KÖDAI MATH. SEM. REP. 23 (1971), 343-350

ON THE CONCURRENT VECTOR FIELDS OF IMMERSED MANIFOLDS

By Kentaro Yano and Bang-yen Chen

Let \mathbb{R}^m be an *m*-dimensional Riemannian manifold¹) with covariant derivative D and let $x: \mathbb{M}^n \to \mathbb{R}^m$ be an immersion of an *n*-dimensional manifold \mathbb{M}^n into \mathbb{R}^m . A vector field X in \mathbb{R}^m over \mathbb{M}^n is called a *concurrent vector field*² if we have dx+DX=0, where dx denotes the differential of the immersion x. In particular, if X is a normal vector field of \mathbb{M}^n in \mathbb{R}^m , then the vector field X is called a *concurrent normal vector field*.

The main purpose of this paper is to study the behavior of the concurrent vector fields of immersed manifolds and also find a characterization of the concurrent vector fields with constant length.

§1. Preliminaries.

Let \mathbb{R}^m be an *m*-dimensional Riemannian manifold with covariant derivative D. By a frame e_1, \dots, e_m , we mean an ordered set of *m* orthonormal vectors e_1, \dots, e_m in the tangent space at a point of \mathbb{R}^m . The frame e_1, \dots, e_m defines uniquely a dual coframe $\overline{\omega}_1, \dots, \overline{\omega}_m$ in the cotangent space and vice versa. The fundamental theorem of local Riemannian geometry says that in a neighborhood U of a point p there exists uniquely a set of linear differential forms $\overline{\omega}_{AB}$ satisfying the conditions:

$$(1) \qquad \qquad \overline{\omega}_{AB} + \overline{\omega}_{BA} = 0$$

and

$$(2) d\bar{\omega}_A = \sum \bar{\omega}_B \wedge \bar{\omega}_{BA},$$

where here and in the sequel the indices A, B, \cdots run over the range $\{1, \cdots, m\}$. The linear differential forms $\overline{\omega}_{AB}$ are called the connection forms and the covariant derivative DX of a vector field $X = \sum X_A e_A$, is given by

Received October 31, 1970.

¹⁾ Manifolds, mappings, tensor fields and other geometric objects are assumed to be differentiable and of class C^{∞} .

²⁾ In [3], a vector field X is called a concurrent vector field if there exists a function f such that dx+D(fX)=0, but in this paper, we adopt the above definition.

 $DX = \sum DX_A \otimes e_A,$

where

$$(4) DX_A = dX_A + \sum X_B \overline{\omega}_{BA}.$$

The vector field X is said to be *parallel* if DX=0. For the vectors e_A themselves equation (3) gives

$$(5) De_A = \sum \overline{\omega}_{AB} \otimes e_B.$$

The structure equations of R^m are given by (2) and

(6)
$$d\overline{\omega}_{AB} = \sum \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} + \overline{\Omega}_{AB}, \qquad \overline{\Omega}_{AB} = \sum \frac{1}{2} \overline{R}_{ABCD} \overline{\omega}_{C} \wedge \overline{\omega}_{D}.$$

The tensor field \overline{R}_{ABCD} is called the Riemann-Christoffel tensor. From \overline{R}_{ABCD} the *Ricci tensor* and the *scalar curvature* are defined respectively by

(7)
$$\overline{R}_{AB} = \overline{R}_{BA} = \sum \overline{R}_{CABC},$$

(8)
$$\bar{S} = \sum \bar{R}_{AA}$$

Let $x: M^n \to R^m$ be an immersion of an *n*-dimensional manifold M^n into R^m , and let *B* be the set of all elements $b = (p, e_1, \dots, e_n, e_{n+1}, \dots, e_m)$ such that $p \in M^n, e_1,$ \dots, e_n are tangent vectors, e_{n+1}, \dots, e_m are normal vectors to $x(M^n)$ at x(p) and $(x(p), e_1, \dots, e_m)$ is a frame in R^m , where we have identified $dx(e_i)$ with e_i ; i=1, \dots, n . Let ω_A, ω_{AB} be the forms previously denoted by $\overline{\omega}_A, \overline{\omega}_{AB}$ relative to this particular frame field. Then we have

(9)
$$\omega_r=0, \quad r, s, t, \cdots=n+1, \cdots, m.$$

Taking the exterior derivative and using (2), we get

(10)
$$\sum \omega_i \wedge \omega_{ir} = 0, \quad i, j, k, \dots = 1, \dots, n.$$

By Cartan's lemma we have

(11)
$$\omega_{ir} = \sum A_{rij} \omega_j, \qquad A_{rij} = A_{rji}.$$

The mean curvature vector H is defined by

(12)
$$H = \frac{1}{n} \sum A_{rii} e_r.$$

 M^n is called a *minimal submanifold* of R^m if H=0. If $e=\sum \cos \theta_r e_r$ is a unit normal vector field, then the second fundamental form at e is given by

(13)
$$A(e) = \sum \cos \theta_r A_{rij} \omega_i \omega_j.$$

344

The second fundamental form at a normal vector $N \neq 0$ is defined as the second fundamental form at the unit direction of N. If the second fundamental form A(N) at a normal vector N does not vanish and proportional to the first fundamental form $I = \sum \omega_i \omega_i$, then we say that M^n is *umbilical with respect to* N. In particular, if M^n is umbilical with respect to the mean curvature vector H at every point of M^n , then M^n is called a *pseudo-umbilical submanifold* of R^m .

For an immersion $x: M^n \to R^m$ if there does not exist a nowhere vanishing normal vector field N such that DN=0, then x is called a *substantial immersion*. If R^m is a euclidean *m*-space E^m , then x is substantial if and only if there does not exist an (m-1)-dimensional linear subspace of E^m containing $x(M^n)$.

For a normal vector field X in \mathbb{R}^m over M^n , the covariant derivative DX can be decomposed into two parts:

$$DX = (DX)^t + D^*X,$$

where $(DX)^t$ is tangent to M^n and D^*X is normal to M^n . If the normal part D^*X vanishes, then X is called a *parallel vector field in the normal bundle*.

§2. Some results on concurrent normal vector fields.

Suppose that N is a concurrent normal vector field, i.e., N is a normal vector field and

$$dx + DN = 0.$$

Thus, if we put N=he, $h=(N\cdot N)^{1/2}$, then we have

$$dx + (Dh)e + hDe = 0.$$

Since dx is tangent to $x(M^n)$ and De is perpendicular to e, we get Dh=0. Thus N has constant length. Furthermore, by taking the scalar product of dx with (15), we get

$$dx \cdot dx + dx \cdot DN = 0.$$

Thus, if we put $e = \sum \cos \theta_r e_r$, then, by (5), (11) and (17), we get

(18)
$$\sum \omega_i \omega_i - h \sum \cos \theta_r A_{rij} \omega_i \omega_j = 0.$$

Moreover, by (14) and (15), we have

(19)
$$D*N=0.$$

Therefore we have

PROPOSITION 1. Let $x: M^n \to R^m$ be an immersion of M^n into R^m . If N is a concurrent normal vector field of M^n in R^m , then N has constant length, N is parallel in the normal bundle and M^n is umbilical in the direction of N.

REMARK 1. Conversely, if N is a nowhere vanishing normal vector field parallel in the normal bundle and M^n is umbilical in the direction of N, then there exists a concurrent vector field parallel to the normal vector field N.

In the following, we denote the length of the mean curvature vector H by α , and we call it the *mean curvature* of M^n in \mathbb{R}^m .

From proposition 1, we have

PROPOSITION 2. Let $x: M^n \to R^m$ be an immersion of M^n into R^m . Then x is pseudo-umbilical and the mean curvature vector H is parallel in the normal bundle if and only if $H|\alpha^2$ is concurrent.

By a result of the authors [4] and proposition 2, we have

THEOREM 3. Let $x: M^n \rightarrow E^m$ be an immersion of M^n into a euclidean space E^m of dimension m. Then the vector field $H|\alpha^2$ is concurrent if and only if M^n is a minimal submanifold of a hypersphere of E^m .

If N and N' are two concurrent normal vector fields, then, by (15), we get $D(N \cdot N')=0$. Hence the normal vector fields N and N' make a constant angle. Therefore N-N' is a nowhere zero normal vector field with D(N-N')=0. Thus we have

PROPOSITION 4. Let $x: M^n \rightarrow R^m$ be a substantial immersion of M^n into R^m . Then there exists at most one concurrent normal vector field.

REMARK 2. In [2], Schouten and one of the authors proved that every invariant submanifold of an almost Kähler manifold is minimal. Therefore every invariant submanifold of an almost Kähler manifold does not admit a concurrent normal vector field.

THEOREM 5. Let $x: M^n \rightarrow R^m$ be an immersion of M^n into a Riemannian manifold R^m of constant sectional curvature K. If N is a concurrent normal vector field, then the scalar curvature S of M^n , the mean curvature α and the length |N|of N satisfy the following inequality:

(20)
$$S \leq n^2(\alpha^2 + K) - n(K + |N|^{-2}).$$

If the dimension of M^n is >2, then the equality sign holds when and only when M^n is a pseudo-umbilical submanifold of R^m with constant sectional curvature $K+\alpha^2$.

Proof. Since R^m has constant sectional curvature K, we have, by (6),

(21)
$$d\omega_{ij} - \sum \omega_{ik} \wedge \omega_{kj} = \sum \omega_{ir} \wedge \omega_{rj} - K \omega_i \wedge \omega_j$$

Thus, by putting $d\omega_{ij} - \sum \omega_{ik} \wedge \omega_{kj} = \Omega_{ij} = \sum (1/2) R_{ijkh} \omega_k \wedge \omega_h$, we have

(21)
$$R_{ijkh} = -K(\delta_{ik}\delta_{jh} - \delta_{ih}\delta_{jk}) - \sum (A_{rik}A_{rjh} - A_{rih}A_{rjk}).$$

346

Therefore, we get

(23)
$$R_{jk} = (n-1)K\delta_{jk} - \sum A_{rik}A_{rji} + \sum A_{rii}A_{rjk}.$$

Now, suppose that N is a concurrent normal vector field, and choose e_{n+1} in the direction of N, then, by proposition 1, we can verify that

(24)
$$A_{n+1ij} = (|N|)^{-1} \delta_{ij}.$$

Substituting (24) into (23), we get

(25)
$$R_{jk} = (n-1)K\delta_{jk} - \frac{\delta_{jk}}{N \cdot N} + \sum A_{rii}A_{rjk} - \sum_{s=n+2}^{m} (\sum_{i=1}^{m} A_{sik}A_{sji}).$$

Hence we have

(26)
$$S = n(n-1)K - n(N \cdot N)^{-1} + n^2 \alpha^2 - \sum_{s=n+2}^{m} (\sum_{i=1}^{m} A_{r_i,i}^2).$$

Therefore, by (26), we get the inequality (20).

If the equality of (20) holds, then, by (26), we get

$$A_{sij}=0, \quad s=n+2, \dots, m; \quad i, j=1, \dots, n.$$

Hence the mean curvature vector H is parallel to N and the mean curvature $\alpha = |N|^{-1}$. Therefore, by the fact that R^m has constant sectional curvature, we know that M^n has sectional curvature $K+\alpha^2$. If the dimension of M^n is greater than 2, then, by a well-known theorem of Shur, we know that $K+\alpha^2$ is a constant. Therefore M^n is a pseudo-umbilical submanifold and has constant sectional curvature provided n>2. The converse of this is trivial. This completes the proof of the theorem.

3. Concurrent vector fields with constant length.

PROPOSITION 6. Let $x: M^n \to E^m$ be an immersion of M^n into a euclidean space E^m of dimension m. Then there exists a concurrent normal vector field if and only if $x(M^n)$ is contained in a hypersphere of E^m .

Proof. Suppose that there exists a concurrent normal vector field N. Then, by proposition 1, N has constant length. On the other hand, by (15), we get

$$x(p) + N = c = \text{constant.}$$

Hence we have $(x-c) \cdot (x-c) = N \cdot N = \text{constant}$. Thus $x(M^n)$ is contained in a hypersphere of E^m centered at c. Conversely, if $x(M^n)$ is contained in a hypersphere of E^m centered at c, then the vector field c-x(p) is a concurrent normal vector field. This completes the proof of the proposition,

KENTARO YANO AND BANG-YEN CHEN

From proposition 1, we know that every concurrent normal vector field has constant length. In the following, we want to find a necessary and sufficient condition that an arbitrary concurrent vector field has constant length.

Let X be a vector field in \mathbb{R}^m over M^n . We define an (n-1)-form Θ_X by

(27)
$$\Theta_X = \sum (-1)^{i-1} (X \cdot e_i) \omega_1 \wedge \cdots \wedge \hat{\omega}_i \wedge \cdots \wedge \omega_n,$$

where $\hat{\omega}_i$ denotes that the term ω_i is omitted. The form Θ_X is a well-defined (n-1)-form on M^n .

The main purpose of this section is to prove the following theorems:

THEOREM 7. Let $x: M^n \to R^m$ be an immersion of an oriented closed manifold M^n into R^m . Then a concurrent vector field X in R^m over M^n has constant length if and only if the (n-1)-form Θ_X is closed.

Proof. If X is a concurrent vector field with constant length, then we have

$$d(X \cdot X) = 2X \cdot DX = 0.$$

Hence, by the definition of the concurrent vector fields and the above equation we have

(28)
$$\sum (X \cdot e_i) \omega_i = 0.$$

Thus, by taking the Hodge star operator on both sides of (28), we get $\theta_x=0$. In particular, θ_x is closed.

Conversely, suppose that the (n-1)-form Θ_X is closed. By a direct computation of the exterior derivative of (27) we get

where H denotes the mean curvature vector of M^n in \mathbb{R}^m . On the other hand, the Laplacian $\Delta(X \cdot X)$ of $X \cdot X$ is given by

(30)
$$\Delta(X \cdot X) = 2n(1 + X \cdot H).$$

Hence we get $\Delta(X \cdot X) = 0$. Therefore the concurrent vector field X has constant length. This completes the proof of the theorem.

If R^m is euclidean, then by theorem 7 we have

COROLLARY [1]. Let $x: M^n \to E^m$ be an immersion of an oriented closed manifold M^n into E^m , and X be the position vector field of M^n in E^m with respect to the origin of E^m . Then $x(M^n)$ is contained in a hypersphere of E^m centered at the origin of E^m if and only if the form $\Theta_X = 0$.

THEOREM 8. Let $x: M^n \rightarrow R^m$ be an immersion of M^n into R^m with a concurrent normal vector field X, and let the first normal vector e_{n+1} be in the direction

348

of the mean curvature vector H, that is, $H = \alpha e_{n+1}$. Then the immersion x is pseudoumbilical if and only if

(31)
$$\sum_{s=n+2}^{m} (X \cdot e_s) \omega_{s_1} = 0, \qquad i=1, \cdots, n.$$

Proof. Since X is a concurrent normal vector field, the length of X is constant. Thus, by (30), we have

$$\alpha(X \cdot e_{n+1}) = 1.$$

Put $X = fe_{n+1} + \sum_{s=n+2}^{m} (X \cdot e_s)e_s$. Then, by taking covariant derivative, we have

$$DX = (df)e_{n+1} + \sum f \omega_{n+1i}e_i + \sum f \omega_{n+1r}e_r + \sum_{s=n+2}^m (d(X \cdot e_s))e_s$$
$$+ \sum_{s=n+2}^m (X \cdot e_s)\omega_{si}e_i + \sum_{s=n+2}^m (X \cdot e_s)\omega_{sr}e_r.$$

Comparing the tangential parts of the above equation we get

(33)
$$\omega_i + f \omega_{n+1i} = \sum_{s=n+2}^m (X \cdot e_s) \omega_{is}, \qquad i=1, \cdots, n$$

Suppose that the immersion x is pseudo-umbilical. Then we have

(34)
$$\omega_{n+1i} = -\alpha \omega_i = -f^{-1}\omega_i, \qquad i=1, \dots, n.$$

Thus, by (33) and (34), we get (31). Conversely, if (31) holds, then, by (33), we get

$$\omega_i = -f \, \omega_{n+1i}, \qquad i = 1, \, \cdots, \, n.$$

Hence the immersion x is pseudo-umbilical. This completes the proof of the theorem.

REMARK. Let X be a concurrent normal vector field and let e_{n+1} be in the direction of the mean curvature vector H as in theorem 8. Let \bar{e} be the unit normal vector field in the direction of $X-(X \cdot e_{n+1})e_{n+1}$, i.e.,

$$X = (X \cdot e_{n+1})e_{n+1} + (X \cdot \bar{e})\bar{e}.$$

Then the condition (31) means

$$(32) (X \cdot \bar{e}) A(\bar{e}) = 0,$$

where $A(\bar{e})$ denotes the second fundamental form at \bar{e} .

References

- [1] CHEN, B.-Y., Submanifolds of a euclidean hypersphere. To appear.
- [2] SCHOUTEM, J. A., AND K. YANO, On invariant subspace in the almost complex X_{2n} . Indag. Math. 17 (1955), 261–269.
- [3] YANO, K., Sur le parallélisme et la concourance dans l'espace de Riemann. Proc. Imp. Acad. Tokyo 19 (1943), 189-197.
- [4] YANO, K., AND B.-y. CHEN, Minimal submanifolds of a higher dimensional sphere. To appear in Tensor.

Tokyo Institute of Technology, and Michigan State University.