
KODAI MATH. SEM. REP.
23 (1971), 335-342

NOTE ON THE LAW OF THE ITERATED LOGARITHM

FOR STATIONARY PROCESSES SATISFYING

MIXING CONDITIONS

BY HlROSHI OODAIRA AND KEN-ICHI YOSHIHARA

1. Strassen [6] presented a generalization of the law of the iterated logarithm
for independent random sequences and Chover [1] gave a proof of Strassen's main
result using Esseen's estimate for the central limit theorems. Recently losifescu
[3] and Reznik [5] extended the classical law to some classes of strictly stationary
processes satisfying mixing conditions, and in [4] the assumptions imposed in [3]
and [5] have been considerably weakened. In this note we show that Strassen's
version of the law of the iterated logarithm holds for the classes of stationary
processes considered in [4], We use Chover 's approach [1] and our previous re-
sults [4].

2. Let {xj} be a strictly stationary process defined on a probability space
(Ω, £F, P) with Exj=Q, Exj<oo, satisfying either uniform strong mixing (u.s.m.)
condition :

sup —j^\P(AnB)-P(A)P(B)\=φ(n) I 0, rc->oo,

or the strong mixing (s.m.) condition:

sup \PAΠB)- P(A)P(B) \ = a(ή) JO, n -» oo,

where JHa denotes the σ-algebra generated by the random variales x3, j=a, a+l,
-, b.

Let S0=0, Sn=Σnj=ιXj, <?n=ESi and σ2=Eχl+2Σ00

J=ιExQxJί and assume that
0<<72<oo and σ£=nσ\l + o(l».

Consider the space C of continuous functions on [0, 1] vanishing at 0, with
the usual maximum norm, and, for each ωzΩ, define the functions fn(t, ω), n^3/σ2,
in C as follows:

ί S*(o))/χ(«) for t=kln, k=Q,l,—,n
]
I linearly interpolated for *€[*/, (*+!)/»], k=Q, -, »-l,
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where X(ri)=(2nσ2\og lognσz)1/2. We denote by K the subset of C consisting of all
functions h(t) absolutely continuous with respect to Lebesgue measure such that

Slh(t)2dt^l, where h(f) stands for the Radon-Nikodym derivative of h. Further,
for any integer m and function hsC, let Tlmh be the piece wise approximation to
h defined by

f h(v/m) for t=u/m, y=0, 1, •••, m
(Umh)(t)=\

( linearly interpolated for t£\y\m, (u+lym], y=0, •••, m—1.

Our result is the following

THEOREM 1. Suppose that {xj} is a strictly stationary process and satisfies one
of the following conditions.

Condition (I):

(1-1) ( xldP=O((\ogN)~^ as N-^oo,
J\x\>N

(1-2) the u.s.m. condition with Σ£=ι^1/2(^X°o.

Condition (II):

(II-l) E\xj\2+δ<oo for some <5>0,

(11-2) the u.s.m. condition with φ(n)=O(n~1~ε) for some ε>(l+δ)~1.

Condition (III):

(IΠ-1) \Xj\< constant with probability one,

(ΠI-2) the s.m. condition with a(ri)=O(n~l~e) for some ε>0.

Condition (IV) :

(IV-1) E\XJ\M<OO for some ^>0,

(IV-2) the s.m. condition with Σn=ι{a(n)}δ'^M/:><oo for some

Then, for almost every ω$Ω, the sequence of functions {fn(t, ω), n^3/σ2} is precom-
pact in C and its derived set is the set K.

REMARK. As we shall see below, it is sufficient for the conclusion of Theo-
rem 1 that the following requirements be fulfilled: for some p>Q and sufficiently
large n,

( i ) P(max|S, |>δ%(n))=O((logn)-1-0 for any b>l
IS/Sn

and either

(ii-1) sup \P(Sn<zV~n)-Φ(z)\=O((logn)-1-p)
— 00<Z<00
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and

or

(iii-1) sup \P(Sn<zσV~n~)-Φ(z)\=0((lognr2-p)
— oo<2<oo

and

where

Z 2dt.

Now, it is shown in [4] that (i) holds under any of Conditions (I)-(IV), (ii-1) under
Conditions (I) or (II), and (iii-1) under Condition (IV). Also, by changing the
argument used in [4] slightly, it can be shown that (iii-1) holds under Condi-
tion (III).

3. In view of the above remark, Theorem 1 follows from Theorems 2-5
below. The proofs can be carried out by the method of Chover, and hence we
shall give only proofs of the points where some changes are required, referring
to [1] for the rest.

THEOREM 2. If (i) is satisfied, then, for almost every ω£Ω, the sequence of
functions {fn(t, ω), n^3/σ2} is equicontinuous.

Proof. Only obvious change is needed in the proof of Theorem 2 in [1].

We note that Corollaries 1 and 2 of [1] can be carried over to the present
case without any change.

THEOREM 3. Suppose that (ii-1) and (ii-2) hold. Then, for almost every
the derived set of (fn(t, ω)} is contained in K.

Proof. It suffices to show (see, [1]) that

where

ί ί W-!Γ / v + 1 \
Λr= \ω (2log log^σ2)\m Σ Πm/Wr , ω)

I I υ=o L \ rn /
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and nr — \cr\ with some suitably chosen c=c(ε)>l.

The increment of Iίmfnr(t) over [v/m, (v+l)/w] is given by

-πmfnr -£- = {!/*(*,)} Σ χκ+yr, „

where i is the smallest integer such that i/n^vlm and j is the largest integer
such that jlnr<(v+\)lm. Let

ξr, v=(2m log log nrσ
2y/2\(llX(nr

= {l/(nr/m)1/2σ}Σxίc+(2mlog \ognrσ*)yr,v, v=0, 1, •-, w-1.
k=ι

Let A/r t V denote the number of summands of the first term, j—i, which is — nr\m.
Put qr=[Nΐ;!\, with some 0</3<1, and let

and

An easy calculation shows that E\ζr,v\
2=O(nϊβ), and hence

m—1 w—1 w—1 m—1

v=0 v=0 v=0 v=0

m—1 m—1

Therefore, by Chebyshev's inequality, we have, for sufficiently large r,

2(2 log log ί

2, ,>(l+β)2(2 log log
\υ=0

(2)
m-1(

=^P( Σ 37r, y>(l + εr)( log log Hrσ2)} +O(nϊβ/4)>
\v=0 I

where e'>0 with l+
Let, now, ̂ il;, ι^=0,1, •••, m—1? be independent random variables distributed
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in the same way as i)r,v

9s and also independent of ηr,v's. Then we have (cf.
Lemma 4, [3]),

m-l

(3) sup P Σΐr.^2)-P( Σΐr%gz) =(w-lM<?r).
Z \ \t f=o / \v=0

It follows easily from the assumption (iii-1) that

(4) sup -O((log^)-1-"),

where Ψm(z) is the distribution function of the ^-distribution with m degree of
freedom. (2)-(4) and (iii-2) together imply (1), completing the proof.

THEOREM 4. The assumptions (ii-1) and (ii-2) of Theorem 3 can be replaced
by (iii-1) and (iii-2).

Proof. It is enough to prove that for some p'

(5) sup ( Σ#, .^*) -y*(*) =o((iog Λr)-1-").
Wo /

In what follows Xi's will denote some positive constants. By a theorem of
Esseen [2], we have

(6)

where

^κ\Tr

J-T.

/ m-l \ \

l i f Σ#..))-(l-2i\ »=o / / dt+K2ITr

S
f

-Tγ

,= (*
J-rr

m-l

Σv=0

and we put Tr = (log^r)
1+CP/4). Firstly we note that
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m—1 m—1

v=0 υ=0

and hence

(7)

Secondly, by (iii-2),

for some 0<γ<β.

(exp (it g

and, for sufficiently small

Hence we get, with any <5>0 and for some ε>0,

(8)

Thirdly we have

'r,0
(iognr)/'/4

|F,;2o (x) - ̂ (ar) life+(1 -F,;»o ((log ̂ Γ4))+(1 - y ,((log nr



LAW OF THE ITERATED LOGARITHM 341

by integration by parts, and so, using (iii-1) and noting that

l-yι((log *r)"4)^(log nr)-p/8 exp (-(log rcrΓ
4/2),

we get

^m- \t\ -(log nry
/4 0((\og ^r)-2

We have also, for sufficiently small |f |,

W-l

Π
v=0

Therefore,

1*^1

+w(log^r)
p/4 O((log^r)-2-0\ _δ dt

(9)

(7)-(9), together with (6), yield (5) with p'=pl£, which concludes the proof.

THEOREM 5. If (ii-1) (<9r (iii-1)) ίz^J (iii-2) (<9f (ii-2)) hold, then K is con-
tained in the derived set of (fn(t> ω)}.

Proof. We need only observe (see [1] for the notation) that C?° and C?lι are
separated from each other by at least [mr/2] and that under the assumption (iii-2),

if ΣrP(Cy) = oo, then P(lim suprC?)) = l> which can be shown in the same manner
as in the proof of Lemma 5 in [3].
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