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NOTES ON ALMOST ISOMETRIES

BY KENTARO YANO AND MARIKO KONISHI*

§ 0. Introduction.

Chern and Hsiung [1] proved a theorem stating that a volume-preserving
almost isometry between two compact submanifolds in euclidean space satisfying
certain conditions is an isometry.

The purpose of the present paper is to give a different approach to this sub-
ject, which seems to be somewhat related to a paper of Gardner [3].

§1. Almost isometries.

Let M be an ^-dimensional Riemannian manifold covered by a system of co-
ordinate neighborhoods [U] xh] where here and throughout the paper the indices
hyi,i> k, ••• run over the range {1, 2, 3, • • • , n}. We denote by gjit {/*}, F», K kjf and
Kji the components of the metric tensor, the Christoffel symbols formed with
gji, the operator of covariant differentiation with respect to the Christoffel symbols,
the curvature tensor and the Ricci tensor respectively.

A transformation is said to be affine when it does not change the Levi-Civita
connection defined by the Christoffel symbols. In order that an infinitesimal trans-
formation vh be an affine transformation, it is necessary and sufficient that

(1. 1) ./:„ f = F^+^V5 =0,

where £v denotes the Lie derivative with respect to the infinitesimal transformation
v\ [7].

An infinitesimal transformation vh satisfying

(i. 2)

is called an infinitesimal almost isometry, where Kl
h=Kitg

th. Thus an affine trans-
formation is an almost isometry.

A transformation is said to be isometric when it does not change the Rieman-
nian metric. In order that an infinitesimal transformation vh be an isometry, it is
necessary and sufficient that
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(1.3) J7ttf/< = P/0< + F<0j=0,

where Vi = gίflv
h. Since (1. 3) implies (1. 1) and consequently (1. 2), an isometry is

an almost isometry.
One of the present authors proved in [6, 8] that a necessary and sufficient

condition for an infinitesimal transformation vh in a compact Riemannian manifold
M to be an isometry is that

(1.4) g^ΨjΓίv
h+Kϊ

hvϊ=0 and F<0*=0,

or that the infinitesimal transformation vh defines an almost isometry and preserves
the volume.

Since (1.1) implies (1. 4), we see that an infinitesimal afrme transformation in
a compact Riemannian manifold is an isometry.

Now consider a transformation in the Riemannian manifold M and denote by

Qji the transformed metric and by {/^} the transformed Christoffel symbols. We put

Ujίh being components of a tensor field of type (1, 2).
If

(1.6) JV=0,

then the transformation is aίfine, if

(1.7) </"ϋ}«Λ=0

then the transformation is an almost isometry with respect to g^ if

(1.8) ff'W=0,

then the transformation is an almost isometry with respect to g^ and if

(1.9) det(ffyO=det(flfy,)

det ( ) denoting the determinant formed with elements between braces, the trans-
formation is volume-preserving. In this case we have

(1.10) ϋ}t'=0.

If

(1.11) Qji=vji,
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the transformation is an isometry.
Denoting by Ft the operator of covariant differentiation with respect to

we have

from which

(1.12) Ftfyi - Utfgti + UkSβjt.

Thus, for an affine transformation, we have

(1.13) Ftffy<=0,

and consequently for an aίϊine transformation in an irreducible Riemannian manifold,
we have, by a theorem of Schur,

(1.14) Ojt=c*gji,

c being a non-zero constant, that is, the transformation is homothetic. If the affine
transformation preserves the volume, then we have

(1. 15) 5yt=0/i,

that is, the transformation is isometry. See [4], [5].
It is not yet known whether an almost isometry preserving the volume is an

isometry or not.

§2. Integral formulas.

Let E be euclidean space of dimension m (>ri) and consider an immersion
X: M-+E, that is, a differentiate mapping X of M into E such that the induced
linear mapping on the tangent space is univalent everywhere. We regard X(p\
p£M as a position vector in E. As the Riemannian manifold M is covered by a
system of coordinate neighborhoods {£/; xh}, we can consider the position vector X
as function of xl, x2, •-•, xn.

We put

(2. 1) X*=diX, di=dldx\

then X% are n linearly independent vectors tangent to X(M). Assuming that M
is oriented and the immersion X: M-+E is orientation-preserving, we choose m—n
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mutually orthogonal unit normals Cx to X(M) in such a way that Xlt •••, Xn, Cn^ι,
•• ,Cm give the positive orientation of E, where here and throughout the paper
the indices x, y, z run over the range {n+l, --, m}.

Now the components of the metric tensor are given by

(2.2) gji=Xj'Xϊ,

the dot denoting the inner product of vectors in E, and the equations of Gauss
are written as

(2. 3) V X^d Xi- . xh=hjίxCx,
[ J ϊ )

where hjix are components of the second fundamental tensors with respect to the
normals Cx. The equations of Weingarten are written as

(2. 4) FA=dA= -hSχXi+ljχyCy,

where hJ

1ι

x=hjtxgti and l]xy are components of the so-called third fundamental tensor.
We now put

(2. 5) X=Xiz*+Ca.αaι,

where z1 are components of a vector field of M and αx are m— n functions of M
and compute the covariant derivative of X. Then we obtain

from which

(2. 6) Γy2* = 3j + AΛ«*

and

(2. 7) VjCLx = —hjiXz*—ljyXαy.

From (2. 6), we obtain

(2.8)

where Zi=gihZh and

(2. 9)

Thus, supposing that M is compact, we obtain the integral formula

(2.10)
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dV denoting the volume element.
We now consider the second immersion X: M-^E and proceed as above, we

then obtain similarly

(2. 11)

and

(2. 12) Vlz
i=nΛ-gjίhjixάx

and consequently

(2.13)

Now, two immersions X: M^E and X: M-^E define a diffeomorphism
/: X(M}—»X(M). We assume that this mapping is volume-preserving, that is,

(2.14)

Now the inequality of Garding [2] says that

(2. 15)

equality holding if and only if gjt and ## are proportional. Thus we have, from
(2. 14) and (2. 15),

(2. 16)

equality holding if and only if gjt=gji.

Similarly we have

(2. 17)

equality holding if and only if g^g^.
Now, since

if the transformation is an almost isometry with respect to gjit then we have
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by virtue of (2. 8) and (2. 16). Thus integrating, we have

(2.18) ( (n + gfihjixaxWV^O,
JM

since dV=dV, equality holding if and only if Q^ — Q^
Combining (2. 10) and (2. 18), we obtain

(2. 19) (
JM

equality holding if and only if gji=gjί.
Similarly if the transformation is an almost isometry with respect to gjiy then

we have

(2. 20) ( (gjihjixax-g^hjixax}dV^,
JM

equality holding if and only if gji=gji.

§3. Theorem of Chern and Hsiung.

Chern and Hsiung [1] proved

THEOREM. Let X, X: M-^E be two immersed compact submanifolds and let
f: X(M)^X(M] be a volume-preserving almost isometry with respect to the metric of
X(M\ If

(3. 1)

then f is an isometry.

Under these assumptions, we have, from (2. 19),

and consequently

(3.2) gji=gji

If / is volume-preserving almost isometry with respect to the metric of X(M)
and

(3.3) g
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then we have, from (2. 20),

C 'i"

}M JIX JIX

and consequently we can conclude (3. 2).

§4. A theorem.

We have put

(4. 1) X=Xι?+Cxax,

from which

(4.2) Xt X=zt

and consequently

(4.3) -L

Thus

(4.4) -ί-

by virtue of (2. 8).
We have similarly

(4. 5) —- Ϋ/i(X X)=9μ+hjixάx.

Since

= ~dMX- X) - h.

ΓjΓ, (X X)- UjWh (X X),

we have, from (4. 4) and (4. 5),

—

= Sji — Qji + hjixάx — hjixoίx.
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Thus, if the transformation is a volume-preserving almost isometry with respect
to gji, we have

~g»

ί — Qjί) + gjίhjixάx — gjίhjixax.

^ gjihjixάx — gjίhjixax,

equality holding if and only if 0# =£./$.

Thus, if

we have

from which, M being assumed to be compact,

by virtue of Bochner's lemma [5].
Thus

and consequently

Thus we have

THEOREM. Let Xy X: M—+E be two immersed compact submanifolds and let
f: X(M)-*X(M) be a volume-preserving almost isometry with respect to the metric
of X(M\

If

then f is an isometry.

§5. Almost parallel displacement.

We know that

(5. 1)
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and

(5.2) Ψ3X^hjixCx.

We call an almost parallel displacement with respect to gjt a transformation
for which

(5.3) g'WjZi

Now, putting

A=X-X,

we have

j i

XΫ (I h \ TT h\Ϋ (zY I * \Y\= 8'*'-Uy i\~Uji r*-r*-|y i\Xκ)

Thus, for an almost isometry with respect to gji9 we have

g^ΨJAί = g^JX~FJXτ).

Thus, if an almost isometry is an almost parallel displacement, we have

Thus, if M is compact, all the components of the vector A are constant and
A is a constant vector. Thus we have

THEOREM. // M is compact and /: X(M)-*X (M) is an almost isometry and
at the same time an almost parallel displacement, then / is a parallel displacement.

REMARK. Gardner [3] has employed profitably a fixed vector in E to get a
general rigidity theorem.
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