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ON INTRINSIC STRUCTURES SIMILAR TO THOSE
INDUCED ON S2n

BY DAVID E. BLAIR AND GERALD D. LUDDEN

1. In [1] Yano and the authors studied submanifolds of codimension 2 of
almost complex manifolds and hypersurfaces of almost contact manifolds. In both
cases the structure on the ambient space induced the same structure on the sub-
manifold. The induced structure consists of a tensor field / of type (1, 1), vector
fields E, A, 1-forms 37, a and a function λ satisfying

(1) fE=-λA, fA=λE,

l-λ\ a(E)=0,

Moreover the metric g induced from a metric compatible with the structure on the
ambient space satisfies

= g(X, Y)-η(X)η(Y}-a(X)a(Y).

It is well known that on an almost complex manifold or an almost contact
manifold there exists a metric compatible with the given structure, i.e. we have an
almost Hermitian structure or an almost contact metric structure. However given
a 2^-dimensional manifold M2n with tensors (/, E, A, η, a, λ) satisfying equations
(1), we show in section 2 that there does not in general exist a Riemannian metric
on M2n satisfying equations (2). Thus to study manifolds with an intrinsically
defined (/, E, A, η, α, Λ)-structure from the standpoint of Riemannian geometry it is
necessary to assume the existence of a Riemannian metric satisfying equations (2).

The even-dimensional spheres are clearly examples of manifolds with an
(/, E, A, Ύ}, a, Λ)-structure and a compatible metric g, the structure being induced
from the natural structure on the ambient Euclidean space. If V denotes the
Riemannian connexion of g, then for the sphere example the structure tensors
satisfy
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?zE=-fX, VxA=-λX,
(3)

for any vector fields X, Y on the sphere [1]. Note also that from equations (1)
and (2), g(A,A) = g(E,E}=l-λ\

In [3] Yano and Okumura obtained some characterizations of even-dimensional
spheres by imposing some conditions on the tensors /, E, A, η, a, L Here in section
3 we study the role that the equations (3) play in characterizing spheres.

THEOREM 3. 2. Let Mn be a compact Riemannian manifold (of any dimension
n^2) admitting a vector field A and a non-constant function λ satisfying

for every vector field X. Then Mn is globally isometric to the unit sphere in Rn+1.

THEOREM 3. 3. Let M2n be an even- dimensional manifold with an (/, E, A, η, a, λ)
structure and compatible metric g satisfying

λ non-constant, VxE——fX,

(Vxf}Y=-η(Y}X+g(X,Y}E.

Then ΫχA=—λX\ in particular if M2n is compact it is globally isometric to the unit
sphere in Rzn+1.

2. Let M be an almost complex manifold with almost complex structure / and
let Z be a vector field on M that is not the zero vector field. Let M=MxR2,
where R is the real line. Define a tensor / of type (1, 1), vector fields E and A,
and 1 -forms η and a on M in the following way:

f(X,t,s)=(-JX-sZ,s,-t),

(4)

a(X,t,s) = s

where X is any vector field on M and ΐ,seR. Then we have that

f\X,t,s}=f(-JX-sZys,-t)

= (J2X+sJZ+ίZ, -/, -5)

- -(X, ty s)+s(/Z, 0, 0)-KZ, 0, 0)

= -(X, t, s)+η(X, t, s)E+a(X, t, s}A
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and hence f2=-I+η(S)E+a®A. Also, we see that y(E)=ij(A)=a(E)=a(A)=Q,

=η(-X-sZ,s, -t}=s=a(X,t,s} and a°f(X,t,s)=a(-X-sZ,s> -t}=-t=-η(X,t,s\
Thus, (4) gives an (/,£", A, η,a,λ)— structure on M with λ=l. If there exists a
Riemannian metric g on M satisfying (2), then we have that g(E,E)=η(E)—Q,
contradicting the fact that Z is not the zero vector and hence E is not the zero
vector.

3. The proof of Theorem 3. 2 is by means of a well known result of Obata
[2] which states that a compact Riemannian manifold Mn admits a non-trivial solu-
tion λ of (Dsdλ}(X, Y} = -kλg(Xy F) for some real number k>0 if and only if Mn

is globally isometric to a Euclidean sphere of radius I/ Vk . Here Ds denotes the
symmetric covariant derivative, for example for a 1-form θ,

(DSΘ)(X, r) = l((P^)(F)+(Fr0)Cϊ)).

LEMMA 3. 1. Let Mn be a Riemannian manifold admitting a vector field A
and a non-constant function λ satisfying ΫχA=—λX, g(A, A)=l — λ2. Let a(X)
=g(X,A), then a(X)=Xλ.

Proof. VxλA=(Xλ}A-λ2X, therefore

On the other hand

0(ΓrM, A) = -g(λA, VxA)+Xg(λA, A)

Comparing we have 2λ2a(X) = 2λ2Xλ and hence a(X)=Xλ for Λ^O. Let φ(m)
=(a(X)—Xλ)(m), m€Mn and suppose φ(m)^Q. Then there exists a neighborhood
of m on which φ is non-zero. Therefore λ=0 on this neighborhood contradicting
the non-constancy of λ.

THEOREM 3. 2. Let Mn be a compact Riemannian manifold admitting a vector
field A and a non-constant function λ satisfying

PxA = -λX, g(A,A)=l-λ2.

Then Mn is globally isometric to the unit sphere in Rn+1.

Proof. Using the Lemma and the result of Obata the proof is a short compu-
tation, the first equality holding since dλ is an exact form.
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(Dsdλ)(X, Y)=

=Xg(Y,A)-g(VzY,A)

THEOREM 3. 3. Let M2n be a manifold with an (/, E, A, η, α, λ)-structure and
compatible metric g satisfying

λ non-constant, VxE——fX,

Then VχA=—λX\ in particular if M2n is compact it is globally isometric to the unit
sphere in R2n+1.

Proof. We first show that a(X)=Xλ. Since g(E, E)=l~λ2 we have 2g(PzE, E)
= -2m and hence η(-fX) = -λXλ so that by equations (1) —fa(X) = —λXλ. Now
proceeding as in the proof of Lemma 3. 1 we have α(-X") = Xλ. Thus, VxλA
=a(X)A+λPχA, while on the other hand

FxλA= -VχfE= -fVxE~(Vxf)E

=f2X+η(E)X-g(X,E)E

= -X+a(X)A+(l-λ2)X.

Therefore λP*A=-λ2X and FxA=-2Xfor λ*Q. Now set V= Vx A Λ-λX and suppose
V(m)^0 for some meM2n. Then there exists a neighborhood of m on which F^O
and hence ^=0, contradicting the non-constancy of λ. Thus PχA=— λX and the
second statement follows from Theorem 3. 2.

REMARK. The normality of an (/, E, A, η, α, Λ)-structure has been defined and
studied in [1] and [3]. In particular, Yano and Okumura [3] have shown that if
M is a complete manifold with a normal (/, E, A, η, α> λ) metric structure such that
λ(l— λ2) is almost everywhere non-zero and VxE=fX then M is isometric to a
sphere. It can easily be seen that Theorem 3. 3 implies this theorem.
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