd(t; F)=B(f)+Es[A d(t-p; F); mp].

LEMMA 4. 4. For F^Be

d,

A d(t+s; F)=Ae

a(t; F)+Aε

d(s; F), O^t, s<oo.

Proof. This is shown in a similar way as in the proof of the semigroup
property of {T°t}.

Putting A(t)=Ad(t; F) and B{t)=Ex{Σ^rtF{{llMs-)>μs)]y we have

J J

+Ex[A(t+s-τ); t<τ, t+s^

1+11+111+IV, say.
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Lu£σxdΛs \Mu-

If we put μt=MtδMtΛ μ/ where M(μ')<x(l—d), we have by the branching property
that the integrand is equal to

Σ ( M
u£σxd0θi)ΛS \ Mu-

since FζBe

d and

/ 1 \ Mu(w2) x(l-d) _ 1-J
\ MM_(^i) 2 / Mu-{wi) xd d

Thus, we have

MI Σ

Applying the same argument as above, we have

Ώl=Ex[Eμt[A(s-σxd); s^σxd]; t<τ]

=Ex[EMt[A(s-τp); s^τp]p^d/Mt; t<τ].

Therefore, we have

A(t+s)=B(t)+Ex[A(t+s-τ); mτ]

+Ex\\Ey\ Σ F(η^ μX\+EΛA(s-τp);s^τp]\ t<τ\
LI Lu&Λτp \Mu- JΛ ]y=Mt J

p=χd/Mt

Since the integrand of the third term is equal to A(s) by Lemma 4. 3 because
p^d, we have

A(t+s)=B(t)+Ex[A(t+s-τ); t^τ]+Ex[A(s); t<τ],

or
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A(t+s)-A(f)-A(s)=:ExlA(t+s-τ)-A(t-τ)-A(s); mτ].

Now, if we fix 5 and put u(t)~\A(t+s)—A(t)~A(s)\, then u(f) satisfies the in-
equality:

By Lemma 2. 6, u(t) is identically zero and this verifies

A(t+s)=A(t)+A(s).

By Lemma 4.1 and Lemma 4. 4, Λd(t; F) is a linear function of t and hence
can be written as

(4 6) Ad(t; F)=tDd(F)

for all FeB'd. It follows from (4. 4), (4. 5), and Lemma 4. 2 that L'd(F) has the
following properties:

( i ) Lε

d(F)^O for all

(ii) Li(F+G)=Li(F)+Li(G) for all F,
(4.7)

(iii) for any sequence {Fn} in Bd such that

Fn(μ) I 0 as ?z-*oo, Le

d(Fn) I 0 as rc->oo.

Moreover, we have by Lemma 4. 3 and by the definition of Bd,

(iv) Ud(F)=Ud,(F) for FzBd1 if tfgrf',

(v) Dd(F) = Dd(F) for F€£e
ώ, if ε'^ε.

By (4. 7), there exists a finite measure Πd on (M2, φ2\^t)) such that

77i(-nJf«,.)=/7i( ),
(4.9) r

U(ί 1 )=J F(μ)Πd(dμ)

for all F€#e
d, where iWΓ2,ε=Λf2n{^; M(//)^l-e}. By the property (iv) of Lε

d(F),
Πd is a restriction of Πε

d, on ψ£(<B%) if J < J / . Therefore, we see by Lemma 1. 5
that there exists a unique measure Πε on ̂ 2 such that

(4.10)

Since (v) of (4. 8) implies

(4.11)
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if ε'<ε, 77( )=:lini£jo77e( ) is a <j-finite measure on (M2, <B%) which is concentrated
on the Borel set M2=M2Π{μ: M(μ)<l}. Moreover, we have

(4. 12) Ld(F)=\ F(μ)Πd(dμ)=\ F{μ)Π\dμ)=\ ^ F{μ)Π{dμ)

for all FeBe

d.
Now, since Ad(t; F)=t L'd(F) is a solution of the equation (4. 2) for FcBdt

we have

and hence

(4.13) £•JΣ ^ ( - J - ^ V ^ W ^ ( F ) = ^ ( n ) ( ̂  F(μ)Π(dμ)
Uzn \MS-. /J Jir2

for all FeUo<£<i/2^. Let Bd(M2) be the set of all nonnegative, bounded and
^ ( ^ - m e a s u r a b l e function F on M* such that F(μ)=Q if M(/i) = l. Then, (4.13)
is valid for all F<=Bd(M2).

Finally we shall show that the support of 77 is on Λϋ —{&}. Set Ed

=M2Π{μ€M2; II^OOHM}, then EΛtφi\mi), XEdeBd(M2)
8> and Z . ^ Z

a.s. (PΛ) because for s^τd

a.s.

Therefore, by putting F=3C^d in (4.13), we have Π(Ed)=0 because Ex(τt)>0
for £>0. Thus, it follows Π(\imdnEd) = 0, where lim^11 Ed = U 2/s<d<i Ed

=M2Λ{μ€M2; \\μ\\>l}. Therefore, the measure 77 is concentrated on the set
Mi — {δ1}=M2n{μsM2; Hμll^l}, or we can consider 77 as a Borel measure on
Mi-{δi}.

THEOREM 4.1. There exists a Boreί measure Π(dμ) on Mi — {δi} such that

(4.14) EI Σ F(^-'μX\=Ex{τdM)\ F{μ)Π{dμ)

Ls^TdAt \ Ms- / J Jjfi-ίίl)

for all FGBd(M2) and for d (2/3<J<l). In addition, for any nonnegative function
φ satisfying 0(1)=0,

(4.15) [ g(M(μ))Π(dμ) = [ g{a)k{da\

or k(da) = $M(μ-)£da Π(dμ), where k(da) is the measure on [0,1) defined in Proposition

8) %E(μ) is an indicator function of a set E, i.e. %EQM)=1 if μ^E, =0 if
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3.1. Moreover,

(4. 16) [ (l-M(μ))Π(dμ)<+oo.

Proof. The first statement (4.14) is already proved. Since the condition
(4.16) follows directly from (4.15) and (3.15), we shall show (4.15) only. First
of all, we choose a nonnegative function gGB(S) such that g(χ)=0 for 1 — ε<x^l
and g(x) is a constant for 0^x^(1-d)/d. Then, g(M(μ))sBd{M2) and (4.14) implies

On the other hand, we have

and Ex(τt)=E%(τϊ) since the two processes (xh P%, t^τ°d) and (Mt, Px,t^τd) are
equivalent as seen in § 3. Moreover, since (3.17) implies

E%\ Σ o

we have (4.15). Finally, since (4.15) does not depend explicitly on d and ε, we
have (4.15), by letting d\l and then ε j 0, for all nonnegative functions gsB(S)
satisfying g(l)=0.

77 is in general <;-finite and uniquely determined by (4.14). We shall call 77
a branching measure of the cascade process (μt).

§ 5. Fundamental equation for a cascade semigroup.

In the preceding sections we have constructed the underlying process (xt) and
the branching measure 77 of a given cascade semigroup {Tt}. We intend here to
obtain a system of integral equations which are satisfied by Ttf in terms of (xt)
and 77.

It has been proved in the proof of Lemma 4. 3 that Ad(t; F)=tLe

d(F) satisfies
the equation:

A'd(t; F)=EJ Σ F(~M~ 'μX\+Eχ[A'd(t-p', F); mp]

for F€Bd and for any Markov time p such as p^τd. Hence we have

Σ F(-^- μsY\=Ex(pΛt)Π(F)
s^pΛt \ Ms- / J
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for such p and F^Bd{M2)t where

F(μ)Π(dμ).

Thus, by letting t^oo, we have

(5. l)

LEMMA 5.1. For FtBd(M2) and geB(S),

(5.2) Σ

Proof. It is sufficient to show (5. 2) for FsBd and flr€C(S), g^O. We define
for any ε>0 a sequence {ρn}n^o of Markov times by

inf {s: \g(Ms)-g(M0)\^ε}

+co, if {-}=φ,

v+) for n^l,

where w+w means wjn(t)=w(ρn+t) for /^0. Since g(Ms) has a left limit at each
Sf̂ O, we have pn—*oo as n—*oo. Now, we decompose the left-hand side of (5. 2)
into the sum:

EJΣ F(-^- • A(Λ4i-)l= Σ EX\ Σ

while

= E\\g{Men)^Σ^ 1

εx\g(Mjε Γ

since τ(w) = pn(w)-\-τq(w+n), q=xd/MPn if ρn(w)<τt(w). Since we can replace £ ^ n in
the above integrand by EMpn because FQBd{M2) and since we have ((p+τq)Λt)

pi)—p^τq^τd, if follows from (5.1) that

In=Ex[g(MPn)EMPnK(P+τq)Λt)Λ(p+Pi)-p]P=Pn -Π(F); pn<τt}.
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Now, replacing EM by Eμp again and using a Markov property at time pn,

In = Ex[g{MPn)(Pn+if\τt-pn)-Π{F)\ pn<τt\

= E,\\ g(MJds[π(F).

Since we have in addition

Σ Ex\[Pn+lAHg(Ms)ds] Π(F) =EJ[Hg(Ms)ds] Π(F),
n-0 LJί>nΛrj J LJo J

we can carry out the following estimation:

Σ

-ΣEL(MJ Σ
n=<S L 'tΛ/>n<sSrίΛ/>n+1

+ ΣElg(MJ Σ
n=0 L r

Σ Σ
71=0 Lτ/Λ/»n<.^rtΛ/»n+1

Σ Ex
0

Σ F(-±- • μ)\g(Ms-)-g(MJ\\
.^rtΛ/»n+1 \ Ms- I J

Σ
w=0

Σ F( ± - • μX\+e Σ El<\n+lAnds'\π(F)
1$- / J n=0 LJ^Λrf J

=2εEx(τt)Π(F)

Since s is arbitrary, we have (5. 2).

Define a mapping ψ on Jf? into M2 such that <pd(ψ(v))=v and ψ(v)(S-Sd)=0

for

LEMMA 5. 2. Γ/fo? mapping ψ: (Mi, &Ϊ)->(M2, IB2) is measurable.
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Proof. Put Jl = {B€&2: φ-\B)^Bi), then J is a sub σ-ήeld of &+ To
show the measurability of ψ, it is sufficient to show JIZDBZ* For fsCf and

= expί \ — log f(x)v(dx)\,

and hence f(ψ(y)) is a immeasurable function of v. Thus, it follows from Pro-
position 1.2 that F°0 is ^-measurable for all FsC(M2). Since ψ-\F-\E))
-{Foψ)-\E)^Sί for Ec^iR1), we have F~\E)sJl and hence F€C(M2) is always
c^ -measurable, and this implies

By Lemma 5.2, φd=ψ°ψd is a measurable mapping of (ϋf2, φ2\^z)) into
(Λ/2Ϊ ^2). Therefore, Bd(M2) is coincident with the totality of nonnegative bounded
Borel measurable functions F on M2 which satisfy the relation F=Foφd and
F(μ) = 0 if M(μ) = l.

LEMMA 5. 3.

(5.3) EJ Σ F(φd(Ί±~-μs),Ms-,s)\=EJ[tdMds[ Π(dμ)F(φd(μ),Ms,s)\
Ls^τdΛt \ \MS- ) /J LJo JjfΊ-ω J

nonnegative bounded measurable function F(μ, y, s) on the product meas-
urable space M2xSx[0, 00] which satisfies F(μ, y, s)=0 if M(μ) = l.

Proof. Since FoφdsBd(M2) is valid for a nonnegative bounded Borel meas-
urable function F on M2 which satisfies F(μ)=0 if M(μ) = l, we have the equality
(5, 3) if we show the following:

( *) EAΣ F\~M~- ' μψ(Ms-)h(s)l=Ej[ng(Ms)h(s)ds]π(F)

for FsBe

d, geB(S), g^O, and AeC([0, 00]), ^ ^ 0 .
Take β>0 for a given ε>0 such that |A(sα)-A(52)|<e whenever |si—s a |<3.

Then, we divide the time axis into Q=to<t1<t2<' '<tn< >oo such that
tn+i — tn<δ for all n^O, and decompose the both sides of (*) as

Σ F{-~ • μ)g{MsJ)h{s)\= Σ El Σ F(-±- Λ(Ms_)A(s)l,
s^τt \ Ms- J J n=0 LτtΛtn<S^τtΛtn+l \ MS-

 Γ J J

K H -1 co ΓfτίΛίn+1 ~|

g(Ms)h(s)ds \Π(F)= Σ E*\ \ g{Ms)h[s)ds \Π{F).
0 J n=0 LjτtAtn JSince, by the equality (5. 2),
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El Σ F(-^--μs)g(Ms-)h(tn+1)\
LτtMn<SUτtΛtn+ι \ MS- / J

= Atf«+i)p*[jo g(M.)dsyi(F)-E^ g{Ms)ds]Π{F)

g(Ms)h(tn+1)ds \Π(F),

nΛtn Λ

we can estimate the following:

Σ F(-^- • μ)g(Ms-)h(s)\- Σ Ex\ Σ F(η^- • μ)g(Ms-)h(tn+1)]I
Srj \ Ms- I J n=0 LrtΛίn<ίS« tAίn+l \ Ms- I J |

EJ Σ F(-±~ μs\g{Ms-)h{tn+ί)\-ElV g{Ms)h{s)dsΛπ(F)
0 Lr ίΛίn<S^τ ίΛίn+l \ 1V1S- I A LJO J

Σ El Σ F(ltf- μ)Q{Ms-)\h{s)-h{tn+1)\\
Π=0 LτtΛtn<s£τtΛtn+1 \ IVU- J J

+ Σ E, \\ g(Ms)\k(tn+1)-h(s)\ds \Π(F)
n=0 LJτtΛtn J

Σ
n=0 LJτtΛtn

where ||cf||=supoS^Si [g(x)|<+oo. Since ε>0 is arbitrary, we have the equality (*).

COROLLARY.

(5.4)

El Σ G(φd(μs), S)l{Ms<xd^Ms-)\

= Ex\[TdAtds[ Π(dμ)G(φd(MS'μ), s)X(MsM(μ)< xd)\
LJo JMI-{3I} J

for any nonnegative bounded measurable function G on the product measurable
space Jf2x[0, oo].
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Proof Putting F(μ,y, s) = G(φd(yμ), s)X(M(y>μ)<xd^y) in (5.3) and noting
that Φd(y μ) = φd(yφd(μ)) and X(M(yμ)<xd)=X(M(yφd(μ))<xd), (5.4) is easily
shown.

THEOREM 5.1. For feB^, ut(χ)=Ttf(xδx) is a solution of the following (Sd)-
equation:

Ut(x)=E%[f(xt); d d d

+ E°J [* ds [ Π(dμ)X(xsM(μ) <xd< xs)ύt-s(xs

LJo JMi-ih)

Proof Put τd=τ and τ°d = τ°.

Ttf(xδx)=Ex[f(μt)]

=1+11, say.

From fzB%

I=Ex[f(MtδMt); t<τ]=Ex[f(Mt)) t<τ]

=E%[f(xt); t<τ°]

by Lemma 3. 7.

=Ex[Tt-J(μτ); Mτ = xd, τ^f\ + Ex[Tt-rf(μr); Mτ<xd, τ^t]

=Π1+Π2, say.

Since (Ttf)\szB% and Ttf = (Ttf)\s for fsB%, we have by Lemma 3. 8

n1=Ex[Tt-J(MJMT); Mτ=xdy τm

=E%[Tt-τof(xτcδXτO); xτo=xd, τ°^t].

Finally, we begin with rewriting the term II2:

I I 2 = £ » [ W W ; MH<xd\

= EJΣ Tt-sf(μs)X(Ms<xd)\.

Since Ttfoφd=Ttf,
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and hence applying (5.4) for G(μ, s)=Tt-sf(μ),

II. - βJT'<fcf Π(dμ)Tt-sf(φd(Ms>μ))X(MsM(μ)<xd)\
LJo JMi-{Si) A

[H ds[ Π(dμ)Tt-sf(MS'μ)χ(MsM(μ)<xd)]
Js JMi-Vi) J

'&ξ Π(dμ)Tt-sf(Xs-μ)X(XsM(μ)<xd)\
Jo JMi-ih) J

Π(dμ)Tt-sf(Xs μXxsM(μ)<xd<Xs)\
ι-{h) Jo JMι

by Lemma 3. 7.
Since ύt(μ) = Ttf(μ) for ut(x)=Ttf(xdx), it follows from the above arguments

that ut{x) satisfies the (Sd)-equation.

By putting / = 1 in Theorem 5.1, we have

(5.5) [
o JMi-ih)

Put C | = {/eC0*; f(x)=l for 0<x^(l-d)/d}, then C J c ^ l and U C%=Cf.
2/3<d<l

THEOREM 5.2. Two cascade semigroups {ΓH and {Tf} coincide, i.e. T^^T^
for all t^O, if the underlying processes and the branching measures are both coin-
cident, respectively.

Proof. Let (xt, P%) and Π be the underlying process and the branching
measure, respectively. By putting τ°d = τ°, it follows from Theorem 5.1 that

i%f(xτoδXτO)-Ti%of(xτoδXτO)\; xτo=χd, τ°m

tds[ Π{dμ) I mJ{xs μ) - Tί%f(xs μ) | X(x,M(μ) < xd<Xs)]
o JMi-ih) J

for any feC%. Since φd(μ) = Σχi€sdXidXί for ^ = 2 ^ A i € U f i and the number of
^ s in Sa is not greater than d/(l — d), and since in general

for any / and g such as | | / | | ^ 1 and | |g| |^l, we have
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sup \πisf{xs-μ)-T?lsf{xs.μ)\^~ah}

where

at0= sup \T?>f(xδx)-T?>f(xδx)\.

Therefore, we have by (5. 5)

and in addition ato=O for a sufficiently small to>O because \imtoιo P%(τ°^to)=O.
Thus, it holds T(i)f{xdx) = T?f{xδx), and hence

Tϊ^f = (τff)\s=(τff)\s= Tψf

for all t such as O^t^U, where t0 depends only on d. Since both {Tίι)} and
{Tί2)} are branching semigroups (i.e. semigroups with branching property) and

C% ( ί=l,2) i f /€CJ, the equality Tψf=Tff holds for all 0 ^ < o o and
% Moreover, it holds T?Ψ=T?Ψ for all FzCiMx) and 0 ^ < o o by Proposi-

tion 1. 2 and the fact Co*= U C%
2/3<<Z<l

§ 6. Uniqueness of the underlying process and the branching measure.

We shall show in this section that the underlying process and the branching
measure of a given cascade semigroup are uniquely determined by the system
of (Stf)-equations. The meaning of the assertion is formulated in the following
(Theorem 6.1).

Let Π{dμ) be a measure on Mx — {<y such that

(6. 1) ί (1 - M(μ))Π(dμ) < + oo

and in a nonnegative constant. Then, define a Markov process (xty Px) on S — [0,1]
whose infinitesimal generator A on C[0,1] has a core C2[0,1] and is given by

(6. 2) Af(x) = -mxf\x) + [ k{da){f{xd)-f{x))
J CO,l)

for all /eCx[0,1], where

(6.3) k(da)=[ Π(dμ).
J {μ: M(μ)ζd(l}

Note that the underlying process and the branching measure satisfy all of the
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above conditions (see Proposition 3.1, (4.15) and (4.16)). Moreover we remark
two relations:

(6.4) Eax[f(xt)]=Ex[f(axt)]

for aεS and feB(S), and

(6. 5) EJΣ 9@8-> xt)\=Ex\\Pds[ g(x» aϊs)k(da)\

for a Markov time p and geB([0, l]x[0,1]) such as g^O and g(x, x)=0.
Set

Sάfa, t\ /, u) = Eχ[f(xt); t<τd]+Ex[ut~7d(x-d); xτd=xd, τd^t]
(6. 6)

+EJ\ ds[ Π(dμ)X(xsM(μ)<xd<xs)ύts(cCs'μ)\
LJO Jilfi-{«i} J

where

(6.7) τd=inf {s: Xs/xo^d}, =+oo if {.. } = ̂ .

THEOREM 6.1. Let {(xt, Px), Π(dμ)} be a pair of a Markov process on S and
a measure on Mi — {<5i} which satisfy (6.1), (6.2), and (6.3), and Tt be a cascade
semigroup. Then, (xt, Px) is the underlying process and ίί(dμ) is the branching
measure of the cascade semigroup Tt if, for any d (2/3<<i<l) and for any fεCt,
ut(χ; f)=Ttf(xδx) is a solution of the equation'.

(6. 8) ut{x\ f)=Sd(x, t; f u).

In view of Proposition 3.1, Theorem 4.1, and Theorem 5.1, it is sufficient
for the proof of Theorem 6.1 to show: Let {(xγ\ Pψ), Πw(dμ)} (ί=l, 2) be two
pairs satisfying (6.1), (6.2), and (6.3). Then (x?\ Pψ) = (x?\ P$) and Πw(dμ)
= Π{2\dμ) if, for any d (2/3<d<l) and for any fzC% ut(x; f)=Tj(xδx) satisfies
two equations: ut{x\ f)=S(

d

ί)(x, t; fu) (ί = l, 2) where Tt is a given cascade semi-
group.

We need several lemmas for the proof.

LEMMA 6.1. Pf(τ(

d:
)^t) = Pf(τf^t) for all mθ, where τf's are defined by

(6. 7) for xl»'s.

Proof Put τf = τω (/=1,2) for a fixed d (2/3<d<l). Since τa\a-w^)
= rc<)(«;c<)) by the definition, P^\τ{ί)^t) does not depend on xεS by (6. 4). Hence,
it suffices to prove the lemma for x=l. Taking a sequence {fn}aC% such that

l,

0,
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we have

Since ut(χ; fn)=Ttfn(xδχ) = l for x^d, we have

and

o JMi-lh)

o Jco.i)

BrCOΛί p "1

rfs\ k^{da)X{x^a<d^x^)
0 J [0,1) J

Therefore, the relation Sg^l, ί; Λ, «)=Sg )(l, ft /«,«) for all n implies

i.e. P1

α )(τ ( 1 )^0 = Λ ( 2 )(τ ( 2 )^0

LEMMA 6. 2. For arwy d (2/3<rf<l),

Proof. When /€CJ satisfies /(Λ?)=1 for x^dy we have by (6. 8)

Ttf(δ1)=E[ί)[f(xlί));

for f=l , 2, and hence by Lemma 6.1

This is easily shown to be valid for all feB(S). Moreover, Since
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we have

Enf(xn t<τf] = Ef[f(x?); t<τf\

for any d (2β<d<l), any XGS, and for any
Now, it is shown by induction

(*)

for all n^l, O g ί 1 < ί 2 < < ^ , and Λe5(5) (£ = 1,2, •••,«), since, if we assume (*),
we have for another fn+1eB(S) and ί«+i>ίn

]

LEMMA 6. 3. For any

Proof. Put τ ( ί ) =rg ) , T W ' = Γ2?, and τW)//=τgλ (f=l, 2) for
We have by (6. 8) for

d); x%=d,

III (« say.

IΠ«>=£I«>ΓΓ'

+ Eii^ds^Π«Kdμ)X(χPM(μ)<d<xP^^

=III{*>+III|*>, say.
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x™)Tt-.f(xii> μ)\

=£{"fa,, \[ds[π«\dμ)X(xPM(μ)<d<xP)Tu-sM» μ)\ r « ^ f , r > <

Putting y=x%> and p=d/x%> (^d) in the last term, the integrand is equal to

On the other hand, we have by (6. 8)

Therefore,

fw lTu-τιaf(.dδΛ); x% = d,

Thus, it follows from Lemma 6.2 that Iα> = IC2), IIC1>=II<2>, and IΠ?)=IΠ2

C2), and
hence IIIί1>=IIIί2>. Moreover, we have

t io ί

by the right continuity of x^ in ί and by the inequalities:

and

Therefore,
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LEMMA 6. 4. Two finite measures Qι and Q2 on (Mlf <p2\lBi)) are coincident,
if they satisfy

f{μ)Qi{dμ)Λ f(μ)Qz(dμ)
I Jim

for all

Proof. Let Qf be the induced measure on (Mf, £Bt) of Qι by the mapping
φa (f=1, 2). By putting fd=f\8d for /€CJ,

ΓI JΛfi J

for f=l , 2, because f(μ) = fd(ψd(μ)) for any μ€ilfi. Thus, we have

Moreover, since we can prove as Proposition 1. 2 that X{fd, /eCJ} is dense in
C(Mf), we have

\ d

for all FGC(M?), and this implies Qt = Qί. Hence, Qι=Q2 is obvious.

LEMMA 6. 5. Π™(dμ) = Π™(dμ).

Proof. By Lemma 6. 3 and Lemma 6. 4, we have

because {μsMΰ M(μ)<d)sφϊ\&f). Since {μeMΰ M(μ)<d}(z{μ£Mύ M(μ)<d'} for
r/, we have

for any <ir ( J ^ ^ ^ l ) , and hence, by Lemma 1. 4,

/7CD = /7C2) o n { i M € j M i . M(μ)<d}.

Thus, we have by letting <f 11

/7ci)=/7(2) o n j i f i-φ}.

LEMMA 6. 6. (a?«, P«) = (a??>, P^2)).
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Proof. Let Tψ be the semigroup of the process {xψ1) (?=1,2). Putting
τf=τw, and for j

=I«>+Π«>,

χ%); χ%<χd, m

=Π«>+Π«>, say.

Σ
SrWΛί

ds\ k™{da)Tl%f(x™ά)X(x™a<xdίgx™)
0 J[0,l) J

Jo J[o,i)

By Lemma 6. 2, we have I<i>=I<2> and

ll? = Ef[T?lτvf(xd)\ x%=xd, ί^τ ω ].

Moreover, since k( 1\da)=k( 2\da) by Lemma 6. 5, we have

Πf=£•«[" f' ^ 5 f ψ\dd) TflJ{xψd)X{xfa < xd< xlι))\
LJo J[o,i) J

Thus,

=Ef[T[12vωf(xd)-Tl22τωf(χd); x%=xd, τ^^

Jo J[o,i)

and

o Jco,i)
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for t^tr

y where

Hence, At>^At>P%Xτω^t'). Now, taking t'>0 such that P$(τω^t')<l, we have
Λ ' = 0 , and hence T^f= Tff for any t^f. Since both {T?} and {T<2)} are semi-
groups and t' depends only on d, we have T^ = Tf) for all t>0, and this implies

The proof of Theorem 6.1 is completed by Lemma 6. 5 and Lemma 6. 6.

§7. Generator of the cascade semigroup.

Let {71} be a given cascade semigroup and A0 the infinitesimal generator of
its underlying process (xt, P%). Then, by Proposition 3.1, C:[0, l]a£)(A0) (the
domain of A0), and for /eC^O, 1],

A"f{x) = - mxf\x) + C kidaXAxd) -f(x%
Jco.i)

where m is a nonnegative constant and &(<##) is a measure on [0,1) such that

k(da)=[ Π{dμ)

with the branching measure Π(dμ) (see (4.15)).

This section is devoted to the infinitesimal generator of the cascade semi-

group {Tt}.

LEMMA 7.1. P%(τd^f)=0(t) as t j 0.

Proof. The formula (3.16) gives

)] = \ k{da)f{a)
( 1 0 τ J[O,1)

for any feO[0,1] such that / ( l )=/ ' ( l )=0. Take a sequence {/„} in σ[0,1] such
that /»( l )=/« l )=0 and

Xx A1'

then we have

l i ^ ? P ( ) ] ^ Hm^-S tΛfe)] = ( k{da)fn{a)
ί40 ^ tlo ί J[o,θ
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for all n. Hence, by letting n—>oo,

^ [ k(da)X(a)= [ k(da)<+oo.
4|0 t J[0,l) J[O,<Z]

Since E\[X{xt)\=Pl{xt^d)=P%{τa%t) for xeS, we have the result.

LEMMA 7.2. For f€C?Π£)(A
0
), ((Ttf)\s-f)/t converges weakly to Bf in

C[0,1], where

(7. 1) Bf(x) = A°f(x)+ [ Π(dμXf(χ.μ)-f(xM(μ))).

/. Suppose /€CJn^)(A°), take rf' such that d<d'<l, and put τ°d/=τ/.
Then, by Theorem 5.1,

:); t<τ']+E%[Tt-τ.f(xd'δxd,); xt,=xd', τ'^fl

S J Γ ds [ Π(dμ)X(xsM(μ) < xd' < x.) Tt-J(xs • μ)\.
LJo JMi—{Si) J

Moreover, we have

T°tf(x)=E%[f(xt); t<τf]+E°x[Ti^f{xvt); mτ'}

— P°lf(τΛ' t<?τfλ A- P° ί TQ ,f('rrl/λt r . — τήf τf'<Cf\
—~ Lit χ\_J \Jjt)y v ^ ^ c J \^ LLi x |_ X ^—X'JSJJU) Jy \ljχ'—JϋUt , t —̂= fr j

+ £sJTέfef k{dd)X{x,a<xdf <xs) ΓJ_,/(ar,α)l,
LJo Jco.i) J

since, in the last term,

=E%\ Σ Tl-sf{xs)

k(da)TUsf(xsa)X(xsa<xd'^xs)]
Jo

by the formula (3.17). Hence, we have

Ttf{xδx)-f{x) Ttf{x)-Ax)

where

and

1= jE%^ds^Π(dμ)X(xsM(μ)<xdf<Xs)(f(Xsψ)-f(XsM(μ))) I
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ll=^-E%[Tt-τff{xdfδxdί)-TUΆxdf)) xr,=xd', τ'm

+ j £°JT ds[τi{dμ)X{xsM(μ)<xd'<xs)

X {(Tt-Sf(xs-μ)- f(xs•/.))-(Tlsf(xsM(μ))-f(xMμ))

Since f(x-μ)=f(xM(μ)) if M(μ)^d, and since

X(χsM{μ)<xd<xd'<xs)=X\M(μ)<-pAx(xsM(μ)<xd<xdf'

we have

lim 1= \im^E%\[ds[π(dμ)x(M(μ)< ^
no no t LJo J \ a

X X(xsM(μ) <xd< xd' < xs) (f(xs μ) -f{xsM(μ)))\

where the convergence is easily seen to be weak in C[0,1]. By the formula (5. 5),
we have

sup

and hence, by Lemma 7.1 and the strong continuity of Tt and T°t, II is shown to
converge weakly to zero when t tends to zero. Finally, the proof is completed by
the weak convergence of (T°tf-f)/t to A°f for fe£)(A°).

LEMMA 7. 3. Let A and <D(A) be the infinitesimal generator and its domain
of {Tt}. If /€C*n«0O4°), then i*S)(A) and

(7.2)
Σ

for μ=Σi Xiδx^Mu and Af(β)=0.

Proof. Assume f€C%C)W(A0). For μ=Σ Xidx^Mu we pick up xjs such that
Xi>(l—d)/d and rewrite them as xi,X2, ',xn, where n^kdj{l—d) is obvious.
Since (lί/)|*€C$,
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Ttf(μ)-f(μ)= Γ

= ft Ttf(xtdXi)- f[f(xi)

. 7 = 1 k=ι+l

if n^2, and hence, by Lemma 7. 2,

lim Γ

ί 4.0

=0

if n=l

if Λ=0,

or

where the sum in the right-hand side is taken over all xt in μ=Σ ^Aέ because
Bf(xi)=0 if Xi^(l-d)/d. Since

\Ttf(μ)-f(μ)\=

\-d
\\(Ttf)\s-f\l

we have by Lemma 7. 2 the boundedness of (Ttf-f)lt as / i 0. Moreover, since

is continuous in μ<=Mi because Bf/feC0, (Ttf-f)/t converges weakly, and hence
(see Dynkin [1]) and

By putting μ=xδx in the above, we have Af(xδχ)=Bf(x), and this completes the
proof since Af(0)=0 is obvious.

By Lemma 7. 2 and Lemma 7. 3,
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(7. 3) Af(xδx) = A°f(x)+[ Π(dμ)(f{χ.μ)-f{xM{μ)))
JMih)

for f€Cfng(A»). In addition, if /eC^O, 1], A°f(χ) is given by the formula (3.16),
and hence we have the formula:

(7.4) Af(xδa)=-mxf\x) + ̂  _^ Π{dμ){f{x μ)-f{x))

for/eC?n (?[(>, 1].
Since fsg){A) for fsCfΓ\g)(A°), we have

(7.5)

in the strong sense of derivative. Therefore, ut{x)=(Ttf)\s{x) satisfies the
equation:

(7.6)

LEMMA 7. 4. ^^(Γί/JUeCf nC^O, 1] ι//cCSfnC^O, 1].

Proof. Since

Wt(a?) = Ttf(xδχ) = Ttθxf(δi) = £i[^*/l[iMt)]

= ^ I [ « P ( 5 ^ log/(*2/)/W)],

^ί€Cf is clear and that #*(#) is continuously differentiate in x follows from the
expression:

Let D be the linear hull of all / ' s such that /sCfnCHO, 1], then Lemma 7. 4
implies that D is Γrinvariant Since Z> is obviously dense in C(Λ#i), Watanabe's
lemma (see [14]) assures that D is a core of the closed operator A.

Let us complete the above arguments by the statement:

THEOREM 7.1. The infinitesimal generator A of a cascade semigroup {Tt}
has a core D=X{f; feCfnOlO, 1]}, and if feCf nC?[0,1], then

for μ=Σi XiδxfiMu where
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Af{xδx) = - mxf\x) + \ Π(dμ)(f(x μ) -/(#)),

and -4/(0)=0.
#y putting ut=(Ttf)\s, /eCfnC^O, 1] ί»#/fe5 ^ e ^ n C ^ O , 1] α«rf m addition

ut{x) is a solution of the nonlinear equation:

dut(χ) dut(x) ,
v =-mx κ +

W OX

U0+(x)=f(x).

\ Π(dμ)(ut{x'μ)-ut{x)),

REMARK. Theorem 5.2 can be immediately seen from the first half of
Theorem 7.1.

§ 8. Construction of the cascade semigroup.

Let {(xt, P%)9 Π(dμ)} be any pair defined in the beginning of § 6 which satisfies
(6. 1), (6. 2), and (6. 3). Then, all of this section are intended to construct the
cascade semigroup {Tt} with (xt, P%) and Π(dμ) as its underlying process and
branching measure.

In view of Theorem 6.1, the problem is reduced to solving the system of
fundamental (S^)-equations (2/3<J<l):

ut(χ\ f)=Sd(x,t; f,u)

(Sd) ==E°x[f(xt); t<τd]+E%[ut-Td(xd; / ) ; xrd=xd, τd^t]

Mι-{h)

for all /eCJ, and to construction of the cascade semigroup {Tt} such that ut(x; f)
= Ttf(xδx). This problem will be answered in Theorem 8.1 at the end of this
section. But for this we need many lemmas.

To begin with, it should be remarked that the process (xt, P%) corresponds to
a nondecreasing additive process (yt, Pΐ) by the transformation yt=— log xt whose
Laplace transform has the form exp(—tψ(ά))f where

ψ(μ)=:ma+[ (l-e~au)l(du) for α>0
JCO.oo]

and

k(da).l{du)Λ
J {α; -log a€du]
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LEMMA 8.1. (i) P%{τd>0)=l,

(ii) E°ax[f(xt)]=E%[f(axt)] for /€J?[0,1],

(iii) P%(xt is non-increasing in t^0) = l, and

(iv) P%(τd^t) = P%(xτd=xd, τd^t)+E%\[Lds[ k(da)l(xsa<xd<xs)\.
LJo J[o,i) J

Proof, (i) is obvious by the right continuity of the sample path, and (ii) and
(iii) are seen from the above remark. Finally, (iv) is shown by the formula (6. 5)
as follows:

=P%(xτd<xd,

= E°S[TdAtds[ k(da)X(xsa<xd^xs)]=E%\[ ds[ k{da)X(xsa<xd<xs)\.
LJo Jco.i) J LJo Jco.i) J

By Lemma 8.1 (iv), the (Sd)-equation has always a solution ut = l for f~l.
The independence of P%(τd^t) on x is seen from Lemma 8. 1 (ii) and the defini-
tion of τd. For simplicity, we denote τ°d by τd or τ in this section.

For fsB% we define {un

t(x)\ n^O} by

(8.1)
[u?+\x)=Sd(x, t; f, un) for ^ ^ 0 .

LEMMA 8.2. 0 ^ ^ ? + 1 ^ ^ ^ l for all n^O, and the limit uf(x; f)~uf(x)
= \imn-*oo u"(x) is a solution of the (Sd)-equation such that ufzB*.

Proof. The first half of the lemma is easily shown by induction. Since the
process (xt) is nonincreasing, it can be proved un

t^Bf for all n^O, and hence
Since

Σ Xiδxλ^ Π uf(x%)
Xl-d^/d I xι>a-dVd

is a product of finite number (^d/(l — d)) of factors for any v = Σ xzdXi£Mu uf is
shown to satisfy the (Sd)-equation by letting n—>oo in (8.1).

By Lemma 8.1 (i), there is a constant t(d)>0 for each d (2/3<d<l) such
that (dl(l-d))P%(τd^t{d))<l.

LEMMA 8. 3. The (Sd)-equation has a unique solution in B% for t^t(d) and
for f$B\. In particular, the unique solution u?( ; f) is in C% for t^t{d) and for
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Proof. We first remark the following. Since the number of j's such that
Xi>(l—d)jd is less than d/(l—d) for any μ = Σ ι tfA^eMi, we have

\f(μ)~U(μ)\ = Π Λ * 0 - Π
d

for /, g€B$, and hence

Wf-oUs

Now, let ut and flt be two solutions in B% of the (Sd)-equation for
Then,

\ut(x)-vt{x)\^E%[\ut-τ(xd)-Vt-τ(xd)\) xτ=xd, τ^t]

+ E%\[ds[ Π(dμ)χ(xsM(μ)<xd<Xs)\ύt-s(Xs-μ)-Vt-s(Xs'μ)\\
LJo JMi-ih) J

Jo Jjifi-{ίiϊ

where r = τ ώ . Therefore, by putting A=supίsί<:<o||#ί--flί||, we have

Ί—jAE%\ \ ds\ k(da)X(xsa<xd<xs)
•L—a LJo Jco.i) J

and this implies A=0, i.e. ut=vt for t^t{d). Thus, the uniqueness assertion has
been proved.

Now, we shall prove un

tzC% for all n if /eCJ. In fact, since

+ £ ? Γ Γ ^ Π(dμ)χ(xsM(μ)<d<xs)ύts{xxs>μ)\
LJo Jjfi-{«i} J

and ύΐ-s{xxS'μ) is continuous in x if ^?eCJ, «?+1(a?) is continuous in x and ^?+ 1>0,
and hence ^?+1€CJ if ^?€C| because un

t

+ιsB% Thus, we see u^C% for all n by
induction.

Since
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+ E%\[ds[ Π(dμ)χ(xsM(μ)<xd<xs)\ύts(Xs'μ)-Uΐ-s\xS'μ)\]
LJo JMi-{Sύ J

for t^t(d), where Λn-i=s\xpίύK^\\uf-uf-% we have

Thus, Σn An is convergent and it follows that un

t converges uniformly in
x as n—>oo for t^t(d), and hence uf is a continuous function for t^t(d) if
/eCJ. Moreover, since ^?e£f and uf(x)^E%[f(xt); t<τ]>0 for ^ί(<i) because
P%(τ>t(d))>0, we have »f eCf for /^ί(rf) and /€CJ.

LEMMA 8. 4. //* «t is a solution in B% of {Sa)-equation for fsB%, then ut is
also a solution of {Sd>)-equation for f and t^kt(d), where df is any number such
that d<df<\.

Proof. Put τd=r, rώ/=r', and

pit, x, d')=Ut(x)—Sd'(x, t; /, u).

Moreover, if we put

p= sup \p(t,x,d%
O ^ ί ^ t ( d ) 0 < ^ l

to show jθ=0 is to verify the lemma.
Now, since ut is a solution of (So)-equation, we put

Ut(x)=Sd(x, t; /, u)

=E%[f(xt); t<τ]+E%[ut-r(xd); xτ=xd, τ^

=1+11+111.

l=E%[f(xt); t<τf]+E°x[f(xt)\ τ'&, t<τ]

= I i + I 2 , say.

Since τ\w)<τ(w) in the second term I2, it holds τ(w) = τ'(w)+τp(wt) where p(w)
=xdlxτ>(w)^d, and we have
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It=E%[Eίτ.[f(xr);
p]

p=xd/xr'

lI=E%[ut-τ(xd); xt=xd, r=r'gf]

+E%[ut-τ(xd); xτ=xd} τ'<τ^t]

=Πi+Πa, say.

ll2=E%[E%τ,[Ur-rp(xd); xτp=xd, τp^ ] r t r
p—xd/xτ

f

=III 1 +IΠ 2 , say.

L V LJo J Jr=t-r' J

Hence,

I2+Π2+IΠ2

=E%\ \Ey[f(χr); r<τp]+Ey[ur-τp(yp); χτp=yp, τp^r]

B r r - 1 1 1

0 J JJr=ί-τ / J
p=xd/xτ'

Moreover,

ΠIi - E%\ Γ ds [ Π(dμ)X(xsM(μ) < xdf < xs)ύt-s(xs μ)\

= -E%\\ ds\Π(dμ)X(xd^xsM(μ)<xd'<Xs)ύt-s(xs-μ)

= -E%\\ ds\Π(dμ)X(xd^xsM(μ)<xd'<xs)ut-s(xsM(μ))

ds\k(da)X(xd^xsa<xd'<xs)ut-s(%sά)

0 J J
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= -E%[Ut-τ>M; τ'^t, τ'<τ]

+E%[ut-r>(xd')) τ'<τ, τ'^t, xτ,=xd']

Therefore,

ρ(t,x,d') = E%[ut-Λxτ>)-p(jt-τ', Xr>, zdM; τ'^t, τ'

-E%[ut-T,(xT,); τ'^t, τ'<τ\

+E%[ut-τ>(xd'); τ'<τ, τf^t, xτ, = xd']

-E%[ut-τ>(xd'); xτ>=xdf, τ'^t]

= -E%[p(t-τ', xτ,y xdlxτ,)\ τ'^t, r ; < r ] ,

and if t^t(d),

Applying this inequality to the above equality, we have for t^

\ρ(t,x,d')\^E%[pP%τ,(τp^r, τv<τ)r=t-τ> τ'^t, τf

p=xd/xτ'

p=xd/xT'

τ^t, τf<τ)

and hence

Since P%(τ^t(d))<l, we have ^=0.

LEMMA 8. 5. Let ut(x; f) be a solution in B% of the {Sa)-equation for
If a positive number r is such that the {S'd)-equation for any f^B% has always a
unique solution in B% for t^r, then it holds

for t^r and s^t(d).

Proof. Since ut(x)=ut(x; f) is a solution of the (Sd)-equation, we have
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ut+s{x)=Sd(x, t+s; /, u)

=E°x[f(xt+s); t+s<τ]+E%[ut+s-τ(xd); xτ=xd,

=1+11+111,

where τ=τd- Using a Markov property at time t, we develop the terms in the
right-hand side as follows.

ϊ=E%[E%t[f(xs); s<τp]p=xd/Xt; t<τ].

ll=E%[uUs-T(xd); xτ=xd, τ^t]

+E%[ut+s-τ(%dy, xτ = xd, t<τ^t+s]

=Πi+Π 2 , say.

U2=E%[E%t[us-Tp(xdyy xτp=xd, τp^s]p=xd/xt; t<τ\.

, say.

=E%\ E%A\Sdu\Π(dμ)X(xuM(μ)<xd<xu)ύs-u(xu μ) t<τ .

Thus,
i+iis+in.

; xTp=yp, rp^s

p=xd/xt

_ t<τ]
d/

= E%[us{xt)\ t<τ]

for s^t(d), where we applied Lemma 8. 4 because p=xd\xt^d. Therefore, for

(xt); t<τ]+E%[ut+s-r(xd); xτ=xd, τ^t]

+ E°J [' du[π(dμ)X(xuM(μ) <xd<xu)ύt+s-u(xu μ)ϊ
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When we fix fsBt and s^t(d) in the above equation and regard ut+s{x) as a
function of variables t and x, we have

ut+s{x\ f)=ut+s(χ)=Ut(x) us(-; /))

for t^r by the assumption of the lemma.

LEMMA 8. 6. (i) The (Sd)-equation for fsB* has always a unique solution
ut{x\ f) in B% for all t^0f and (ii) the solution satisfies the iteration property

(8.2) uM{x\ f)=ut(χ; «,(•;/))

for all sy mθ. Moreover, (iii) if f$C% then «*(•; /)eC$ also for all mθ.

Proof, (i) Let ut{x\ f) and vt(x; f) be two solutions in B% of the (Sd)-
equation for f£B% (such a solution exists by Lemma 8. 2). Then, by Lemma 8. 3
and Lemma 8. 5,

and

vt+s(χ; f)=vt(χ; Vs(-; /))

for s^t{d) and t^kt{d). However, since the right-hand sides of the above equalities
are the same by Lemma 8. 3, we have ut(x; f)=vt(x; f) for t^2t(d). Thus, repeat-
ing the same argument, we have ut(x; f)=vt(x; f) for all ^ 0 because t(d)>0.

(ii) By Lemma 8. 5 and (i) above, (8.2) holds for s^t(d) and any ί^O.
Therefore, if 5, u^tid) and ί^O, then

ut+s+u(χ; f)=

which shows (8. 2) for s^2t(d) and ^^0. Repeating again the same argument,
we have (8. 2) for all 5, ί^O.

(iii) If /€CJ, then ut( ; f)=uf(-; f)eC% for /^/(J) by Lemma 8.3. Using
the iteration property (8.2) for t,s^t(d), we have ««(•;/)€CJ for t^2t(d), and
hence by applying the result to (8.2) again and again, we have w£( ; /)eC^ for
all

LEMMA 8. 7. If fsB$ and d<df<\, then

(8. 3) «?(#; f)=uf'(x; f) for all mθ.

Proof First, note that B%<zB% if d<d / <l. By Lemma 8.4, uf(x;f) satisfies
the (SdO-equation for / when t^t(d), and hence, by the uniqueness property of
Lemma 8. 6 (i), we have (8. 3) for t^t(d) and any feBξ. Therefore, using the
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iteration property (8. 2) for s, t^t(d),

«?+.(*; f)=uf(x; «?(•; /))=«?(*; «?'(.; /))

=uf\χ; uίX ; f))=u?;s(x; /) ,

which shows (8. 3) for t^2t(d). Thus, the equality (8. 3) for all t^O follows from
the same procedure.

The following lemma was first given by Ikeda, Nagasawa, and Watanabe [5],
however for later use, we need some more detailed statement.

LEMMA 8.8. For any positive integer n and 0<plfp2, ~-,pn<°°> let
QPi(i=l, 2, --,n) be a given finite Borel measure on MPi. Theny there is a unique
finite Borel measure QPl+...+Pn on MPl+...+Pn such that

(8. 4) \ f(μ)QPl+...+Pn(du) = Π \ f(μ)QPi(dμ)
<JMPί+...+ Pn t=l JMPi

for all feCf. Moreover, if we write

Qv1^.+Vn = QPl®Qv2®' '®Qpn= Π
1 1

then

and

(8.5)

where \\QV\\ means the total mass of a measure Qp.

Proof Let us consider the case n—2. We show the existence of the measure
QPl+P2 such that

J F(ω)QPl+P2(dω) = J Qp^rf/i) J Qp^di^Fiμ + v)

for all FeC(MPl+P2) (the uniqueness of such QP l + ί ? 2 is immediate from Proposition
1. 2). However, the existence is obvious from the fact that the right-hand side of
the above equality is a continuous linear functional of FGC(MPI+P2).

The lemma can be shown similarly for the case n^3 and the second half of
the lemma is obvious.

LEMMA 8. 9. For {un

t{x\ / ) ; n^O} defined by (8.1), there exists a sequence of
probability measures Q%(t, x, dv) on Mi such that Q&(tf x} Mx) = l,
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(8. 6) «?(*; f) = [ f(v)Q5(t, x, dv)
JMx

for all f€C%, and Qd(t, x, E) is measurable in (t, x) for E£<Bλ fixed.

Proof. For n=0, take Q°d(t,x,dv)=δm(dv) the unit mass concentrated at
OeiJfi. Thus, the proof is done by induction as follows. Put uf(x; f)=uf(x) and
assume the statement of the lemma for n. Then, we put

- μ)\

=I+Π+ffl,

where τ=τ<ι. By putting

Σ%\t, x, dv) = E%[δ[Xtδχt]{dv)) t<τ]

for the first term I, we have

for all /€CJ, where Σf(t, x, dv) is a measure in dv for fixed (t, x) satisfying
Σ$\t, x, M1 — Mx)=0 and is measurable in (t, x) for dv fixed. For the second term
II, since

Π = £i [J f(v)Qna(t-τ, xT, dv); xτ=xd, z

for f^C%, we have, by putting

Σf(t, xy dv) = E%[Qn

d{t-τ, xτ, dv); xτ=xd, τ^t],

1 1 = [

for fsCξ, where Σf is also a measure with desired property. Finally, for the
last term III, let us first define Qa(t, φa(μ), dv) by

Qd(t, ψd(μ), dv)=Qn

d(t, xu dv)® ~®Qn

d(t, xm, dv)

for φd(μ) = Σ?~ι χiδχi Then, Qd(t, φa(μ), dv) is a probability measure on Mi for
{t>ψd{μ)) fixed, satisfying Qlit, ψa{μ), MιlμU)=1 and is measurable in (t, μ) for dv
fixed. It follows from the assumption that, if
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Wμ)= Π «?(a?0= Π
xi>(l-d )/d xiXi-d

/WSft ψa{μ\ dv\

where μ=Σ XiδXί€Mlf and hence

ds\Π(dμ)X(xsM(μ)<ixd<C.Xs)\ fMQ^it—s, ψd(xs μ), dv) .

Thus, by putting

Σf(t, x} dv)=E%[[tds[π(dμ)χ(xsM(μ)<xd<xs)Qn

d(t-s, φd(x,>μ), dv)\

we have

111= ( f(v)Σf(t,x,dv)

for fsC% where Σf is a measure with the desired property.
Therefore, the sum

Qn

d

+% x} dv)=Σi\t, x, dv)+Σf(t, xf dv)+Σf(t, x, dv)

is a measure in dv for fixed (t, x) satisfying Ql+1(ty x, M1 — Mx)=0 and is meas-
urable in (ί, x) for fixed J^, and it satisfies

for all /€CJ. Moreover, Qd
+1(t, x, Mx) = l, since u?+1(x; 1)=1.

LEMMA 8.10. Let ut{x\ f) be the solution of the (Sd)-equation for
Then, there exists a probability measure Qd(tf μ, dv) on Mi for any μ£Mi such that

(8.7) «ίΓ/)(Aύ = $ fMQd(t,μ,dv)

for all fcCt

Proof By Lemma 8. 9 and the weak*-compactness of a set of probability
measures on Mu there exists a probability measure Qd(t, x, dv) such that

ut(x;f)=[ f(v)Qd(t,x,dv)

for all /eCJ. Moreover, the existence of Qd(t, μ} dv) for any μeMi and (8.7)
follow from Lemma 8. 8.
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LEMMA 8.11. (i) There exists a unique probability measure Qd(t, μ, dv) on
(Mi, φi\<Bt)) for t^O and μzMx such that

for all /€Cί, and (ii), if d<d'<l,

Qd>(t, μ, dv)\φ-i($d^ = Qd(t, μ, dv).

Proof (i) Since / is measurable with respect to <p2l(*Bi) for /eCJ (Lemma
1. 4 (iv)), we can take Qd(t, μ, dv)=Qd(t} μ, dv)\φ-\B^ in (8. 7) instead of Qd(t, μ, dv).
The uniqueness of such a measure is immediate from Lemma 6. 4.

(ii) From Lemma 8. 7, it follows that

fMQάt, μ, dv) = [ f(v)Qd,(t, μ, dv)

for all / G C J (CCJ0> a n α^ hence, by Lemma 6. 4,

Qd,(t, μ, dv)\ψli(cBd) = Qd(ty μ, dv).

LEMMA 8.12. There exists a unique probability measure P(t, μ} dv) on (Mly

for ^ 0 and μ$M\ which satisfies

(8.8) «ί

for all /€C0*.

Proof It follows from Lemma 8.11 and Lemma 1. 5 that there exists a
unique probability measure P(t, μ} dv) on (Mi, Bi) for fixed £^0 and μsMλ such
that P(t, μ, dv)\φ-i(£d)=Qd(t, μ, dv). Moreover, the equality (8.8) is obvious for
/€Ud C%—Cf from Lemma 8.11 and the construction of P(t, μ, dv).

LEMMA 8.13. Define a family of operators {Tt) t^0\ by

(8.9) ΆF(μ)=[ F(v)P(t,μ,dv),

then Tt is a nonnegative linear operator on C(Mi) such that 7)1 = 1 and ||7ί|| = l,
and T0=I (identity).

Proof Since Tί/€C(Mi) for all fsCf by Lemma 8.12 and Lemma 8. 6 (iii),
it follows from Proposition 1. 2 that TtF£C{Mλ) for all FeC(Mi). The remainders
of the lemma are obvious.

LEMMA 8.14. For ftC* and t^O,

(8. 10) Ttf(μ + v)=Ttf(μ)'Ttf(v)
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for μ, vsMi such that μΛ-v^Mi also.

Proof. By Lemma 8.12, we have

. Tt/(v).

LEMMA 8.15. For FsC(Mi) and t, s^O,

(8.11) Tt+sF=TtTsF

Proof. It is enough to show (8.11) for functions F=f, feCf. When
i, we have

=ut+s(χ; f)=ut(χ; «,(•; /))

= Ttu£?fXχδx)= TtTsf(xδx)

by the iteration property (8.2). Therefore, for any μ=Σ XiδXi€Mi, since

Tt+Sf(μ)= lim Tt+Sf( Σ Xiδ*
sjo \χi>t

and, by Lemma 8.14,

, ) = Π T t + s l Π
Xi>e I Xi>e Xi>ε

\Xi>ε I \xi>e

we have

Tusf(μ)= lim TtTsfl Σ xrfx) =
ε i 0 \Xi>ε /

LEMMA 8.16. For FeC(Mi) and for

(8.12) \imTtF(μ)=F(μ).
tio

Proof Let /sCJ. Since ut(x; f)=Ttf(χδx) is a solution of the (Sd)-equation
for /, we put
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fa f)=E%[f(xt); t<τ]+E%[ut-r(xd; /) ; xr=xd, τgfl

Jo Miih

=I+H+IΠ,

where τ—τ^ By the right continuity of xt, we have

W(#) as f |0 ,

and

II+ΠI^Pi(r^/)->0 as / |

Hence,

ut(χ; f)—*f(χ) as ^ 10.

Therefore, for any μ=Σ XiδxfiMu noting ut(-;

Tcf(μ) = U*fa

= Π utfrtfh* Π
a?»>(l-d)/d a;t>(l-d

as

since the number of i's such that Xi>{l—d)jd is less than d/Q—d). Thus, we
have

lim Ttf(μ)=f(μ)
tio

for all /€C? and ^eilfi. Moreover, since Tt is a bounded linear operator, we have
(8.12) for all FzC{Mλ).

LEMMA 8.17. For feCf and asS,

(8.13)

Proof. Let /€CJ and put rd=r.

/; / ) ; xτ=axd, τ^

te^
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by the property (ii) of Lemma 8.1. Therefore,

); t<τ]+E%[θaUt-τ( ; f)(xd)\ Xτ = xd, T^t

^

and hence θaut('] f)(x) is a solution of the (S<*)-equation for θafsC% such that
θaut('\ f)$C%. By the uniqueness of the solution, we have

θaUt{'\ f)(x) = Ut(x; θaf),

or

ut(ax; f)Ξ=ut(χ; θaf).

Hence,

Ttf(aδa)=ut(a; / )=« t ( l ; θaf)

The family {Tt; t^O} denned by (8. 9) is a semigroup on C(Mi) and satisfies
(8.12) and T0=I, so that it is seen to be strongly continuous in t^O (see, for
example, Yosida [17]). Moreover, by Lemmas 8.14 and 8.17, {Tt} is a cascade
semigroup (Definition 2.1).

Now, we have arrived at the following theorem.

THEOREM 8.1. Given a nonnegative constant m and a Borel measure Π(dμ)
on Mi — {δι} which satisfies

Let (xt, P°x) be a right continuous strong Markov process on [0,1] generated by A0:
3){A0)z>σ[091] and, for /eC^O, 1],

A°Ax)= -mx^f- + [ Π(dμ)(f(xM(μ))-f(x)).
ax JMI-{SI)

Then, there exists a cascade semigroup {Tt; t^O} such that ut(x; f)=Ttf(xδx) is a
solution of the following non-linear integral equation for f$C* (2/3<<i<l):

ut{x\ f)=E%[f(xt); t<τd]+E%[ut-rd(ixd; /);. xTd=xd, Td^t]

[tds[ Π(dμ)X(xsM(μ)<xd<Xs) uU^f) (Xs μ)\
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Moreover', the cascade semigroup {Tt} has (xt, P%) as its underlying process and
Π(dμ) as its branching measure.

The last part of the theorem is due to Theorem 6. 1.

CONCLUDING REMARK. Let (m, 77) be a pair of two quantities m and 77 such

that m is a nonnegative constant and 77 is a Borel measure on M1~{δ1} satisfying

(4 16). Then, the preceding theorems 3.1, 4.1, 5.1, 5. 2, 6.1, and 8.1 make it

clear the fact that a cascade semigroup is completely characterized by its underly-

ing process and branching measure, or in other words, (m, 77) via the system of

fundamental (βd)-equations (2/3<J<l).
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