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NOTE ON THE LAW OF THE ITERATED LOGARITHM
FOR STATIONARY PROCESSES SATISFYING
MIXING CONDITIONS

By HirosHi OopAIRA AND KEN-ICHI YOSHIHARA

1. Strassen [6] presented a generalization of the law of the iterated logarithm
for independent random sequences and Chover [1] gave a proof of Strassen’s main
result using Esseen’s estimate for the central limit theorems. Recently Iosifescu
[3] and Reznik [5] extended the classical law to some classes of strictly stationary
processes satisfying mixing conditions, and in [4] the assumptions imposed in [3]
and [5] have been considerably weakened. In this note we show that Strassen’s
version of the law of the iterated logarithm holds for the classes of stationary
processes considered in [4]. We use Chover’s approach [1] and our previous re-
sults [4].

2. Let {x;} be a strictly stationary process defined on a probability space
(2, &, P) with Exz,=0, Ex}<oo, satisfying either uniform strong mixing (u.s.m.)
condition :

sup ?%/F|P(AnB)—P(A)P(B)l=s0(n) 10, n—oo,

aea® ,, BeHT,
or the strong mixing (s.m.) condition:

sup |PANB)—P(A)P(B)|=a#) | 0, n— oo,

dea® , HBep,

where 9% denotes the g-algebra generated by the random variales x,, j=a, a+1,
e, b.

Let So=0, Sa=2%12,, ci=ES: and ¢*=FExi+2 }%5-1 Exoz,, and assume that
0<0?*< oo and e2=nc*1+0(1)).

Consider the space C of continuous functions on [0, 1] vanishing at 0, with
the usual maximum norm, and, for each we®, define the functions f.(4, w), #=3/s?,
in C as follows:

Slw)xm)  for t=Fkln, k=0,1, -, n

Salt, 0)= { . .
linearly interpolated for ze[k/, (B+1)/n], k=0, ---, n—1,
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where X(n)=(2ns%log log ns*)'%.. We denote by K the subset of C consisting of all
functions 4(#) absolutely continuous with respect to Lebesgue measure such that
S h(D?dt=<1, where h(f) stands for the Radon-Nikodym derivative of 4. Further,
for any integer m and function 4€eC, let I, % be the piecewise approximation to
/i defined by

h(v|m) for ¢=y/m, v=0,1, ---, m
(m h)(t)={ ) .
linearly interpolated for te[y/m, v+1ym), v=0, ---, m—1.
Our result is the following
THEOREM 1. Suppose that {x;} is a strictly stationary process and satisfies one
of the following conditions.
Condition (I):
a-1) SlxlwxgdP:O((log N%  as N—oo,
(I-2) the u.s.m. condition with Y 5=, ¢'*(n)<oo.
Condition (II):
{I-1) E|zj|?**<co for some 6>0,
(I1-2) the wu.s.m. condition with o(n)=0mn"") for some ¢>(1+05)".
Condition (III):
(II-1) |xj|< comstant with probability one,
(II1-2) the s.m. condition with a(n)=0m"-*) for some ¢>0.
Condition (IV):
(AV-1) E|xzs**<co for some 6>0,
(AV-2) the s.m. condition with Y51 {a(n)}?/ @+ oo for some 0§’ <o.

Then, for almost every wef, the sequence of functions {fu(, w), n=3/6%} is precom-
pact in C and its derived set is the set K.

ReMARK. As we shall see below, it is sufficient for the conclusion of Theo-
rem 1 that the following requirements be fulfilled: for some p>0 and sufficiently
large #,

(i) F( E‘éx |S;] > bX(n)) =O((log #)~*~*) for any b5>1
1=7sn
and either
(ii-1) sup |P(S.< 2V 1) —®(z)| =0((log n)~1-*)
—o0<z<L 00
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and
(ii-2) X p(n)<oo
or
(iii-1) sup | P(Sp< 20/ 7 ) — D(2)| =O((log 7)~2-*)
and
>iii-2) XY a(n)<oo,
where

z
—o0

O(2)=(1/+/2x) S e 2 dy.

Now, it is shown in [4] that (i) holds under any of Conditions (I)-(IV), (ii-1) under
Conditions (I) or (II), and (iii-1) under Condition (IV). Also, by changing the
argument used in [4] slightly, it can be shown that (iii-1) holds under Condi-
tion (III).

3. In view of the above remark, Theorem 1 follows from Theorems 2-5
below. The proofs can be carried out by the method of Chover, and hence we
shall give only proofs of the points where some changes are required, referring
to [1] for the rest.

TuroreM 2. If (i) is satisfied, then, for almost every we€f, the sequence of
Sunctions {fu(t, 0), n=3/6?} is equicontinuous.

Proof. Only obvious change is needed in the proof of Theorem 2 in [1].

We note that Corollaries 1 and 2 of [1] can be carried over to the present
case without any change.

THEOREM 3. Suppose that (ii-1) and (ii-2) hold. Then, for almost every wef,
the derived set of {fu(t, w)} is contained in K.

Proof. It suffices to show (see, [1]) that
(1) 2 P(A)< oo,

where

A= {wl(z log log #,6%) {mmz_:l [IL,J,,,( le , w)
v=0

~Tlusi, (5 0) [ | > rc210g 1og na)
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and »,=[c"] with some suitably chosen c¢=c(e)>1.
The increment of Il f, (¢) over [v/m, (v+1)/m] is given by

y+1
Hmfn,( +

) Cufe, (%) = {1/x(nr)}’§xk+yr. o

where 7 is the smallest integer such that i/n,=y/m and j is the largest integer
such that j/n,<(+1)/m. Let

&,.,=(@mlog log nraw{ W) 3 v+, }
k=1
={1/(n./m)""*s} f. zx+(2m log log n.6%)yr,,, v=0,1, -, m—1.
k=1

Let N,,, denote the number of summands of the first term, j—i, which is ~n,/m.
Put ¢,=[N.7#], with some 0<8<1, and let

J-ar
Doy ={1/(Nr,,— @) "?c} 27 x, v=0, 1, -+, m—1,
k=1

and

C'I‘,v—__‘é?‘.u_ﬂr.w V=Oy ]-y ey m"‘l.

An easy calculation shows that E|¢,,,|?=0(#;*), and hence
m—1 m—1 m—1 m—1
E Z_,;Sﬁ.v— gﬂf.yléz ZE)E]m.wCr.uH ;}E}Cr.ylz,
m—1 m—1
2 L AE 9 SPHEIGP 2+ 2 ElG P=007).
=0 v=0
Therefore, by Chebyshev’s inequality, we have, for sufficiently large 7,
m—1
P(A)= P( D1&2,>(1+¢)*2log log n,oz)>
=0
m—1
§P< ST > (1472 log log n,aZ)—n;M)
v=0

(2)
+P(

é n;ﬁ/‘l)

m—1 m—1
Z E;, v Z 7]3, v
v=0 =0

m—1
éP( 277> (1 +¢)(log log nw2)> +O0(nz#Y),

=0

where ¢ >0 with 1+’ <(1-+¢)%
Let, now, 7/,,, v=0, 1, -, m—1, be independent random variables distributed
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in the same way as 7..’s and also independent of 7, ,’s. Then we have (cf.
Lemma 4, [3]),

(3) Slzlp’ (Zm V=2 > (Zn’z <Z> =(m—1)p(g,).

It follows easily from the assumption (iii-1) that

(4) sup [P 1t =2) ~¥ala)| =OlClog m) ),

where ¥,(2) is the distribution function of the x2-distribution with » degree of
freedom. (2)-(4) and (iii-2) together imply (1), completing the proof.

THEOREM 4. The assumptions (ii-1) and (ii-2) of Theorem 3 can be replaced
by (iii-1) and (iii-2).

Proof. 1t is enough to prove that for some p’>0

P("‘Z;E:fﬁ_ ,éz) — ¥ n(2)| =0((log n,)~1-*").

(%) sup

In what follows K,’s will denote some positive constants. By a theorem of
Esseen [2], we have

]P(’gs:, ,gz) —Un(2)

E (eXp (it’jg:_:sz. >> —(1—2it)"

Ty
(6) §KIS ; ’dt+Kz/T,
~T,
=K1(Ix+12+13)+K2/Tn
where
m— m—1
e e e )
II—S v=0 ; v=0 'dt’
-7y

m— m—1
7 E(exp (it lei_ )) —E(exp (it Z p;?y»
r=| = = ,dt

m—1
r, | [] Eexp Gtyp2.)—1—2it)™™*
[3 S v=0

L, ;

] a,

and we put 7,=(log n,)'+“*®, Firstly we note that



340 HIROSHI OODAIRA AND KEN-ICHI YOSHIHARA

on(u ) -lon(i )

m—1 m—1
=-E ;)Eﬁ.y— Z:)r]?. v

=t]-O(n;?),
and hence
(7 Li=o0(n;") for some 0<y<B.
Secondly, by (iii-2),

lE(exp (u‘ Z 9z, v>> <exp <zt Z 9 >> l =16m-a(g,),

and, for sufficiently small |#],
m—1 m—1
) )|
=0 v=0
m—1 m-—1
=l- {E<Z.' ni.v>+E<Z 7}4?,)}
v=0 »=0

=Ks-|t].

Hence we get, with any >0 and for some ¢>0,

1

L=K S 1
B n0slsT, |¢]

dt+16- a(gy) S

o<ltlsn,?

(8)

=o(n;°).

Thirdly we have

m—1
[1 E(exp Gt y:2.)—(1—2it)™"

|

=m-|E(exp (it p;0)— (1 —2it)~"?|

< { 1By (dog m")—1(log m¥ )] + | Fogs, O)—T0)

lIA

S (log ny) P/

0

[Py (@) dwl(x)]l + ‘S b2, (@) + I

(log ny)elt

a Yo/
"'S

S(log ny) o/

dqfl(x)l }

|F>7’2 @)—=¥i(@)| dz+(1—Fy2 ((log 7)) +(1—¥((log nr)"“)}
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by integration by parts, and so, using (iii-1) and noting that

1-7((log #,)""*)= Ki(log n,)~""* exp (—(log #.)""/2),

we get

m—1
[1 E(exp ity:2.))—(1—2it)™"
v=0

=m-|t]-(log n,)""*-O((log #:)*~")+0((log 7,)~*~").

We have also, for sufficiently small |¢],

m—1
[1 E(exp Gity;2n)—(1—2it)™™*
v=0

S|t -mAEpt o+ 1} = K- [¢].

Therefore,

Iaéng dt

-5
osli[sn;

+m(log n,)*"*-O((log n,)*z“’)g dt

-3
205l sT,

(9)
1

n o< lsr, |¢]

+0((log nr>-2—*’>g
=O((log n,)--*),

(7)-(9), together with (6), yield (5) with p’=p/4, which concludes the proof.

THEOREM 5. If (ii-1) (or (iii-1)) and (iii-2) (or (ii-2)) hkold, then K is con-
tained in the derived set of {fa.(t, w)}.

Proof. We need only observe (see [1] for the notation) that C® and C®, are
separated from each other by at least [#7/2] and that under the assumption (iii-2),
if 3, P(C#)=o0, then P(lim sup,C#)=1, which can be shown in the same manner
as in the proof of Lemma 5 in [3].
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