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SOME IMMERSIONS IN PSEUDO-RIEMANNIAN MANIFOLDS
OF CONSTANT CURVATURE

By CHorNG-SHI Houn

In [2], Obata considered immersions of Riemannian manifolds in spaces of con-
stant curvature and obtained a relationship among the Ricci form of the immersed
manifold and the second and third fundamental forms of the immersion. A geo-
metric interpretation of the third fundamental form was given by using the notion
of the Gauss map and several applications as well. He expected one can generalize
his method to pseudo-riemannian manifolds with arbitrary signature of metric.
The purpose of the present paper is to consider certain immersions in pseudo-
riemannian manifolds of constant curvature for which his method can be
generalized.

1. Preliminaries.

By a differentiable manifold we will always mean a connected, paracompact,
C=-differentiable manifold. Moreover, all our functions, forms and mappings will be
understood to be C~.

A pseudo-riemannian metric » on an x-dimensional differentiable manifold M
is a differentiable field of nondegenerate symmetric bilinear forms b, on the tangent
spaces M, of M. A pseudo-riemannian manifold is a differentiabe manifold with a
pseudo-riemannian metric. Since M is connected, the signature of & is constant.

A basis {vy, -++, vn} of M, is called orthonormal if by(vs,v;)==+6;. If U, is a
subset of M, then Uz denotes {veM,|b,(v, U,)=0}, a linear subspace of M, If
U, is a linear subspace, then dim U,+dim U =n. A linear subspace U, of M, is
said to be nondegenerate, if b, restricts to a nondegenerate form on U, This means
U,NnU#=0, so we have M,=U,® Uz for nondegenerate U, M, has a basis
{v1, -+, v} such that U,={vi, -, vs}, s=m, if U, is nondegenerate. Furthermore
there is an orthonormal basis {u,, -+, #,} such that {u,, -, u;}={v,, -+, v;} for
i=1,2, -, n. (cf. Wolf [3], p. 50).

Let R?, 0=<s=w, denote the vector space of real m-tuples z=(z!, -, 2") with
the bilinear form b defined by

s n
b¥(w, y)=— 2 o'+ 2, 2y’
1=1 J=8+1

Then b is a pseudo-riemannian metric on R? with signature (s,#z—s). Let X be
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the quadratic in R defined by
2={xe R} | b¥(x, x)=er?}, n=3, e==+1.

If xeX then X, is a nondegenerate subspace of (RY),, so R induces a pseudo-
riemannian metric on 2. With this metric, 2 is a complete pseudo-riemannian
manifold of constant curvature K=er—? and signature (s, n—s—1) if e=1, (s—1, n—s)
if e=—1. Let O%x) denote the group of all linear isometries of the vector space
R? onto itself, then O%(n) is known to be the group of all isometries of X (cf. Wolf
[3], p. 66).

Given integers s, 7 such that 0=s=#, we define

Sr={ze R+ | b7+ (x, ) =12,
Hp={ze R{} | b3 (x, 1)=—7"}.

Let V denote one of the following simply connected complete pseudo-riemannian
manifold of dimension N and of signature (s, N—s):

(i) S¥, a pseudo-riemannian sphere,

(ii) RY, a pseudo-euclidean space,

(iii) HY, a pseudo-riemannian hyperbolic space.
The bundle F(V) of the orthonomal frames on ¥ can be identified with the group
G(N) which is one of the following according as the type of V:

(i) O(N+1),

(ii) E*(N), the euclidean group of RY consisting of all transformations
y—a(y)+z, acO*(N), zeRY,

(iii) O*YN+1).
In any case, the isotropy subgroup at a given point is O°(N) and hence V is the
homogeneous space G(N)/O(N).

2. Nondegerate isometric immersions.

DeriniTION. Let M, M’ be pseudo-riemannian manifolds; b, b be their pseudo-
riemannian metrics respectively and z: M—M’ be an immersion. Then M is called
a nondegenerate isometrically immersed submanifold of M’, if

(1) b'(dx(w), dz(v))=b(u, v),

(ii) dx(M,) and (dx(M,))* are both nondegenerate linear subspaces of M/.

Let M be a pseudo-riemannian #-dimensional manifold with signature (¢, n—¢),
t<s, which is an isometrically immersed nondegenerate submanifold of the space
V by a mapping z: M—V. b, restricts to a nondegenerate form on da(My).
We denote dx(M,) by Mup. Then V=M ® My, Let F(M) denote the
bundle of orthonormal frames on M, F(V') denote the bundle of orthonormal frames
on V, and B denote the set of elements (p, ey, -, ex) such that (p, ey, -, en)e F (M),
{ens1, -, ex}€ My and (x(p), ey, -, ex)eF(V), where e;, 1=<i=n, are identified with
dz(es), Then ¢: B—M, ¢(p, e, -+, ex)=p, can be viewed as a principal bundle with
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the fiber OYn)XO*~Y(N—n). Let % B—F(V)=G(N) be the natural immersion

defined by &(p, e, -, en)=(x(p), ey, -+, ex).
We will agree on the following range of indices:

léAyB’C”"§N; léi,jyk)"'én; n+1§a;ﬁv7y"‘§1\7‘

b(u, v) will simply be denoted by (#,v). Now

[@D) z: M—V—REH? (S=s or s+1).
We have
( 2 ) (x’ x)=57’2’ (Jl), eA) =07 (eAy eB) =c4048 (EA = il)-

From (2), we have linear forms w4, w4z S0 that

(3) dx:Z 8Aa)A®€A, deA=Z stAB®eB~r—ezwA®x.
where
(4) wap+wpa=0.

Exterior differentiation of (3) gives
(5) dw4=2 epw4B/\Wp, dwiz— Y, €aa),40/\a)03=*—7€2—a),4/\w3.

By the theorem of structure equations (Wolf [3], p. 50), we have that {c 0.5} are
the connection forms of V relative to {e4} and that {w.4} is the dual coframe of
{e4} in the sense that {wg4, es)>=c4. The expression at the right-hand side of the
second equation of (5) gives the curvature form of the pseudo-riemannian metric
on V.

When submanifold (1) is given, we choose a frame field e4 in a neighborhood
of RY¥*! at x such that e¢; are tangent vectors to dx(M) at x and e, span (dz(M))L
(w.r.t. V) at . Equations (3), when restricted to this frame field, become

(3’) dx=2 €AOA®e.4, de,1=2 530A3®e5—~7f—2-0A®x
with
(6) 0.=0.

The pseudo-riemannian metric ds? on z(M) is given by

The &0;, (1=i, j=mu) are connection forms of the induced metric on M and its
curvature forms are



258 CHORNG-SHI HOUH
(8) d0;j— 3 exlbix NOxy; =3, eaoin/\ﬁnj—%ﬁi/\a_P
Taking the exterior differentiation of (6) and making use of (5), we get
22 el A Bia=0.
By Cartan’s lemma, we have
ﬁia=§: hiajsj”]; hia]:‘h]n’l,'
The form

II= Z 8a@a ® e, where @a = Z: Eiéjhiajﬁi ® 0]
a 2%

is called the second fundamental form of M in V.
The mean curvature vector of M in V is defined by

N= % 20 €i€altyajla = % 2 €altala, where ha= 2, eihtin.
ha

The curvature form (8), denoted by £2;,, is written as

Qiy=d0;;— 4? exlir A\ Ox,y

= Z Gaelemhialhjamﬁl/\ﬂm - ‘% 01'/\0]-

a,l,m
Let us put
1
Q;)= 5 21 Kejrerelde A0
k, L
Then
(9) Kijim=— % &1&m (010 jm — Oimbj1)— Za: ealiailjam—Piambsar)-

The immersion satisfying that II=0 is called totally geodesic immersion. If the
mean curvature vector vanishes identically, then the immersion is said to be
minimal.

Let a be a fixed vector in RY¥*l. We consider the height function (¢,z) as a
function on z(M). By (3’) and (6) we get

d(z, @)=1 eia, e:)0;,
D(a, e;)=(a, De;)

= (a, DlenlisRep— -7%-01'@304' 2 €ﬂji®¢:)
B J
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&
= (ar Z saaia ®ea '_"_1,?01,@‘7")
a
&
= (a, Z saejhiaj(ij@ea - 701,@%')
aJ

= Z eaejhiaj(d, ea)ﬁj - '752— (.Z‘, 0)01;.
]
Thus we have

(@ e5), v =(D(@, €:), e)= Y ealtiai(@, €) — % (z, a).

a

On the other hand, we have

A(.T,', a)‘_" Z‘L: (.’L‘, a): 2,07 Zz (x’ 2 0), :
= ; Et<d, ei)y 1= § 6a€ikiai(a) ea) - % (er LZ)

=n(a, N)— % (x, ).

Thus we have the following theorem: (cf. Chern [1], § 5A))

THEOREM 1. Let x be a nondegenerate isometric immersion of M in V. Then
x is a minimal immersion if and only if there is a fixed vector a in RE'' so thal
the functions (a,x) satisfy the differential equation

Az, @)+ % (z, @)=0.

Let X=3,¢.X.6. be a normal vector of x(M) at x. Then the quadratic
differential form defined by
IIX = <II, X> = Zkeaeiekhiaanﬁi ® 0lc

is called the second fundamental form of the immersion x in the direction X. For
the mean curvature vector N we have

(10) IIy= 1 2 Catiilliakltals @ O

a,t,k

It is clear that Iy =0 if and only if N=0.
By (8), the Ricci tensor Kj =72}, ek, is written as

1L K= —;;(n——l)ezﬁﬂ + ; €altjatlla— ; €atilliatP jare
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The Ricci form ¢-is defined by
(12) g[): jz;‘c 6j€kKjk0j ® 0k.

By (7), (10), (11) and (12), we have
¢= e(—n’;—l-)* el RO +nlly— 3 aciflic @ O
If we write IIl= ... c.ci(0ia)?, then we have finally

9= Lty 1L

THEOREM 2. Suppose that a pseudo-riemannian manifold M is nondegenerate
isometrically immersed into a simply-connected complete pseudo-riemannian space of
constant curvature e[r*. Then

g—nlly+I1= "Y1

holds.

3. The generalized Gauss map.

Let Q be the set of all totally geodesic #-space with signature (¢,z—¢) in V.
The group G(N) acts on @ transitively, and @ is identified with a homogeneous

space
QRQ=G(N)/G(n)x O*~4(N—n).

We introduce a quadratic differential form d3?* on Q:

d3*=73 60, R 0u+ Y €a6illia X Osae

With the immersion x: M—V we associate the generalized Gauss map f: M—Q
where f(p), peM, is the totally geodesic n-space tangent to x(M) at z(p). Consider
the following diagram:

B X Fovy=cv)
o, ]
M—L QUG ) x 0« N—n)

where r is the natural projection and F is the natural identification. It is clear
that

II=f*(d2?).
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Thus we have

THEOREM 3. The generalized Gauss mas f is a constant map if and only if
the immersion x is totally geodesic.
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