NOTE ON THE LAW OF THE ITERATED LOGARITHM FOR STATIONARY PROCESSES SATISFYING MIXING CONDITIONS

By Hiroshi Oodaira and Ken-ichi Yoshimara

1. Strassen [6] presented a generalization of the law of the iterated logarithm for independent random sequences and Chover [1] gave a proof of Strassen's main result using Esseen's estimate for the central limit theorems. Recently Iosifescu [3] and Reznik [5] extended the classical law to some classes of strictly stationary processes satisfying mixing conditions, and in [4] the assumptions imposed in [3] and [5] have been considerably weakened. In this note we show that Strassen's version of the law of the iterated logarithm holds for the classes of stationary processes considered in [4]. We use Chover's approach [1] and our previous results [4].
2. Let $\left\{x_{j}\right\}$ be a strictly stationary process defined on a probability space (Ω, \mathscr{F}, P) with $E x_{j}=0, E x_{j}^{2}<\infty$, satisfying either uniform strong mixing (u.s.m.) condition:

$$
\sup _{A \in \mathcal{M}_{-\infty}^{k}, B \in \mathcal{H}_{k+n}^{\infty}} \frac{1}{P(A)}|P(A \cap B)-P(A) P(B)|=\varphi(n) \downarrow 0, n \rightarrow \infty,
$$

or the strong mixing (s.m.) condition:

$$
\left.\sup _{A \in \mathcal{H}_{-\infty}^{k}, \mathcal{M B E} \epsilon_{k+n}^{\infty}} \mid P A \cap B\right)-P(A) P(B) \mid=\alpha(n) \downarrow 0, n \rightarrow \infty,
$$

where \mathscr{M}_{a}^{b} denotes the σ-algebra generated by the random variales $x_{j}, j=a, a+1$, \cdots, b.

Let $S_{0}=0, S_{n}=\sum_{\jmath=1}^{n} x_{\jmath}, \sigma_{n}^{2}=E S_{n}^{2}$ and $\sigma^{2}=E x_{0}^{2}+2 \sum_{j=1}^{\infty} E x_{0} x_{\jmath}$, and assume that $0<\sigma^{2}<\infty$ and $\sigma_{n}^{2}=n \sigma^{2}(1+o(1))$.

Consider the space C of continuous functions on $[0,1]$ vanishing at 0 , with the usual maximum norm, and, for each $\omega \in \Omega$, define the functions $f_{n}(t, \omega), n \geqq 3 / \sigma^{2}$, in C as follows:

$$
f_{n}(t, \omega)=\left\{\begin{array}{l}
S_{k}(\omega) / \chi(n) \quad \text { for } t=k / n, k=0,1, \cdots, n \\
\text { linearly interpolated for } t \in[k /,(k+1) / n], k=0, \cdots, n-1
\end{array}\right.
$$

[^0]where $\chi(n)=\left(2 n \sigma^{2} \log \log n \sigma^{2}\right)^{1 / 2}$. We denote by K the subset of C consisting of all functions $h(t)$ absolutely continuous with respect to Lebesgue measure such that $\int_{0}^{1} \dot{h}(t)^{2} d t \leqq 1$, where $\dot{h}(t)$ stands for the Radon-Nikodym derivative of h. Further, for any integer m and function $h \in C$, let $\Pi_{m} h$ be the piecewise approximation to h defined by
\[

\left(\Pi_{m} h\right)(t)=\left\{$$
\begin{array}{l}
h(\nu / m) \quad \text { for } t=\nu / m, \nu=0,1, \cdots, m \\
\text { linearly interpolated for } t \in[\nu / m,(\nu+1) / m], \nu=0, \cdots, m-1 .
\end{array}
$$\right.
\]

Our result is the following
Theorem 1. Suppose that $\left\{x_{j}\right\}$ is a strictly stationary process and satisfies one of the following conditions.

Condition (I):
(I-1) $\quad \int_{|x|>N} x_{0}^{2} d P=O\left((\log N)^{-5}\right) \quad$ as $N \rightarrow \infty$,
(I-2) the u.s.m. condition with $\sum_{n=1}^{\infty} \varphi^{1 / 2}(n)<\infty$.
Condition (II):
(II-1) $E\left|x_{j}\right|^{2+\delta}<\infty$ for some $\delta>0$,
(II-2) the u.s.m. condition with $\varphi(n)=O\left(n^{-1-\varepsilon}\right)$ for some $\varepsilon>(1+\delta)^{-1}$.
Condition (III):
(III-1) $\left|x_{j}\right|<$ constant with probability one,
(III-2) the s.m. condition with $\alpha(n)=O\left(n^{-1-\varepsilon}\right)$ for some $\varepsilon>0$.
Condition (IV):
(IV-1) $E\left|x_{j}\right|^{2+\delta}<\infty$ for some $\delta>0$,
(IV-2) the s.m. condition with $\sum_{n=1}^{\infty}\{\alpha(n)\}^{\sigma^{\prime \prime}\left(2+\sigma^{\prime}\right)}<\infty$ for some $0<\delta^{\prime}<\delta$.
Then, for almost every $\omega \in \Omega$, the sequence of functions $\left\{f_{n}(t, \omega), n \geqq 3 / \sigma^{2}\right\}$ is precompact in C and its derived set is the set K.

Remark. As we shall see below, it is sufficient for the conclusion of Theorem 1 that the following requirements be fulfilled: for some $\rho>0$ and sufficiently large n,
(i) $P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>b \chi(n)\right)=O\left((\log n)^{-1-\rho}\right) \quad$ for any $\quad b>1$
and either
(ii-1) $\sup _{-\infty<z<\infty}\left|P\left(S_{n}<z \sqrt{n}\right)-\Phi(z)\right|=O\left((\log n)^{-1-\rho}\right)$
and
(ii-2) $\sum \varphi(n)<\infty$
or
(iii-1) $\sup _{-\infty<z<\infty}\left|P\left(S_{n}<z \sigma \sqrt{n}\right)-\Phi(z)\right|=O\left((\log n)^{-2-\rho}\right)$
and
(iii-2) $\sum \alpha(n)<\infty$,
where

$$
\Phi(z)=(1 / \sqrt{2 \pi}) \int_{-\infty}^{z} e^{-t^{2 / 2}} d t
$$

Now, it is shown in [4] that (i) holds under any of Conditions (I)-(IV), (ii-1) under Conditions (I) or (II), and (iii-1) under Condition (IV). Also, by changing the argument used in [4] slightly, it can be shown that (iii-1) holds under Condition (III).
3. In view of the above remark, Theorem 1 follows from Theorems 2-5 below. The proofs can be carried out by the method of Chover, and hence we shall give only proofs of the points where some changes are required, referring to [1] for the rest.

Theorem 2. If (i) is satisfied, then, for almost every $\omega \in \Omega$, the sequence of functions $\left\{f_{n}(t, \omega), n \geqq 3 / \sigma^{2}\right\}$ is equicontinuous.

Proof. Only obvious change is needed in the proof of Theorem 2 in [1].
We note that Corollaries 1 and 2 of [1] can be carried over to the present case without any change.

Theorem 3. Suppose that (ii-1) and (ii-2) hold. Then, for almost every $\omega \in \Omega$, the derived set of $\left\{f_{n}(t, \omega)\right\}$ is contained in K.

Proof. It suffices to show (see, [1]) that

$$
\begin{equation*}
\sum P\left(A_{r}\right)<\infty, \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{r}= & \left\{\omega \left\lvert\,\left(2 \log \log n_{r} \sigma^{2}\right)\left\{m \sum _ { \nu = 0 } ^ { m - 1 } \left[\mathrm{II}_{m} f_{n_{r}}\left(\frac{\nu+1}{m}, \omega\right)\right.\right.\right.\right. \\
& \left.\left.\left.-\Pi_{m} f_{n_{r}}\left(\frac{\nu}{m}, \omega\right)\right]^{2}\right\}>(1+\varepsilon)^{2}\left(2 \log \log n_{r} \sigma^{2}\right)\right\}
\end{aligned}
$$

and $n_{r}=\left[c^{r}\right]$ with some suitably chosen $c=c(\varepsilon)>1$.
The increment of $\Pi_{m} f_{n_{r}}(t)$ over [$\nu / m,(\nu+1) / m$] is given by

$$
\Pi_{m} f_{n_{r}}\left(\frac{\nu+1}{m}\right)-\Pi_{m} f_{n_{r}}\left(\frac{\nu}{m}\right)=\left\{1 / \chi\left(n_{r}\right)\right\} \sum_{k=\imath}^{n} x_{k}+y_{r, \nu},
$$

where i is the smallest integer such that $i / n_{r} \geqq \nu / m$ and j is the largest integer such that $j / n_{r}<(\nu+1) / m$. Let

$$
\begin{aligned}
\xi_{r, \nu} & =\left(2 m \log \log n_{r} \sigma^{2}\right)^{1 / 2}\left\{\left(1 / \chi\left(n_{r}\right)\right) \sum_{k=2}^{j} x_{k}+y_{r, \nu}\right\} \\
& =\left\{1 /\left(n_{r} \mid m\right)^{1 / 2} \sigma\right\} \sum_{k=2}^{j} x_{k}+\left(2 m \log \log n_{r} \sigma^{2}\right) y_{r, \nu}, \nu=0,1, \cdots, m-1 .
\end{aligned}
$$

Let $N_{r, \nu}$ denote the number of summands of the first term, $j-i$, which is $\sim n_{r} / m$. Put $q_{r}=\left[N_{r, \vartheta}^{1-\beta}\right]$, with some $0<\beta<1$, and let

$$
\eta_{r, \nu}=\left\{1 /\left(N_{r, \nu}-q_{r}\right)^{1 / 2} \sigma\right\} \sum_{k=\imath}^{J-q_{r}} x_{k}, \nu=0,1, \cdots, m-1,
$$

and

$$
\zeta_{r, \nu}=\xi_{r, \nu}-\eta_{r, \nu}, \nu=0,1, \cdots, m-1
$$

An easy calculation shows that $E\left|\zeta_{r, \nu}\right|^{2}=O\left(n_{r}^{-\beta}\right)$, and hence

$$
\begin{aligned}
& E\left|\sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}-\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right| \leq 2 \sum_{\nu=0}^{m-1} E\left|\eta_{r, \nu} \cdot \zeta_{r, \nu}\right|+\sum_{\nu=0}^{m-1} E\left|\zeta_{r, \nu}\right|^{2} \\
& 2 \sum_{\nu=0}^{m-1}\left\{E\left|\eta_{r, \nu}\right|^{2}\right\}^{1 / 2}\left\{E\left|\zeta_{r, \nu}\right|^{2}\right\}^{1 / 2}+\sum_{\nu=0}^{m-1} E\left|\zeta_{r, \nu}\right|^{2}=O\left(n_{r}^{-\beta / 2}\right) .
\end{aligned}
$$

Therefore, by Chebyshev's inequality, we have, for sufficiently large r,

$$
\begin{aligned}
P\left(A_{r}\right)= & P\left(\sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}>(1+\varepsilon)^{2}\left(2 \log \log n_{r} \sigma^{2}\right)\right) \\
\leqq & P\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}>(1+\varepsilon)^{2}\left(2 \log \log n_{r} \sigma^{2}\right)-n_{r}^{-\beta / 4}\right) \\
& +P\left(\left|\sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}-\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right| \geqq n_{r}^{-\beta / 4}\right) \\
\leqq & P\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}>\left(1+\varepsilon^{\prime}\right)\left(\log \log n_{r} \sigma^{2}\right)\right)+O\left(n_{r}^{-\beta / 4}\right)
\end{aligned}
$$

(2)
where $\varepsilon^{\prime}>0$ with $1+\varepsilon^{\prime}<(1+\varepsilon)^{2}$.
Let, now, $\eta_{r, \nu}^{\prime}, \nu=0,1, \cdots, m-1$, be independent random variables distributed
in the same way as $\eta_{r, \nu}$'s and also independent of $\eta_{r, \nu}$'s. Then we have (cf. Lemma 4, [3]),

$$
\begin{equation*}
\sup _{z}\left|P\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2} \leqq z\right)-P\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{\prime 2} \leqq z\right)\right|=(m-1) \varphi\left(q_{r}\right) . \tag{3}
\end{equation*}
$$

It follows easily from the assumption (iii-1) that

$$
\begin{equation*}
\sup _{z}\left|P\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{\prime 2} \leqq z\right)-\Psi_{m}(z)\right|=O\left(\left(\log n_{r}\right)^{-1-\rho}\right), \tag{4}
\end{equation*}
$$

where $\Psi_{m}(z)$ is the distribution function of the χ^{2}-distribution with m degree of freedom. (2)-(4) and (iii-2) together imply (1), completing the proof.

Theorem 4. The assumptions (ii-1) and (ii-2) of Theorem 3 can be replaced by (iii-1) and (iii-2).

Proof. It is enough to prove that for some $\rho^{\prime}>0$

$$
\begin{equation*}
\sup _{z}\left|P\left(\sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2} \leqq z\right)-\Psi_{m}(z)\right|=O\left(\left(\log n_{r}\right)^{-1-\rho^{\prime}}\right) . \tag{5}
\end{equation*}
$$

In what follows K_{\imath} 's will denote some positive constants. By a theorem of Esseen [2], we have

$$
\begin{align*}
& \left|P\left(\sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2} \leqq z\right)-\Psi_{m}(z)\right| \\
\leqq & K_{1} \int_{-T_{r}}^{T_{r}}\left|\frac{E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}\right)\right)-(1-2 i t)^{-m / 2}}{t}\right| d t+K_{2} / T_{r} \tag{6}\\
= & K_{1}\left(I_{1}+I_{2}+I_{3}\right)+K_{2} / T_{r},
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}=\int_{-T_{r}}^{T_{r}}\left|\frac{E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}\right)\right)-E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right)\right)}{t}\right| d t, \\
& I_{2}=\int_{-T_{r}}^{T_{r}}\left|\frac{E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right)\right)-E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{\prime 2}\right)\right)}{t}\right| d t, \\
& I_{3}=\int_{-T_{r}}^{T_{r}}\left|\frac{\prod_{\nu=0}^{m-1} E\left(\exp \left(i t \eta_{\eta_{r, \nu}^{\prime 2}}^{\prime 2}\right)-(1-2 i t)^{-m / 2}\right.}{t}\right| d t,
\end{aligned}
$$

and we put $T_{r}=\left(\log n_{r}\right)^{1+(\rho / 4)}$. Firstly we note that

$$
\begin{aligned}
& \left|E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}\right)\right)-E\left(\exp \left(i t_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right)\right)\right| \\
\leqq & |t| \cdot E\left|\sum_{\nu=0}^{m-1} \xi_{r, \nu}^{2}-\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right| \\
= & |t| \cdot O\left(n_{r}^{-\beta}\right),
\end{aligned}
$$

and hence

$$
\begin{equation*}
I_{1}=o\left(n_{r}^{-r}\right) \quad \text { for some } \quad 0<\gamma<\beta . \tag{7}
\end{equation*}
$$

Secondly, by (iii-2),

$$
\left|E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right)\right)-E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{\prime 2}\right)\right)\right| \leqq 16 m \cdot \alpha\left(q_{r}\right),
$$

and, for sufficiently small $|t|$,

$$
\begin{aligned}
& \left|E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right)\right)-E\left(\exp \left(i t \sum_{\nu=0}^{m-1} \eta_{r, \nu}^{\prime 2}\right)\right)\right| \\
\leqq & |t| \cdot\left\{E\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{2}\right)+E\left(\sum_{\nu=0}^{m-1} \eta_{r, \nu}^{\prime 2}\right)\right\} \\
\leqq & K_{3} \cdot|t| .
\end{aligned}
$$

Hence we get, with any $\delta>0$ and for some $\varepsilon>0$,

$$
I_{2} \leqq K_{3} \int_{0 \leqq|t| \leqq n_{r}^{-\delta}} d t+16 \cdot \alpha\left(q_{r}\right) \int_{n_{r}^{-\delta} \leqq|t| \leqq T_{r}} \frac{1}{|t|} d t
$$

(8)

$$
=o\left(n_{r}^{-\varepsilon}\right)
$$

Thirdly we have

$$
\begin{aligned}
&\left|\prod_{\nu=0}^{m-1} E\left(\exp \left(i t \eta_{r, \nu}^{\prime 2}\right)\right)-(1-2 i t)^{-m / 2}\right| \\
& \leqq m \cdot\left|E\left(\exp \left(i t \eta_{r, 0}^{\prime 2}\right)\right)-(1-2 i t)^{-1 / 2}\right| \\
& \leqq m \cdot\left\{\left|\int_{0}^{\left(\log n_{r}\right)^{\rho / 4}} e^{i t x}\left[d F_{\eta_{r, 0}^{\prime}}(x)-d \Psi_{1}(x)\right]\right|+\left|\int_{\left(\log n_{r}\right)^{\rho / 4}}^{\infty} d F_{\eta_{r, 0}^{\prime 2}}(x)\right|+\left|\int_{\left(\log n_{r}\right) \rho / 4}^{\infty} d \Psi_{1}(x)\right|\right\} \\
& \leqq m \cdot\left\{\left|F_{\eta_{r, 0}^{\prime \prime}}\left(\left(\log n_{r}\right)^{\rho / 4}\right)-\Psi_{1}\left(\left(\log n_{r}\right)^{\rho / 4}\right)\right|+\left|F_{\eta_{r, 0}^{\prime 2}}(0)-\Psi_{1}(0)\right|\right. \\
&+|t| \int_{0}^{\left(\log n_{r}\right)^{\rho / 4}}\left|F_{\eta_{r, 0}^{\prime 2}}(x)-\Psi_{1}(x)\right| d x+\left(1-F_{\eta_{r, 0}^{\prime 2}}\left(\left(\log n_{r}\right)^{\rho / 4}\right)\right)+\left(1-\Psi_{1}\left(\left(\log n_{r}\right)^{0 / 4}\right)\right\}
\end{aligned}
$$

by integration by parts, and so, using (iii-1) and noting that

$$
1-\Psi_{1}\left(\left(\log n_{r}\right)^{\rho / 4}\right) \leqq K_{4}\left(\log n_{r}\right)^{-\rho / 8} \exp \left(-\left(\log n_{r}\right)^{\rho / 4} / 2\right)
$$

we get

$$
\begin{aligned}
& \left|\prod_{\nu=0}^{m-1} E\left(\exp \left(i t \eta_{r . \nu}^{\prime 2}\right)\right)-(1-2 i t)^{-m / 2}\right| \\
\leqq & m \cdot|t| \cdot\left(\log n_{r}\right)^{\rho / 4} \cdot O\left(\left(\log n_{r}\right)^{-2-\rho}\right)+O\left(\left(\log n_{r}\right)^{-2-\rho}\right)
\end{aligned}
$$

We have also, for sufficiently small $|t|$,

$$
\begin{aligned}
& \left|\prod_{\nu=0}^{m-1} E\left(\exp \left(i t \eta_{r, r}^{\prime 2}\right)\right)-(1-2 i t)^{-m / 2}\right| \\
& \leqq|t| \cdot m \cdot\left\{E \eta_{r, 0}^{\prime 2}+1\right\} \leqq K_{5} \cdot|t|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& I_{3} \leqq K_{5} \\
& \int_{0 \leqq|t| \leqq n_{r}^{-\delta}} d t \\
&+m\left(\log n_{r}\right)^{\rho / 4} \cdot O\left(\left(\log n_{r}\right)^{-2-\rho}\right) \int_{n_{r}^{-\delta} \leqq|t| \leqq T_{r}} d t
\end{aligned}
$$

$$
\begin{align*}
& +O\left(\left(\log n_{r}\right)^{-2-\rho}\right) \int_{n_{r}^{-\delta} \leqq|t| \leqq T_{r}} \frac{1}{|t|} d t \tag{9}\\
= & O\left(\left(\log n_{r}\right)^{-1-(\rho / 2)}\right) .
\end{align*}
$$

(7)-(9), together with (6), yield (5) with $\rho^{\prime}=\rho / 4$, which concludes the proof.

Theorem 5. If (ii-1) (or (iii-1)) and (iii-2) (or (ii-2)) hold, then K is contained in the derived set of $\left\{f_{n}(t, \omega)\right\}$.

Proof. We need only observe (see [1] for the notation) that $C_{r}^{(\nu)}$ and $C_{r+1}^{(\nu)}$ are separated from each other by at least [$m^{r} / 2$] and that under the assumption (iii-2), if $\sum_{r} P\left(C_{r}^{(\nu)}\right)=\infty$, then $P\left(\lim \sup _{r} C_{r}^{(\nu)}\right)=1$, which can be shown in the same manner as in the proof of Lemma 5 in [3].

References

[1] Chover, J., On Strassen's version of the $\log \log$ law. Z. Wahrscheinlichkeitstheorie verw. Geb. 8 (1967), 83-90.
[2] Esseen, C. G., Fourier analysis of distribution function. A mathematical study of the Laplace-Gaussian law. Acta Math. 77 (1945), 1-125.
[3] Iosifescu, M., The law of the iterated logarithm for a class of dependent
random varıables. Th. Prob. \& Applic. 13 (1968), 304-313.
[4] Oodaira, H., and K. Yoshihara, The law of the iterated logarithm for statıonary processes satısfyıng mıxıng conditions. Kōdaı Math. Sem. Rep. 23 (1971), 311-334.
[5] Reznik, M. Kh., The law of the iterated logarithm for some classes of stationary processes. Th. Prob. \& Applic. 13 (1968), 606-621.
[6] Strassen, V., An invariance principle for the law of the iterated logarithm. Z. Wahrscheınlichkeıtstheorie verw. Geb. 3 (1964), 211-226.

Department of Applied Mathematics,
Yokohama National University, and
Department of Mathematics,
Yokohama National University.

[^0]: Received October 15, 1970.

