ON A GENERALIZED NOTION OF HARMONIC FUNCTIONS

By Richard Delanghe

§1. Introduction.

In [1], we considered functions $g: \mathbb{R}^n \to \mathcal{A}$ where \mathcal{A} is the Clifford algebra constructed over an *n*-dimensional quadratic real vector space V with orthogonal basis $e = \{e_1, \dots, e_n\}$; (n > 2). Since the elements $e_A = e_{i_1} \cdots e_{i_h}$ together with $e_{\phi} = e_0$ form a basis of \mathcal{A} ,

$$g = \sum_{A} g_{A} e_{A}$$

where $g_A: \mathbb{R}^n \to \mathbb{R}$ for all $A \in \mathcal{P}N$ (Here $N = \{1, \dots, n\}$ and all $A = \{i_1, \dots, i_h\}$ are ordered in such a way that $1 \leq i_1 < \dots < i_h \leq n$). Moreover, in $\mathcal{A}, e_i^2 = \varepsilon_i e_0$ ($\varepsilon_i \in \mathbb{R}, i = 1, \dots, n$) and $e_i e_j + e_j e_i = 0$ ($i \neq j$). Throughout this paper we suppose that all $\varepsilon_i = +1$. Let now $g \in C^{(2)}(D)$ where D is an open non empty subset of \mathbb{R}^n ; then, if we introduce the operator

$$\mathcal{M} = \sum_{i=1}^{n} e_i \frac{\partial}{\partial x_i}$$
,

we define $\mathcal{M}[g]$ as

$$\mathcal{M}[g] = \sum_{i, A} e_i e_A \frac{\partial g_A}{\partial x_i}$$

and

$$\Box g = \sum_{A} \Box g_{A} e_{A}$$

where

$$\square = \mathcal{M}^2 = e_0 \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}.$$

Furthermore, a function $g \in C^{(2)}(D)$ is called harmonic in D iff $\Box g = 0$ in D.

§2. A generalized notion of harmonic functions.

In this section, we shall consider a class of functions called extended-harmonic, the notion of which is essentially derived from the following

Received September 24, 1970.

THEOREM 1. Let g: $\mathbb{R}^n \to \mathcal{A}$ be of the class $C^{(2)}$ in D and satisfy $\Box g=0$ in D; then for all $x \in D$ and all $I \in I(D \setminus \{x\})$,

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \int_{\partial I} \frac{e_0}{(n-2)\rho^{n-2}} \, d\sigma_u \mathcal{M}[g] = 0.$$

Conversely, if g: $\mathbb{R}^n \to \mathcal{A}$ is of the class $C^{(1)}$ in D such that for all $x \in D$ and all $I \in I(D \setminus \{x\})$,

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \int_{\partial I} \frac{e_0}{(n-2)\rho^{n-2}} \, d\sigma_u \mathcal{M}[g] = 0,$$

then $\Box g=0$ in D. Here

$$d\sigma_u = \sum_{i=1}^n (-1)^{i-1} e_i d\hat{u}_i$$

with

 $d\hat{u}_{i} = du_{1} \wedge \cdots \wedge du_{i-1} \wedge du_{i+1} \wedge \cdots \wedge du_{n},$

$$\bar{u} = \sum_{i=1}^{n} u_i e_i, \qquad \rho = +\sqrt{\sum_{i=1}^{n} (u_i - x_i)^2}$$

and I(D) denotes the set of closed intervals contained in D.

 $(I = \{x: a_i \leq x_i \leq b_i, i = 1, \dots, n\} \subset D)$

Proof. The first part of the Theorem is easily checked. Indeed, take $x \in D$ and $I \in (D \setminus \{x\})$; then in virtue of a Theorem stated in [1],

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) = \int_I \left[\left(\frac{\bar{u} - \bar{x}}{\rho^n} \right) \mathcal{M} \cdot g(u) + \frac{\bar{u} - \bar{x}}{\rho^n} \cdot \mathcal{M}(g) \right] du^N$$

and

$$\int_{\partial I} \frac{e_0}{(n-2)\rho^{n-2}} d\sigma_u \mathcal{M}(g) = \int_{I} \left[\frac{\bar{x} - \bar{u}}{\rho^n} \cdot \mathcal{M}(g) + \frac{e_0}{(n-2)\rho^{n-2}} \cdot \Box g \right] du^N.$$

Since

$$\left(\frac{\bar{u}-\bar{x}}{\rho^n}\right)\mathcal{M}=0$$

in $D \setminus \{x\}$ and $\Box g = 0$ in D, we obtain that

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \int_{\partial I} \frac{e_0}{(n-2)\rho^{n-2}} \, d\sigma_u \mathcal{M}(g) = 0.$$

Conversely, take $x \in D$; then there exists an $I \in I(D)$ such that $x \in I$. Since $g \in C^{(1)}(D)$, for any $\varepsilon > 0$, there ought to exist an $\eta(\varepsilon) > 0$ such that $||h||_{\varepsilon} < \eta(\varepsilon)$ implies $|g_A(x+h)-g_A(x)| < \varepsilon$ for all $A \in \mathcal{P}N$ ($||h||_{\varepsilon}$ is the Euclidean norm of h). Consider a

234

ball B(x, r) with $0 < r < \min(\varepsilon, \eta(\varepsilon))$ such that $\overline{B}(x, r) \subset \mathring{I}$ and construct a closed cube J with center x and edge s such that $J \subset \mathring{B}(x, r)$; moreover, divide $I \setminus \mathring{J}$ into m closed intervals I_j $(j=1, \dots, m)$; then, since $I_j \in I(D \setminus \{x\})$ for all j,

$$\int_{\vartheta(I\setminus J)} \frac{\tilde{u}-\bar{x}}{\rho^n} d\sigma_u g(u) + \frac{1}{n-2} \int_{\vartheta(I\setminus J)} \frac{e_0}{\rho^{n-2}} d\sigma_u \mathcal{M}(g)$$
$$= \sum_{j=1}^m \left[\int_{\vartheta I_j} \frac{\tilde{u}-\bar{x}}{\rho^n} d\sigma_u g(u) + \frac{1}{n-2} \int_{\vartheta I_j} \frac{e_0}{\rho^{n-2}} d\sigma_u \mathcal{M}(g) \right] = 0$$

Hence,

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \frac{1}{n-2} \int_{\partial I} \frac{e_0}{\rho^{n-2}} \, d\sigma_u \mathcal{M}(g) = \int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \frac{1}{n-2} \int_{\partial J} \frac{e_0}{\rho^{n-2}} \, d\sigma_u \mathcal{M}(g).$$

But

$$\int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) = \int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u \left[g(u) - g(x) \right] + \left[\int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u \right] g(x)$$

where

$$\int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u = A_{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)}$$

(see e.g. [2]).

By means of a norm which we introduced earlier on \mathcal{A} (see e.g. [2]), and since on I, $|\phi_B| \leq L$ for all B which appear in

$$\psi = \mathcal{M}(g) = \sum_{B} \psi_{B} e_{B}$$

and moreover on ∂J , $\rho \geq s/2$,

$$\left\| \int_{\partial J} \frac{e_0}{(n-2)\rho^{n-2}} \, d\sigma_u \phi \right\| \leq K \cdot \frac{1}{(s/2)^{n-2}} \cdot V(\partial J)$$
$$\leq K' \cdot \epsilon$$

where

$$K = \frac{n}{n-2} 2^{3n/2} \cdot L, \qquad K' = n2^n K.$$

Moreover,

$$\left\| \int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u[g(u) - g(x)] \right\| \leq M \cdot \frac{1}{(s/2)^{n-1}} \cdot V(\partial J) \cdot \varepsilon$$
$$\leq M' \cdot \varepsilon$$

since on ∂J ,

$$\frac{|u_i-x_i|}{\rho^n} \leq \frac{1}{\rho^{n-1}} \leq \frac{1}{(s/2)^{n-1}}$$

and where $M = n^{2}2^{3n/2}$, $M' = n2^{n}M$.

Hence,

$$\begin{split} & \left\| \int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \frac{1}{n-2} \int_{\partial J} \frac{e_0}{\rho^{n-2}} \, d\sigma_u \mathcal{M}(g) - A_{n-1} \cdot g(x) \right\| \\ &= \left\| \int_{\partial J} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \frac{1}{n-2} \int_{\partial J} \frac{e_0}{\rho^{n-2}} \, d\sigma_u \mathcal{M}(g) \right\| \\ &\leq (K' + M') \cdot \varepsilon. \end{split}$$

Since ε has been chosen arbitrarily,

$$\left\|\int_{\partial I} \frac{\bar{u}-\bar{x}}{\rho^n} \, d\sigma_u g(u) + \frac{1}{n-2} \int_{\partial I} \frac{e_0}{\rho^{n-2}} \, d\sigma_u \mathcal{M}(g) - A_{n-1} \cdot g(x)\right\| = 0$$

or

$$g(x) = \frac{1}{A_{n-1}} \int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} d\sigma_u g(u) + \frac{1}{A_{n-1}} \int_{\partial I} \frac{e_0}{(n-2)\rho^{n-2}} d\sigma_u \mathcal{M}(g)$$

and this relation clearly holds for any $x \in I$.

Consequently, $g \in C^{(2)}(I)$ and in I,

$$\Box g = \frac{1}{A_{n-1}} \int_{\partial I} \Box \left(\frac{\bar{u} - \bar{x}}{\rho^n} \right) d\sigma_u g(u) + \frac{1}{(n-2)A_{n-1}} \int_{\partial I} \Box \frac{e_0}{\rho^{n-2}} d\sigma_u \mathcal{M}(g)$$

=0,

or g is harmonic in I.

Since x has been taken arbitrarily in D, $g \in C^{(2)}(D)$ and $\Box g = 0$ in D. Q.E.D.

DEFINITION. Let g and f be integrable on ∂I for all $I \in I(D)$ and suppose furthermore that for all $x \in D$ and all $I \in I(D \setminus \{x\})$,

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \int_{\partial I} \frac{e_0}{(n-2)\rho^{n-2}} \, d\sigma_u f(u) = 0;$$

then g is called *extended-harmonic* in D and f is said to be the *M*-derivative of g and we put $f = \mathcal{M}(g)$.

REMARK. Let f and f^* be integrable on ∂I for all $I \in I(D)$; then define the relation fRf^* iff for all $x \in D$ and all $I \in I(D \setminus \{x\})$,

$$\int_{\partial I} \frac{e_0}{\rho^{n-2}} d\sigma_u (f-f^*) = 0.$$

236

Since R is clearly an equivalence relation it is understood that in the above definition, when speaking of "f is the \mathcal{M} -derivative of g", the whole equivalence class [f] of f is meant.

In a foregoing paper (see [1]), we remarked that if $g \in C^{(2)}(D)$ and $\Box g = 0$ in D, then $\mathcal{M}(g)$ is regular in D. In [3], we introduced the definition of an extended-regular function. We now prove

THEOREM 2. Let g be extended-harmonic in D; then $f = \mathcal{M}(g)$ is extended-regular in D.

Proof. Take $x \in D$ and $I \in I(D \setminus \{x\})$; then, since g is extended-harmonic in D,

$$F(x) = \int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u g(u) + \frac{1}{n - 2} \int_{\partial I} \frac{e_0}{\rho^{n - 2}} \, d\sigma_u f$$

vanishes for all $x \in D \setminus I$. Hence, in $D \setminus I$,

$$\mathcal{M}(F) = \int_{\partial I} \mathcal{M}\left(\frac{\bar{u} - \bar{x}}{\rho^n}\right) d\sigma_u g + \int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} d\sigma_u f$$
$$= \int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} d\sigma_u f$$
$$= 0$$

Consequently, for all $x \in D$ and all $I \in I(D \setminus \{x\})$,

$$\int_{\partial I} \frac{\bar{u} - \bar{x}}{\rho^n} \, d\sigma_u f = 0.$$

But this means that f is extended-regular in D (see [3]). Q.E.D.

BIBLIOGRAPHY

- DELANGHE, R., On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185 (1970), 91–111.
- [2] DELANGHE, R., Morera's Theorem for functions with values in a Clifford algebra. Simon Stevin, 43e Jaargang, Aflevering IV (1969-1970), 129-140.
- [3] DELANGHE, R., An extension of the notion of regularity for functions with values in a Clifford algebra. To appear in Mededelingen van de Koninklijke Vlaamse Academie, Klasse der Wetenschappen.

Seminarie voor Algebra, Rijksuniversiteit te Gent, 22 Jozef Plateaustraat, 9000 Gent, België.