DISTRIBUTION AND CRITICAL CURVES IN A RIEMANNIAN MANIFOLD

By Yosio Mutō

Let \mathcal{D} be a C^{∞} distribution in a C^{∞} Riemannian manifold M. In the present paper a curve of M where every tangent vector lies in \mathcal{D} is called a \mathcal{D} -curve. Let P and Q be two points of M such that there exist \mathcal{D} -curves joining P and Q. We call a \mathcal{D} -curve C a critical \mathcal{D} -curve with the fixed end points P, Q if the length I of C takes a critical value in the set of \mathcal{D} -curves joining P and Q. The purpose of the present paper is to find differential equations of critical \mathcal{D} -curves when $n-m=\dim \mathcal{D}$ satisfies n<2(n-m), where $n=\dim M$, and to study properties of such critical \mathcal{D} -curves in some special cases.

$\S 1$. The differential equations of a critical \mathcal{D} -curve.

Let M be an n-dimensional Riemannian manifold and \mathcal{D} (or \mathcal{D}^{n-m}) an (n-m)-dimensional distribution given locally by n-m linearly independent C^{∞} vector fields $X(\lambda=m+1,\cdots,n)$. Their components with respect to a local coordinate system will be denoted by X^h . The distribution \mathcal{D} will also be represented by m linearly

independent covector fields $\varphi^{\alpha}(\alpha=1,\,\cdots,\,m)$ whose components φ^{α}_i satisfy

$$\varphi_i X^i = 0.$$

A \mathcal{D} -curve C is by definition a curve $x^h = x^h(t)$ such that

$$(1. 1) \qquad \qquad {}^{\alpha}\varphi_i\frac{dx^i}{dt} = 0$$

holds throughout the curve.

We assume that 2m covectors

$$(1. 2) \qquad \qquad \stackrel{1}{\varphi_i}, \dots, \stackrel{m}{\varphi_i}, \stackrel{1}{\psi_i}, \dots, \stackrel{m}{\varphi_i}$$

Received November 5, 1970.

¹⁾ We let the indices h, i, j, \dots run over the range $\{1, \dots, n\}$, $\alpha, \beta, \gamma, \dots$ over the range $\{1, \dots, m\}$ and $\kappa, \lambda, \mu, \dots$ over the range $\{m+1, \dots, n\}$. The summation convention is used for all such indices.

364 YOSIO MUTŌ

are linearly independent at every point of C, where $\overset{\alpha}{\psi}_i$ are defined by

(1. 3)
$$\dot{\phi}_i = (\partial_j \varphi_i - \partial_i \varphi_j) \frac{dx^j}{dt}.$$

Let P and Q be the end points of C and the parameter t be such that t=0 and t=1 correspond respectively to P and Q. Then the length l of C is given by the integral

(1.4)
$$J(C) = \int_{C} ds = \int_{0}^{1} \left[g_{ji} \frac{dx^{j}}{dt} \frac{dx^{i}}{dt} \right]^{1/2} dt.$$

Let us consider an infinitesimal deformation of the curve C with the points P and Q fixed assuming that any curve obtained is also a \mathcal{D} -curve. Then the vector of deformation $\xi^h(t)$ must satisfy

(1.5)
$$\xi^{j} \frac{dx^{i}}{dt} \partial_{j} \varphi_{i} + \varphi_{i} \frac{d\xi^{i}}{dt} = 0.$$

As the points P and Q are fixed, ξ^h must also satisfy

Then it is a consequence of an ordinary argument in the calculus of variations that C is a critical \mathcal{D} -curve if and only if

(1.7)
$$\int_0^1 \left[\frac{d^2x^i}{ds^2} + \left\{ \begin{matrix} i \\ k \end{matrix} \right\} \right] \frac{dx^k}{ds} \frac{dx^j}{ds} \right] g_{ih} \xi^h(s) ds = 0$$

is satisfied by every set of functions $\xi^h(t)$ satisfying (1.5) and (1.6). Notice that the arc length s is used in (1.7) as the parameter and that l is the length of C.

Now let f(t) ($\alpha=1, \dots, m$) be a set of arbitrary C^{∞} functions. Then we find that

(1.8)
$$\int_{0}^{1} \left[(f(t)\partial_{j}\varphi_{i})\xi^{j} \frac{dx^{i}}{dt} + f(t)\varphi_{i} \frac{d\xi^{i}}{dt} \right] dt = 0$$

is equivalent to (1.5). (1.8) is also equivalent to

$$\int_{0}^{1} \left[\left(\frac{d}{dt} f \right)^{\alpha} \varphi_{i} + f(t) (\partial_{j} \varphi_{i} - \partial_{i} \varphi_{j}) \frac{dx^{j}}{dt} \right] \xi^{i}(t) dt = 0$$

and again to

(1.9)
$$\int_{0}^{t} \left[\left(\frac{d}{ds} f_{\alpha} \right)_{\varphi_{i}}^{\alpha} + f(s) (\partial_{j} \varphi_{i} - \partial_{i} \varphi_{j}) \frac{dx^{j}}{ds} \right] \xi^{s}(s) ds = 0.$$

If we put

$$\overset{\alpha}{\psi}_{i} = \frac{dx^{j}}{ds} (\partial_{j} \varphi_{i}^{\alpha} - \partial_{i} \varphi_{j}),$$

we can write (1.9) in the form

(1. 10)
$$\int_0^l \left[\stackrel{\alpha}{\varphi_i}(s) \frac{d}{ds} f + f(s) \stackrel{\alpha}{\psi_i}(s) \right] \xi^i(s) ds = 0.$$

We prove in §2 the following lemma.

Lemma 1.1. In an n-dimensional Euclidean space let there be given 2m+1 C^{∞} vector functions $A_i(t)$, $\varphi_i^{\alpha}(t)$, $\varphi_i^{\alpha}(t)$ ($\alpha=1, \dots, m$) where 2m vectors

$$\varphi(t), \cdots, \varphi(t), \psi(t), \cdots, \psi(t)$$

are linearly independent at each value of t, $0 \le t \le a$. If, for every functions $\xi^i(t)$ which satisfy

(1. 11)
$$\xi^{i}(0) = \xi^{i}(a) = 0$$

and

(1. 12)
$$\int_{0}^{a} \left\{ \left(\frac{d}{dt} f \right)_{\alpha}^{\alpha} \varphi_{i}(t) + f(t) \psi_{i}(t) \right\} \xi^{i}(t) dt = 0$$

for every choice of C^{∞} functions f(t), we have

(1. 13)
$$\int_{0}^{a} A_{i}(t)\xi^{i}(t)dt = 0,$$

then there exist functions $\chi(t), \dots, \chi(t)$ such that

(1. 14)
$$A_i(t) = \left(\frac{d}{dt} \chi_{\alpha}\right)^{\alpha} \varphi_i(t) + \chi(t) \dot{\varphi}_i(t).$$

REMARK. It is easily found that (1.13) is a consequence of (1.12) and (1.14).

Applying Lemma 1.1 to the case of \mathcal{D} -curves, we easily obtain the following lemma.

Lemma 1.2. Let M be an n-dimensional Riemannian manifold equipped with an (n-m)-dimensional distribution $\mathcal D$ determined locally by m covector fields $\overset{\alpha}{\varphi_i}$. Let C be a $\mathcal D$ -curve $x^h=x^h(s), 0 \le s \le l$, such that 2m covectors

$$\overset{\alpha}{\varphi_i}, \ \frac{dx^j}{ds} (V_j \varphi_i - V_i \varphi_j) \qquad (\alpha = 1, \dots, m)$$

are linearly independent at each point of C. A necessary and sufficient condition

for the curve C to be a critical \mathcal{D} -curve with fixed end points is that there exist functions $\chi(s)$ satisfying the equations

$$(1.15) \qquad \frac{d^2x^h}{ds^2} + \left\{ \begin{array}{c} h \\ j \end{array} \right\} \frac{dx^j}{ds} \frac{dx^i}{ds} = \left[\left(\frac{d}{ds} \chi \right)^{\alpha} \varphi_i + \chi \frac{dx^j}{ds} (\overline{V}_j \varphi_i - \overline{V}_i \varphi_j) \right] g^{ih}.$$

Differentiating the equations

$$(1. 16) \qquad \qquad \overset{\alpha}{\varphi_i} \frac{dx^i}{ds} = 0$$

covariantly along the curve C, we get

$$(\overline{V_j\varphi_i})\frac{dx^j}{ds}\frac{dx^i}{ds} + \overset{\alpha}{\varphi_h}\left(\frac{d^2x^h}{ds^2} + \left\{\begin{array}{c}h\\j\\i\end{array}\right\}\frac{dx^j}{ds}\frac{dx^i}{ds}\right) = 0.$$

Then applying (1.15) we obtain

$$(1.17) \qquad \qquad \stackrel{\alpha}{\varphi_i} \stackrel{\beta}{\varphi^i} \frac{d}{ds} \chi + \frac{dx^j}{ds} \stackrel{\alpha}{\varphi^i} (V_j \varphi_i - V_i \varphi_j) \chi + \frac{dx^j}{ds} \frac{dx^i}{ds} V_j \varphi_i = 0.$$

Let us consider a system of differential equations composed of (1.15) and (1.17) in the unknown functions $x^h(s)$ and $\chi(s)$. As far as only these equations are considered, s may not be the arc length and the curve $x^h = x^h(s)$ may not be a \mathcal{D} -curve. But, if the initial condition is chosen in such a way that

$$g_{ih}\frac{dx^i}{ds}\frac{dx^h}{ds}=1, \quad \varphi_i\frac{dx^i}{ds}=0$$

hold at s=0, then we can easily see that s is the arc length of the curve $x^h=x^h(s)$ and (1.6) is satisfied by the curve.

Thus we obtain the

Theorem 1.3. Let M and \mathcal{D} be the same as those assumed in Lemma 1.2. A necessary and sufficient condition for a \mathcal{D} -curve C, for which the same is also assumed as in Lemma 1.2 and parametrized by the arc length s, to be a critical \mathcal{D} -curve with the fixed end points is that the functions $x^h(s)$ satisfy with some functions $x^h(s)$ the differential equations (1.15), (1.16) and (1.17). If a solution $x^h = x^h(s)$, $x = x^h(s)$ of the system of differential equations composed of (1.15) and (1.17) satisfies the initial condition

$$\left(g_{ih}\frac{dx^i}{ds}\frac{dx^h}{ds}\right)_0=1, \quad \left(\varphi_i\frac{dx^i}{ds}\right)_0=0$$

and the 2m covectors

$$\varphi_i$$
, $\frac{dx^j}{ds} (\nabla_j \varphi_i - \nabla_i \varphi_j)$

are linearly independent at each point $x^h(s)$ $(0 \le s \le l)$, then the curve $x^h = x^h(s)$ is a critical \mathcal{D} -curve with the fixed end points $x^h(0)$, $x^h(l)$ and s is the arc length.

§ 2. Proof of Lemma 1.1.

Let τ be any number such that $0 < \tau < \alpha$ and put

(2. 1)
$$\xi^h(t) = a^h \delta(t - \tau)$$

where a^h is a constant vector and δ is the Dirac function. Then (1.12) becomes

(2. 2)
$$\frac{d}{dt} f(\tau) \varphi_i(\tau) a^i + f(\tau) \varphi_i(\tau) a^i = 0.$$

As we can take arbitrary C^{∞} functions as f(t), we get

(2. 3)
$$\overset{\alpha}{\varphi_i(\tau)} a^i = 0, \qquad \overset{\alpha}{\psi_i(\tau)} a^i = 0$$

from (2. 2).

On the other hand we have

$$(2. 4) A_i(\tau)a^i = 0$$

from (1.13). Since any vector a^h satisfying (2.3) must satisfy (2.4) by assumption, there exist 2m numbers $\rho(\tau)$, $\sigma(\tau)$ such that

$$A_i(\tau) = \rho(\tau) \overset{\alpha}{\varphi_i}(\tau) + \sigma(\tau) \overset{\alpha}{\psi_i}(\tau).$$

Thus we obtain

(2. 5)
$$A_i(t) = \rho(t) \dot{\varphi}_i(t) + \sigma(t) \dot{\varphi}_i(t)$$

where $\rho(t)$ and $\sigma(t)$ are C^{∞} functions, for $\varphi_i(t)$ and $\varphi_i(t)$ are linearly independent.

We now proceed to find a relation between $\rho(t)$ and $\sigma(t)$.

From (1. 13) and (2. 5) we get

(2. 6)
$$\int_0^a \left[\rho(t) \varphi_i(t) \xi^i(t) + \sigma(t) \psi_i(t) \xi^i(t) \right] dt = 0.$$

Let λ be an arbitrary number, $0 < \lambda < \alpha$, and $\varepsilon > 0$ a sufficiently small number such that $[\lambda - \varepsilon, \lambda + \varepsilon] \subset (0, \alpha)$ and such that a determinant of order 2m composed of some components of the 2m covectors $\overset{\alpha}{\varphi}, \overset{\alpha}{\psi}$ does not vanish at any point of $[\lambda - \varepsilon, \lambda + \varepsilon]$. Then we can consider for example

$$\begin{vmatrix} 1 & \varphi_1(t) & \cdots & {m \choose \varphi_1(t)} & \psi_1(t) & \cdots & {m \choose \varphi_1(t)} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{2m}(t) & \cdots & \varphi_{2m}(t) & \psi_{2m}(t) & \cdots & \psi_{2m}(t) \end{vmatrix} \neq 0.$$

In this case, if we take C^{∞} functions h(t) such that

and determine $\xi^h(t)$ by

$$\left. \begin{array}{l} \xi^{2m+1}(t) = \cdots = \xi^n(t) = 0, \\ \xi^1(t) = \cdots = \xi^{2m}(t) = 0 \qquad 0 \leq t \leq \lambda - \varepsilon, \qquad \lambda + \varepsilon \leq t \leq a, \\ \\ \stackrel{\alpha}{\varphi_i(t)} \xi^i(t) = \stackrel{\alpha}{h}(t), \\ \stackrel{\alpha}{\psi_i(t)} \xi^i(t) = \frac{d}{dt} \stackrel{\alpha}{h}(t) \end{array} \right\} \lambda - \varepsilon < t < \lambda + \varepsilon,$$

then $\xi^h(t)$ satisfy $\xi^h(0) = \xi^h(a) = 0$ and (1.12). On the other hand we get from (2.6)

$$\int_0^a \left[\rho(t) \dot{h}(t) + \sigma(t) \frac{d}{dt} \dot{h}(t) \right] dt = 0,$$

and consequently,

$$\int_0^a \left\{ \rho(t) - \frac{d}{dt} \sigma(t) \right\}_1^1 h(t) dt = 0.$$

As we can take the positive valued function $\overset{1}{h}(t)$ arbitrarily, and, as we can take the number λ $(0 < \lambda < a)$ arbitrarily, we have

$$\rho(t) = \frac{d}{dt} \sigma(t).$$

Similarly we have

$$\rho(t) = \frac{d}{dt} \sigma(t).$$

Hence we get (1.14) and the lemma is proved.

§ 3. Some examples.

In §3 some examples are given. Another example which is concerned with the normal contact metric structure of S^{2n-1} is studied in §4.

1° A distribution which is orthogonal to a Killing vector field of constant magnitude.

Let X be a Killing vector field in an odd dimensional Riemannian manifold such that

$$q_{ii}X^{j}X^{i}=1$$

and such that the rank of the matrix $(\nabla_{i}X_{i})$ is n-1. X_{i} satisfies

$$(\nabla_{i}X_{i}-\nabla_{i}X_{j})X^{i}=2X^{i}\nabla_{i}X_{i}=0$$

and, since the rank of (V_jX_i) is n-1, $Y^jV_jX_i$ does not vanish if $Y^iX_i=0$ and $Y \neq 0$. Hence the covectors X_i and $Y^j(V_jX_i-V_iX_j)$ are linearly independent. Consider the (n-1)-dimensional distribution \mathcal{D} determined by the covector field X_i . Then from the above argument, for any \mathcal{D} -curve C: $x^h=x^h(s)$, the covectors

$$X_i$$
, $\frac{dx^j}{ds}(\nabla_j X_i - \nabla_i X_j)$

are linearly independent on C.

The differential equations of the a critical g-curve are

$$\frac{d^2}{ds^2}x^h + \left\{ \begin{array}{c} h \\ j \end{array} \right\} \frac{dx^j}{ds} \frac{dx^i}{ds} = \left(\frac{d}{ds} \chi \right) X^h + 2\chi \frac{dx^j}{ds} \nabla_j X^h,$$

but it is easily seen from (1.17) that χ is a constant. Hence we have

$$\frac{d^2x^h}{ds^2} + \left\{ \begin{matrix} h \\ j \end{matrix} \right\} \frac{dx^j}{ds} \frac{dx^k}{ds} = c \frac{dx^j}{ds} \nabla_j X^h.$$

2° A distribution in the Euclidean 3-space.

Let \mathcal{D} be a distribution orthogonal to a Killing vector field defined by

$$\varphi_1 = -y, \qquad \varphi_2 = x, \qquad \varphi_3 = 1.$$

Then we have

$$\frac{d^2x}{ds^2} = \frac{d\chi}{ds} (-y) - 2\chi \frac{dy}{ds},$$
$$\frac{d^2y}{ds^2} = \frac{d\chi}{ds} x + 2\chi \frac{dx}{ds},$$

$$\frac{d^2z}{ds^2} = \frac{d\chi}{ds}$$

370

for (1.15),

$$-y\frac{dx}{ds} + x\frac{dy}{ds} + \frac{dz}{ds} = 0$$

for (1.16) and

$$(x^2+y^2+1)\frac{d\chi}{ds}+2\left(x\frac{dx}{ds}+y\frac{dy}{ds}\right)\chi=0$$

for (1.17). Then we get

$$\chi = \frac{c}{x^2 + y^2 + 1}$$

and χ is not a constant in general, although there exist some critical \mathcal{D} -curves where χ is constant.

Suppose

$$a\varphi_i + b \frac{dx^j}{ds} (\partial_j \varphi_i - \partial_i \varphi_j) = 0$$

for some a and b. Then we have

$$-ay-2b\frac{dy}{ds} = 0$$
, $ax+2b\frac{dx}{ds} = 0$, $a = 0$,

and consequently

$$b=0$$
 or $\frac{dx}{ds} = \frac{dy}{ds} = 0$.

But the latter contradicts

$$\frac{dz}{ds} = y \frac{dx}{ds} - x \frac{dy}{ds}, \quad \left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2 + \left(\frac{dz}{ds}\right)^2 = 1.$$

Thus we see that

$$\varphi_i, \frac{dx^j}{ds}(\partial_j\varphi_i - \partial_i\varphi_j)$$

are linearly independent for all *9*-curves.

3° A distribution in a contact metric manifold.

A contact metric manifold M is a Riemannian manifold of odd dimension endowed with a vector field φ^h satisfying the following conditions,

(i)
$$\varphi^i \varphi_i = 1$$
 where $\varphi_i = g_{ih} \varphi^h$,

$$(ii) (V_j \varphi_i - V_i \varphi_j) \varphi^i = 0,$$

(iii)
$$\frac{1}{4} (V_j \varphi^i - V^i \varphi_j) (V_i \varphi^h - V^h \varphi_i) = -\delta_j^h + \varphi_j \varphi^h.$$

Let \mathcal{D} be a distribution which is orthogonal to the vector field φ^h . Let $x^h = x^h(s)$ be a \mathcal{D} -curve.

Suppose

$$a\varphi^h + b\frac{dx^j}{ds}(\nabla_j\varphi^h - \nabla^h\varphi_j) = 0.$$

Transvecting φ_h we get

$$a=0$$
.

Transvecting with $\nabla_h \varphi^i - \nabla^i \varphi_h$ we get

$$b\left(-\frac{dx^{i}}{ds}+\frac{dx^{j}}{ds}\varphi_{j}\varphi^{i}\right)=0.$$

But, as we have

$$\varphi_j \frac{dx^j}{ds} = 0$$

for a \mathcal{D} -curve, we get b=0. Hence

$$\varphi_i, \frac{dx^j}{ds} (\overline{V}_j \varphi_i - \overline{V}_i \varphi_j)$$

are linearly independent for all *g*-curves.

§ 4. A (2n-2)-dimensional distribution on S^{2n-1} and the critical \mathcal{D} -curves of this distribution.

In their study of normal contact metric structure Sasaki and Hatakeyama [1] showed that S^{2n-1} is an example of normal contact metric manifolds. A normal contact metric structure of S^{2n-1} induces a (2n-2)-dimensional distribution $\mathcal D$ and it is the purpose of §4 to study critical $\mathcal D$ -curves of this distribution. On the other hand Yano and Ishihara [3] showed that S^{2n-1} is a fibred space with invariant Riemannian metric with a base space M^* which is a (2n-2)-dimensional Kähler manifold of constant holomorphic sectional curvature. A $\mathcal D$ -curve is a horizontal curve with respect to this fibre structure and a critical $\mathcal D$ -curve $\mathcal C$ has a projection curve $\mathcal C^*$ on M^* . We shall study some properties of $\mathcal C^*$.

1° When we regard S^{2n-1} as a hypersphere

²⁾ See also Steenrod [2] where it is shown on page 108 that S^{2n-1} is a 1-sphere bundle over the projective space of n homogeneous complex variables.

$$(x^1)^2+(x^2)^2+\cdots+(x^{2n-1})^2+(x^{2n})^2=1$$

in a 2n-dimensional Euclidean space E^{2n} where a rectangular coordinate system (x^1, \dots, x^{2n}) is fixed, x^1, \dots, x^{2n-1} can be considered as local coordinates of S^{2n-1} in domains $x^{2n} > 0$ and $x^{2n} < 0$.

There exists on E^{2n} a complex structure induced canonically from the given rectangular coordinate system, and this complex structure and the metric of E^{2n} induce on S^{2n-1} a normal contact metric structure. The contravariant vector field φ of this structure has components

$$\varphi^1\!=\!-x^2, \quad \varphi^2\!=\!x^1, \quad \varphi^3\!=\!-x^4, \quad \varphi^4\!=\!x^3,$$
 (4. 1)
$$\cdots, \quad \varphi^{2n-1}\!=\!-x^{2n}$$

in the local coordinates $(x^{\epsilon})^{3}$. We consider again the distribution \mathcal{D} which is orthogonal to the vecor field φ .

As the metric tensor of S^{2n-1} has components

$$(4.2) g_{\mu\lambda} = \delta_{\mu\lambda} + \frac{x^{\mu}x^{\lambda}}{(x^{2n})^2}$$

in the local coordinates (x^{ϵ}) , the components φ_{μ} of the covector field of the distribution \mathcal{D} are

(4. 3)
$$\varphi_{\mu} = \varphi^{\mu} + \frac{x^{\lambda} \varphi^{\lambda}}{(x^{2n})^2} x^{\mu}.$$

hence we have

$$\varphi_{\lambda}\varphi^{\lambda}=1.$$

Let $\{\mu^{\epsilon}_{\lambda}\}_{q}$ be the Christoffel constructed from $g_{\mu\lambda}$ and let V_{μ} be the operator of covariant differentiation with respect to the Riemannian metric of S^{2n-1} . If indices a, b, c are used in the range $\{1, \dots, 2n-2\}$, 4) the components

$$\varphi_{u\lambda} = \nabla_u \varphi_{\lambda} - \nabla_{\lambda} \varphi_{u} = \partial_u \varphi_{\lambda} - \partial_{\lambda} \varphi_{u}$$

have the following values,

$$\varphi_{cb} = 0$$
 except $\varphi_{12} = \varphi_{34} = \dots = \varphi_{2n-3, 2n-2}$
= $-\varphi_{21} = -\varphi_{43} = \dots = -\varphi_{2n-2, 2n-3} = 2$,

$$A^aB^a = A^1B^1 + \dots + A^{2n-2}B^{2n-2}$$
.

³⁾ In §4 indices κ , λ , μ , \cdots run over the range {1, \cdots , 2n-1}. Summation convention is used in the usual way and also in the following way, $A^{\lambda}B^{\lambda}=A^{1}B^{1}+\cdots+A^{2n-1}B^{2n-1}$.

⁴⁾ The summation convention of the following form is also used,

$$\varphi_{c,2n-1} = -\varphi_{2n-1,c} = \frac{2x^c}{x^{2n}}$$
.

The rank of $(\varphi_{\mu\lambda})$ is 2n-2. As we have

$$\left\{ \begin{array}{c} \kappa \\ \mu \lambda \end{array} \right\}_{q} = \delta_{\mu\lambda} x^{\kappa} + \frac{x^{\mu} x^{\lambda} x^{\kappa}}{(x^{2n})^{2}} = g_{\mu\lambda} x^{\kappa},$$

the differential equation of a critical \mathcal{D} -curve is

$$\frac{d^2x^{\epsilon}}{ds^2} + x^{\epsilon} = C\varphi_{\mu}^{\epsilon} \frac{dx^{\mu}}{ds}.$$

The study of critical \mathcal{D} -curves is facilitated by the use of local coordinates y^1, \dots, y^{2n-1} such that

$$x^{1} = y^{1} \cos z + y^{2} \sin z,$$

$$x^{2} = -y^{1} \sin z + y^{2} \cos z,$$
....,
...,
...,

(4.7)
$$x^{2n-3} = y^{2n-3} \cos z + y^{2n-2} \sin z,$$

$$x^{2n-2} = -y^{2n-3} \sin z + y^{2n-2} \cos z,$$

$$x^{2n-1} = r \sin z, \qquad x^{2n} = r \cos z,$$

where $z=y^{2n-1}$ and

(4. 8)
$$r^2 = 1 - (x^1)^2 - \dots - (x^{2n-2})^2$$

$$= 1 - (y^1)^2 - \dots - (y^{2n-2})^2.$$

Notice that these coordinates are used only in the range

$$r>0, \qquad -\frac{\pi}{2} < z < \frac{\pi}{2}.$$

Let us define f_{cb} by

(4.9)
$$f_{cb}=0$$
 except $f_{12}=f_{34}=\cdots=f_{2n-3,2n-2}=-f_{21}=-f_{43}=\cdots=-f_{2n-2,2n-3}=1$.

Then the components $h_{\mu\lambda}$ of the metric tensor of S^{2n-1} in local coordinates (y^*) are

$$h_{cb} = \delta_{cb} + \frac{y^c y^b}{r^2},$$

$$(4. 10)$$

$$h_{c,2n-1} = f_{ct} y^t, \qquad h_{2n-1,2n-1} = 1.$$

374 YOSIO MUTŌ

If we define $h^{\mu\lambda}$ by

$$h_{u\lambda}h^{\lambda\kappa}=\delta^{\kappa}_{u}$$

we have

$$h^{ba} = \delta_{ba} - y^b y^a + \frac{1}{r^2} f_{bt} y^t f_{as} y^s$$
,

(4.11)

$$h^{b,2n-1} = \frac{-1}{r^2} f_{bl} y^t, \qquad h^{2n-1,2n-1} = \frac{1}{r^2}.$$

When we use the coordinate system (y^{ϵ}) , the corresponding contravariant components of the vector φ will be denoted by ψ^{ϵ} , hence

$$\phi^{\kappa} = \frac{\partial y^{\kappa}}{\partial x^{\lambda}} \varphi^{\lambda}.$$

Then we have

(4. 12)
$$\psi^a = 0, \qquad \psi^{2n-1} = -1.$$

We have for the corresponding covariant components

(4. 13)
$$\phi_b = -f_{bt}y^t, \qquad \phi_{2n-1} = -1$$

 2° Remember that ϕ^{ϵ} are the components of a Killing vector of unit length to which the distribution \mathcal{D} is orthogonal. (4.12) shows that the y^{2n-1} -curves (curves on which y^a are constant) are fibres of the fibred space S^{2n-1} . This fibred space which has been studied by Yano and Ishihara [3], has a base space M^* of dimension 2n-2 and, if we use the local coordinates (y^{ϵ}) , namely (y^a, y^{2n-1}) , in S^{2n-1} , the projection $\pi: S^{2n-1} \to M^*$ is given by $\pi: (y^a, y^{2n-1}) \to (y^a)$.

Let us introduce a metric into M^* by the standard of Yano and Ishihara. If the metric tensor of M^* is written h_{cb}^* in the coordinate system (y^a) , h_{cb}^* are obtained from

$$h_{\mu\lambda}dy^{\mu}dy^{\lambda} = h_{ch}^*dy^cdy^b$$

by putting $\psi_{\kappa}dy^{\kappa}=0$. The explicit formula is

(4. 14)
$$h_{cb}^* = \delta_{cb} + \frac{y^c y^b}{r^2} - f_{ct} y^t f_{bs} y^s.$$

The inverse (h^{ba}) of the matrix (h_{cb}^*) has the elements

(4. 15)
$$h^{ba} = \delta_{ba} - y^b y^a + \frac{1}{r^2} f_{bl} y^t f_{as} y^s.$$

The Christoffel $\{c^a_b\}^*$ is

On the other hand, if we define ϕ_{μ}^{*} by

$$\psi_{\mu}^{\kappa} = \left(\frac{\partial \psi_{\lambda}}{\partial y^{\mu}} - \frac{\partial \psi_{\mu}}{\partial y^{\lambda}}\right) h^{\lambda \kappa},$$

we can write the differential equations of a critical *9*-curve in the form

$$(4.17) \qquad \frac{d^2y^{\epsilon}}{ds^2} + \begin{Bmatrix} \kappa \\ \mu \lambda \end{Bmatrix} \frac{dy^{\mu}}{ds} \frac{dy^{\lambda}}{ds} = C\psi_{\mu}^{\kappa} \frac{dy^{\mu}}{ds}.$$

Calculating the Christoffel $\{\mu^{\kappa}_{\lambda}\}$ of $h_{\mu\lambda}$, we get from (4.17)

$$y''^{a} = \left\{ -y'^{c}y'^{c} - \frac{(y^{c}y'^{c})^{2}}{r^{2}} + 2\rho^{2} - 2C\rho \right\} y^{a}$$

$$+ \frac{2y^{c}y'^{c}}{r^{2}} (\rho - C)f_{at}y^{t} + 2(\rho - C)f_{at}y'^{t}$$

where

$$y'^a = \frac{dy^a}{ds}$$

and ρ is defined by

$$(4.19) \rho = f_{ts} y'^t y^s.$$

We can regard (4.18) as a curve C^* in M^* , the projection of a critical \mathcal{Q} -curve C. In order to find some properties of C^* we use (4.16) and write (4.18) in the form

$$y''^{a} + {a \choose c b}^{*} y'^{c} y'^{b}$$

$$= -2C \left(\rho y^{a} + \frac{1}{r^{2}} y^{c} y'^{c} f_{ai} y^{t} + f_{ai} y'^{t}\right).$$

Differentiating (4.20) covariantly along the curve \mathcal{C}^* we get after some straightforward calculation

(4. 21)
$$\frac{d}{ds} \left(y''^a + \begin{Bmatrix} a \\ c & b \end{Bmatrix}^* y'^c y'^b \right) + \begin{Bmatrix} a \\ c & b \end{Bmatrix}^* \left(y''^c + \begin{Bmatrix} c \\ t & s \end{Bmatrix}^* y'^t y'^s \right) y'^b = -4C^2 y'^a.$$

This shows that C^* is a Riemannian circle of curvature 2|C|.

A Riemannian circle is by definition a curve in a Riemannian space whose development in a tangent space is a circle. Its global properties are quite various according to the enveloping manifold. Thus, for example, we cannot even guess the period of C^* .

But, as for the function r(s) only, we can find its period.

As r is given by $y^a y^a = 1 - r^2$, we have

$$y^c y'^c = -rr'$$

(4.22)

$$y'^{c}y'^{c} + y^{c}y''^{c} = -r'r' - rr''.$$

We also get from $h_{cb}^*y'^cy'^b=1$ and (4.14)

(4. 23)
$$y'^{c}y'^{c} + r'r' = 1 + \rho^{2}.$$

On the other hand, if we substitute (4.18) into $y^c y''^c$, the second equation of (4.22) gives

$$rr'' = -r^2(1-\rho^2+2C\rho) = -r^2\{1+C^2-(\rho-C)^2\}.$$

As we assume r>0, we get

$$(4. 24) r'' = -r\{1 + C^2 - (\rho - C)^2\}.$$

We also obtain from (4.18), (4.19) and (4.22)

$$\rho' = -\frac{2(\rho - C)r'}{r}.$$

Hence we have

$$(4.25) \rho - C = \frac{k}{r^2}$$

where k is a constant. Substituting this into (4.24) we get

$$r'' = -(1+C^2)r + \frac{k^2}{r^3}$$
.

The general solution of this differential equation is

$$r^2 = C_1 + C_2 \sin(\pm 2\sqrt{1+C^2}(s-s_0))$$

where

$$k^2 = (1 + C^2)(C_1^2 - C_2^2).$$

Thus we find that r(s) has period $\pi/\sqrt{1+C^2}$ or r(s) is reduced to a constant. The only exceptional cases will occur if k=0. Then we have $\rho=C$. Such cases will be studied in the appendix.

 3° It was shown by Yano and Ishihara [3] that the base space M^* is a Kähler manifold of constant holomorphic sectional curvature.

Let us turn to the Euclidean space E^{2n} equipped with a fixed rectangular coordinate system (x^1, \dots, x^{2n}) and introduce a complex coordinate system

(4. 26)
$$Z^{1} = x^{1} + ix^{2}, \dots, Z^{n-1} = x^{2n-3} + ix^{2n-2},$$

$$Z^{0} = x^{2n-1} + ix^{2n}.$$

Then we have a complex space \mathbb{C}^n . In $\mathbb{C}^n - \{0\}$ we can regard $(\mathbb{Z}^0, \mathbb{Z}^1, \dots, \mathbb{Z}^{n-1})$ as a system of homogeneous complex coordinates of the complex projective space $\mathbb{P}^{n-1}(\mathbb{C})$. If we assume $\mathbb{Z}^0 \neq 0$, we can introduce an inhomogeneous complex coordinate system by

(4. 27)
$$z^{1} = \frac{Z^{1}}{Z^{0}}, \dots, z^{n-1} = \frac{Z^{n-1}}{Z^{0}},$$

and, if we introduce real local coordinates w^1, \dots, w^{2n-2} in $P^{n-1}(C)$ by

$$(4. 28) z1 = w1 + iw2, \dots, zn-1 = w2n-3 + iw2n-2,$$

then we obtain

If the ordinary Kähler metric of $P^{n-1}(C)$ is multiplied by a suitable constant, the corresponding metric tensor has following components g_{cb}^* in real coordinates

378

 $w^1, \dots, w^{2n-2},$

(4.30)
$$g_{cb}^* = \frac{\delta_{cb}}{1 + w^a w^a} - \frac{w^c w^b + f_{ct} w^t f_{bs} w^s}{(1 + w^a w^a)^2}$$

which will be easily proved by direct calculation.

The relation between w^1, \dots, w^{2n-2} and y^1, \dots, y^{2n-2} is obtained from (4.7) and (4.29) to be

(4.31)
$$w^a = \frac{1}{r} f_{ai} y^t, \quad w^a w^a = \frac{1}{r^2} -1.$$

Hence we can write (4.30) in the form

(4. 32)
$$q_{cb}^* = r^2 (\delta_{cb} - y^c y^b - f_{ct} y^t f_{bs} y^s).$$

That the metric tensor whose components are g_{cb}^* in local coordinates (w^a) is identical with the metric tensor whose components are h_{cb}^* in local coordinates (y^a) is immediately shown since we have

$$q_{cb}^*w'^cw'^b = h_{cb}^*y'^cy'^b$$

because of (4.14), (4.31) and (4.32).

As f_{cb} satisfies

$$\nabla_c^* f_{ba} = \left\{ \begin{array}{c} e \\ c \end{array} \right\}^* f_{ea} + \left\{ \begin{array}{c} e \\ c \end{array} \right\}^* f_{be} = 0$$

on account of (4.16), (h_{cb}^*, f_{cb}) is a Kähler structure of $P^{n-1}(C)$.

4° Let

(4. 33)
$$\alpha^{0}Z^{0} + \alpha^{1}Z^{1} + \dots + \alpha^{n-1}Z^{n-1} = 0$$

be the equation of a hyperplane of $P^{n-1}(C)$. If we use only real numbers, we can write (4.33) in the form

$$(4.34) A^a y^a = Kr, A^a f_{at} y^t = Lr$$

where r is given by (4.8). Hence, to a complex hyperplane of $P^{n-1}(C)$ corresponds a subspace M' of codimension 2 in M^* . The subspace M' determined by (4.34) will be denoted by $M'(A^a, K, L)$.

If we define functions X(s) and Y(s) by

$$X(s) = A^a y^a(s) - Kr(s),$$

(4.35)

$$Y(s) = A^a f_{at} y^t(s) - Lr(s)$$

along a curve C^* , these satisfy

$$X'' = \left\{ -(1+C^2) + \frac{k^2}{r^4} \right\} X - \frac{2kr'}{r^3} Y + \frac{2k}{r^2} Y',$$

$$Y'' = \left\{ -(1+C^2) + \frac{k^2}{r^4} \right\} Y + \frac{2kr'}{r^3} Y - \frac{2k}{r^2} X',$$

for we get

(4.36)
$$y''^a = \left\{ -(1+C^2) + \frac{k^2}{r^4} \right\} y^a - \frac{2kr'}{r^3} f_{at} y^t + \frac{2k}{r^2} f_{at} y'^t$$

from (4.18), (4.23) and (4.25). Hence we get X(s)=Y(s)=0 if X(s) and Y(s) satisfy X(0)=Y(0)=X'(0)=Y'(0)=0.

This proves the following lemma.

Lemma 4.1. Let C^* be a curve of M^* which is the projection of a critical \mathfrak{D} -curve C in S^{2n-1} . If, in the corresponding curve in $P^{n-1}(C)$, which will also be denoted by C^* , a point P and the tangent of C^* at P lie in a complex hyperplane, then C^* lies completely in this complex hyperplane.

From (4. 20) we observe that a curve C^* where C=0 is a geodesic of M^* and that any geodesic of M^* is a curve C^* . Hence $M'(A^a, K, L)$ is a totally geodesic subspace. Notice that $M'(f_{at}A^t, -L, K)$ is the same subspace as $M'(A^a, K, L)$.

A subspace $M'(A^a, K, L)$ tangent to a given curve C^* at the point s=0 is obtained if we take A^a , K, L satisfying

$$A^{a}y^{a}(0)-Kr(0)=0, \qquad A^{a}y'^{a}(0)-Kr'(0)=0,$$

$$A^a f_{at} y^t(0) - Lr(0) = 0, \qquad A^a f_{at} y'^t(0) - Lr'(0) = 0.$$

If we define M by

(4.37)

the rank of M is 4, since we have

$$MM^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 & -\rho \\ 0 & 1+\rho^{2} & \rho & 0 \\ 0 & \rho & 1 & 0 \\ -\rho & 0 & 0 & 1+\rho^{2} \end{pmatrix}, \det(MM^{\mathrm{T}}) = 1$$

because of (4. 22) and (4. 23). Hence we have 2n-4 linearly independent solutions of (4. 37). We also observe that, if (A^a, K, L) is a solution of (4. 37), $(f_{at}A^t, -L, K)$ is also a solution.

Suppose that (A^a, K, L) $(\xi=1, \cdots, 2p)$ are 2p linearly independent solutions of (4.37) where

$$A^a = f_{at} A^t$$
 $(u=1, \dots, p)$.

If (A^a, K, L) is a solution of (4.37) such that

$$A^a = k A^a + \cdots + k A^a,$$

then we find immediately that

$$K = k K + \cdots + k K,$$

$$L = k L + \cdots + k L,$$

hence (A^a,K,L) is a linear combination of $(A^a,K,L),\cdots,(A^a,K,L)$. Then we also find that the 2p (2n-2)-tuples A^a,\cdots,A^a are linearly independent, for a solution (A^a,K,L) must satisfy K=L=0 if $A^a=0$.

From the above result we can deduce that there exists a set of 2n-4 linearly independent solutions (A^a, K, L) $(\xi=1, \cdots, 2n-4)$ of (4.37) where

$$A^a = f_{at} A^t$$
, $K = -L$, $L = K$ $(u=1, \dots, n-2)$

and such that the (2n-2)-tuples A^a , ..., A^a are linearly independent.

We can interpret this result geometrically as follows.

Lemma 4.2. For any curve C^* there exists in M^* a totally geodesic subspace of dimension 2 which contains C^* and is determined by a system of equations

$$A^a y^a = Kr \qquad (\xi = 1, \dots, 2n - 4)$$

where

$$A^{a} = f_{at} A^{t}$$
 (u=1, ..., n-2).

This subspace is common to all curves C* passing a point P and having a common tangent vector at the point P.

The contents of §4 can be resumed in the following theorem.

Theorem 4.3. According to Sasaki and Hatakeyama an S^{2n-1} in E^{2n} can be treated as a normal contact metric manifold. According to Yano and Ishihara S^{2n-1}

can also be treated as a fibred space with invariant Riemannian metric. The base space M^* is a Kähler space of constant holomorphic sectional curvature. By virtue of these structures an S^{2n-1} becomes a space equipped with a distribution $\mathfrak D$ of dimension 2n-2 where the $\mathfrak D$ -curves are horizontal curves of the fibred space. If $\mathcal C$ is a critical $\mathfrak D$ -curve, the projection $\mathcal C^*$ on M^* of $\mathcal C$ has following properties. (I) $\mathcal C^*$ is a Riemannian circle of M^* . (II) Let $\{M'\}$ be the set of (2n-4)-dimensional totally geodesic subspaces of M^* such that each subspace M' is a complex hypersurface if M^* is regarded as a complex projective space. Then any curve $\mathcal C^*$ passing a point $\mathcal P$ of a subspace M' and tangent at $\mathcal P$ to this M' is contained completely in this subspace M'. (III) For any curve $\mathcal C^*$ there exists in M^* a totally geodesic subspace of dimension 2 which contains $\mathcal C^*$ and is obtained as an intersection of n-2 elements of $\{M'\}$. This subspace is common to all curves $\mathcal C^*$ passing a common point $\mathcal P$ and having a common tangent at $\mathcal P$.

Appendix. The exceptional cases.

In this appendix we study critical \mathcal{D} -curves \mathcal{C} of S^{2n-1} where k=0, $\rho=C$. In this case the differential equation of r is reduced to the form

(A. 1)
$$r'' = -(1+C^2)r$$

and the general solution $r=r_0\cos(\sqrt{1+C^2}(s-s_0))$ does not obey the restriction r>0. Hence, for the study of global properties of such exceptional critical \mathcal{D} -curves \mathcal{C} , we use rectangular coordinates x^1, \dots, x^{2n} of E^{2n} .

Since the equations (4.18) of the projection curve \mathcal{C}^* are written in local coordinates y^1, \dots, y^{2n-2} , we must use (4.7) and (4.8) to return to the coordinates x^1, \dots, x^{2n} . \mathcal{C} is obtained by the process of lifting in which we use

(A. 2)
$$\phi_a y'^a + \phi_{2n-1} z' = 0,$$

which becomes

$$(A. 3) z' = -C$$

because of (4.13) and $\rho = C$.

Differentiating (4.7) and using (A.3) we obtain

and

382 YOSIO MUTŌ

$$x''^{1} = y''^{1} \cos z + y''^{2} \sin z + 2C(y'^{1} \sin z - y'^{2} \cos z) - C^{2}x^{1},$$

$$x''^{2} = -y''^{1} \sin z + y''^{2} \cos z + 2C(y'^{1} \cos z + y'^{2} \sin z) - C^{2}x^{2},$$
(A. 5)
$$....,$$

$$x''^{2n-1} = r'' \sin z - 2Cr' \cos z - C^{2}x^{2n-1},$$

 $x''^{2n} = r'' \cos z + 2Cr' \sin z - C^2x^{2n}$.

Since r and y^a satisfy

$$r'' = -(1+C^2)r$$
, $y''^a = -(1+C^2)y^a$

along C, we obtain

C satisfies moreover

$$(x^{1})^{2} + \dots + (x^{2n})^{2} = 1,$$

$$(x'^{1})^{2} + \dots + (x'^{2n})^{2} = 1,$$

$$(A. 7)$$

$$x^{1}x'^{1} + \dots + x^{2n}x'^{2n} = 0,$$

$$x^{1}x'^{2} - x^{2}x'^{1} + \dots + x^{2n-1}x'^{2n} - x^{2n}x'^{2n-1} = 0.$$

The fourth equation of (A. 7) is obtained from (A. 4) and $\rho = C$. If F_{ji} is defined by

$$F_{ii}=0$$
 except $F_{12}=F_{34}=\cdots=F_{2n-1,2n}=-F_{21}=-F_{43}=\cdots=-F_{2n,2n-1}=1$,

then we can write the fourth equation of (A. 7) in the form

$$(A. 8) F_{ji}x^{\prime j}x^{i}=0.$$

Now we can write (A. 6) in the form

$$x''^{h} + 2CF_{hi}x'^{i} + x^{h} = 0.$$

If in E^{2n} the vector x^h is denoted by X and the vector $F_{hi}x^i$ by FX, (A. 6) is written

(A. 9)
$$X'' + 2CFX' + X = 0.$$

Differentiating repeatedly and eliminating FX, FX' we get

(A. 10)
$$X^{(4)} + 2(2C^2 + 1)X'' + X = 0.$$

Let us put

(A. 11)
$$\alpha = \sqrt{1 + C^2 + |C|}, \quad \beta = \sqrt{1 + C^2 - |C|}.$$

Assuming $C \neq 0$, we have $\alpha > \beta > 0$. $-\alpha^2$ and $-\beta^2$ are the roots of $\lambda^2 + 2(2C^2 + 1)\lambda + 1 = 0$. Hence

(A. 12)
$$X = A_1 \cos \alpha s + A_2 \sin \alpha s + B_1 \cos \beta s + B_2 \sin \beta s$$

is the general solution of (A. 10).

Substituting (A. 12) into (A. 7) we can deduce

$$(A_1, A_1) = (A_2, A_2) = \frac{1}{2} - \frac{|C|}{2\sqrt{1+C^2}},$$

$$(B_1, B_1) = (B_2, B_2) = \frac{1}{2} + \frac{|C|}{2\sqrt{1+C^2}}$$

and that A_1 , A_2 , B_1 , B_2 are mutually orthogonal.

Substituting (A. 12) into (A. 9) we can deduce

$$FA_1 = -\frac{|C|}{C}A_2, \qquad FB_1 = \frac{|C|}{C}B_2.$$

Thus we have

(A. 13)
$$X = A \cos \alpha s - \varepsilon F A \sin \alpha s + B \cos \beta s + \varepsilon F B \sin \beta s$$

where $\varepsilon = \pm 1$ and

$$(A, A) = \frac{1 - \beta^2}{\alpha^2 - \beta^2}, \qquad (B, B) = \frac{\alpha^2 - 1}{\alpha^2 - \beta^2}, \qquad (A, B) = 0.$$

If C=0 we have the simplest case,

$$(A. 14) X = A \cos s + B \sin s$$

where (A, A) = (B, B) = 1, (A, B) = 0.

Thus we have the following result.

The equations of the exceptional critical \mathcal{D} -curves are (A. 13) or (A. 14) according as $C \neq 0$ or C = 0.

384 Yosio mutö

REFERENCES

- [1] Sasaki, S., and Y. Hatakeyama, On differentiable manifolds with contact metric structures. J. Math. Soc. Japan 14 (1962), 249–271.
- [2] Steenrod, N. E., The topology of fibre bundles. Princeton (1951).
- [3] Yano, K., and S. Ishihara, Fibred spaces with invariant Riemannian metric. Kōdai Math. Sem. Rep. 19 (1967), 317–360.

DEPARTMENT OF APPLIED MATHEMATICS, YOKOHAMA NATIONAL UNIVERSITY.