ON INTRINSIC STRUCTURES SIMILAR TO THOSE INDUCED ON S^{2n}

BY DAVID E. BLAIR AND GERALD D. LUDDEN

1. In [1] Yano and the authors studied submanifolds of codimension 2 of almost complex manifolds and hypersurfaces of almost contact manifolds. In both cases the structure on the ambient space induced the same structure on the submanifold. The induced structure consists of a tensor field f of type (1, 1), vector fields E, A, 1-forms η , α and a function λ satisfying

$$f^{2} = -I + \eta \otimes E + \alpha \otimes A,$$

$$\eta \circ f = \lambda \alpha, \qquad \alpha \circ f = -\lambda \eta,$$

$$f E = -\lambda A, \qquad f A = \lambda E,$$

$$\eta(E) = 1 - \lambda^{2}, \qquad \alpha(E) = 0,$$

$$\eta(A) = 0, \qquad \alpha(A) = 1 - \lambda^{2}.$$

Moreover the metric g induced from a metric compatible with the structure on the ambient space satisfies

(2)
$$g(X, E) = \eta(X), \qquad g(X, A) = \alpha(X),$$
$$g(fX, fY) = g(X, Y) - \eta(X)\eta(Y) - \alpha(X)\alpha(Y).$$

It is well known that on an almost complex manifold or an almost contact manifold there exists a metric compatible with the given structure, i.e. we have an almost Hermitian structure or an almost contact metric structure. However given a 2*n*-dimensional manifold M^{2n} with tensors $(f, E, A, \eta, \alpha, \lambda)$ satisfying equations (1), we show in section 2 that there does not in general exist a Riemannian metric on M^{2n} satisfying equations (2). Thus to study manifolds with an intrinsically defined $(f, E, A, \eta, \alpha, \lambda)$ -structure from the standpoint of Riemannian geometry it is necessary to assume the existence of a Riemannian metric satisfying equations (2).

The even-dimensional spheres are clearly examples of manifolds with an $(f, E, A, \eta, \alpha, \lambda)$ -structure and a compatible metric g, the structure being induced from the natural structure on the ambient Euclidean space. If V denotes the Riemannian connexion of g, then for the sphere example the structure tensors satisfy

Received September 26, 1970.

(3)
$$V_{X}E = -fX, \quad V_{X}A = -\lambda X,$$
$$(V_{X}f)Y = -\eta(Y)X + g(X, Y)E$$

for any vector fields X, Y on the sphere [1]. Note also that from equations (1) and (2), $g(A, A) = g(E, E) = 1 - \lambda^2$.

In [3] Yano and Okumura obtained some characterizations of even-dimensional spheres by imposing some conditions on the tensors $f, E, A, \eta, \alpha, \lambda$. Here in section 3 we study the role that the equations (3) play in characterizing spheres.

THEOREM 3.2. Let M^n be a compact Riemannian manifold (of any dimension $n \ge 2$) admitting a vector field A and a non-constant function λ satisfying

$$V_X A = -\lambda X, \qquad g(A, A) = 1 - \lambda^2$$

for every vector field X. Then M^n is globally isometric to the unit sphere in \mathbb{R}^{n+1} .

THEOREM 3.3. Let M^{2n} be an even-dimensional manifold with an $(f, E, A, \eta, \alpha, \lambda)$ structure and compatible metric g satisfying

$$\lambda$$
 non-constant, $\nabla_X E = -fX$,
 $(\nabla_X f)Y = -\eta(Y)X + g(X, Y)E$.

Then $\nabla_X A = -\lambda X$; in particular if M^{2n} is compact it is globally isometric to the unit sphere in R^{2n+1} .

2. Let M be an almost complex manifold with almost complex structure J and let Z be a vector field on M that is not the zero vector field. Let $\tilde{M} = M \times R^2$, where R is the real line. Define a tensor f of type (1, 1), vector fields E and A, and 1-forms η and α on \tilde{M} in the following way:

(4)

$$f(X, t, s) = (-JX - sZ, s, -t),$$

$$E = (Z, 0, 0),$$

$$\eta(X, t, s) = t,$$

$$\alpha(X, t, s) = s$$

where X is any vector field on M and $t, s \in R$. Then we have that

$$f^{2}(X, t, s) = f(-JX - sZ, s, -t)$$

= $(J^{2}X + sJZ + tZ, -t, -s)$
= $-(X, t, s) + s(JZ, 0, 0) + t(Z, 0, 0)$
= $-(X, t, s) + \eta(X, t, s)E + \alpha(X, t, s)A$

263

and hence $f^2 = -I + \eta \otimes E + \alpha \otimes A$. Also, we see that $\eta(E) = \eta(A) = \alpha(E) = \alpha(A) = 0$, f(E) = f(Z, 0, 0) = (-JZ, 0, 0) = -A, $f(A) = f(JZ, 0, 0) = (-J^2Z, 0, 0) = E$, $\eta \circ f(X, t, s) = \eta(-X-sZ, s, -t) = s = \alpha(X, t, s)$ and $\alpha \circ f(X, t, s) = \alpha(-X-sZ, s, -t) = -t = -\eta(X, t, s)$. Thus, (4) gives an $(f, E, A, \eta, \alpha, \lambda)$ -structure on \tilde{M} with $\lambda = 1$. If there exists a Riemannian metric \tilde{g} on \tilde{M} satisfying (2), then we have that $\tilde{g}(E, E) = \eta(E) = 0$, contradicting the fact that Z is *not* the zero vector and hence E is not the zero vector.

3. The proof of Theorem 3.2 is by means of a well known result of Obata [2] which states that a compact Riemannian manifold M^n admits a non-trivial solution λ of $(D_s d\lambda)(X, Y) = -k\lambda g(X, Y)$ for some real number k > 0 if and only if M^n is globally isometric to a Euclidean sphere of radius $1/\sqrt{k}$. Here D_s denotes the symmetric covariant derivative, for example for a 1-form θ ,

$$(D_s\theta)(X, Y) = \frac{1}{2}((V_X\theta)(Y) + (V_Y\theta)(X)).$$

LEMMA 3.1. Let M^n be a Riemannian manifold admitting a vector field Aand a non-constant function λ satisfying $\nabla_X A = -\lambda X$, $g(A, A) = 1 - \lambda^2$. Let $\alpha(X) = g(X, A)$, then $\alpha(X) = X\lambda$.

Proof. $\nabla_X \lambda A = (X\lambda)A - \lambda^2 X$, therefore

$$g(\nabla_X \lambda A, A) = (X\lambda)(1 - \lambda^2) - \lambda^2 \alpha(X).$$

On the other hand

$$g(\nabla_X \lambda A, A) = -g(\lambda A, \nabla_X A) + Xg(\lambda A, A)$$
$$= \lambda^2 \alpha(X) + (X\lambda)(1 - \lambda^2) + \lambda(-2\lambda X\lambda)$$

Comparing we have $2\lambda^2\alpha(X) = 2\lambda^2X\lambda$ and hence $\alpha(X) = X\lambda$ for $\lambda \neq 0$. Let $\varphi(m) = (\alpha(X) - X\lambda)(m)$, $m \in M^n$ and suppose $\varphi(m) \neq 0$. Then there exists a neighborhood of *m* on which φ is non-zero. Therefore $\lambda = 0$ on this neighborhood contradicting the non-constancy of λ .

THEOREM 3.2. Let M^n be a compact Riemannian manifold admitting a vector field A and a non-constant function λ satisfying

$$\nabla_X A = -\lambda X, \qquad g(A, A) = 1 - \lambda^2.$$

Then M^n is globally isometric to the unit sphere in \mathbb{R}^{n+1} .

Proof. Using the Lemma and the result of Obata the proof is a short computation, the first equality holding since $d\lambda$ is an exact form.

264

$$(D_s d\lambda)(X, Y) = X(Y\lambda) - (\overline{\mathcal{V}_X}Y)\lambda$$
$$= X\alpha(Y) - \alpha(\overline{\mathcal{V}_X}Y)$$
$$= Xg(Y, A) - g(\overline{\mathcal{V}_X}Y, A)$$
$$= g(Y, \overline{\mathcal{V}_X}A)$$
$$= -\lambda g(X, Y).$$

THEOREM 3.3. Let M^{2n} be a manifold with an $(f, E, A, \eta, \alpha, \lambda)$ -structure and compatible metric g satisfying

$$\lambda$$
 non-constant, $\nabla_X E = -fX$,
 $(\nabla_X f)Y = -\eta(Y)X + g(X, Y)E$.

Then $\nabla_X A = -\lambda X$; in particular if M^{2n} is compact it is globally isometric to the unit sphere in \mathbb{R}^{2n+1} .

Proof. We first show that $\alpha(X) = X\lambda$. Since $g(E, E) = 1 - \lambda^2$ we have $2g(V_X E, E) = -2\lambda X\lambda$ and hence $\eta(-fX) = -\lambda X\lambda$ so that by equations (1) $-\lambda\alpha(X) = -\lambda X\lambda$. Now proceeding as in the proof of Lemma 3.1 we have $\alpha(X) = X\lambda$. Thus, $V_X\lambda A = \alpha(X)A + \lambda V_X A$, while on the other hand

Therefore $\lambda V_X A = -\lambda^2 X$ and $V_X A = -\lambda X$ for $\lambda \neq 0$. Now set $V = V_X A + \lambda X$ and suppose $V(m) \neq 0$ for some $m \in M^{2n}$. Then there exists a neighborhood of m on which $V \neq 0$ and hence $\lambda = 0$, contradicting the non-constancy of λ . Thus $V_X A = -\lambda X$ and the second statement follows from Theorem 3.2.

REMARK. The normality of an $(f, E, A, \eta, \alpha, \lambda)$ -structure has been defined and studied in [1] and [3]. In particular, Yano and Okumura [3] have shown that if M is a complete manifold with a normal $(f, E, A, \eta, \alpha, \lambda)$ metric structure such that $\lambda(1-\lambda^2)$ is almost everywhere non-zero and $V_X E = f X$ then M is isometric to a sphere. It can easily be seen that Theorem 3.3 implies this theorem.

References

 BLAIR, D. E., G. D. LUDDEN, AND K. YANO, Induced structures on submanifolds. Kōdai Math. Sem. Rep. 22 (1970), 188-198.

265

- [2] OBATA, M., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
- [3] YANO, K., AND M. OKUMURA, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 22 (1970), 401-423.

MICHIGAN STATE UNIVERSITY, EAST LANSING, U.S.A.