A NOTE ON MINIMAL SUBMANIFOLDS WITH M-INDEX 2

By Takehiro Itoh

In [1], O tsuki gave some examples of minimal submanifolds with M-index 2 and geodesic codimension 3 in Euclidean spaces, spheres and hyperbolic nonEuclidean spaces, where the dimension of submanifolds is not less than 3 and the submanifolds satisfy the following conditions:
(1) principal asymptotic vector field $P \neq 0$,
(2) subprincipal asymptotic vector field $Q=0$,
(3) ψ_{v} is of rank 1 ,
($\alpha) ~ \tilde{\omega} \neq 0$ and $\sigma=\mu / \lambda$ is constant on W^{2},
(β) W^{2} is of constant curvature.
In this paper, the author replace (1) with (1) $P=0$ and prove that there are no minimal submanifolds with M-index 2 such that the dimension of submanifolds is not less than 3 and they satisfy the above conditions: (1)', (2), (3), $(\alpha),(\beta)$. Moreover, in case of two dimension he will give an example of minimal surface with M-index 2 and geodesic codimension 3 in a sphere. This example is nothing but one that in the case the ambiant spaces are spheres in [1] we set $p=0$ and $n=2$ formally and solve the differential equation. In this paper, we use the notations and equations in [1].

§ 1. Minimal submanifolds with M-index $2, P=0, Q=0$ and $\boldsymbol{\psi}_{v}$ of rank 1 .

Since $P=0$ and $Q=0$, on B, we have

$$
\begin{equation*}
\omega_{a r}=0, \quad \text { where } \quad a=1,2 \text { and } \quad r=3, \cdots, n . \tag{1.1}
\end{equation*}
$$

From (1.1) we get $0=d \omega_{a r}=-\bar{c} \omega_{a} \wedge \omega_{r}$, hence we get

$$
\begin{equation*}
\bar{c}=0 . \tag{1.2}
\end{equation*}
$$

Then the equations in Lemmas 6 and 11 in [1] are written as follows

$$
\begin{equation*}
\left\{d \log \lambda-i\left(2 \omega_{12}-\sigma \tilde{\omega}\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\left\{d \sigma+i\left(1-\sigma^{2}\right) \tilde{\omega}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{12}=\left(\lambda^{2}+\mu^{2}\right) \omega_{1} \wedge \omega_{2}, \tag{1.5}
\end{equation*}
$$

Received August $10,1970$.

$$
\begin{equation*}
d \tilde{\omega}=-\frac{1}{\lambda \mu}\left(2 \lambda^{2} \mu^{2}-f^{2}-g^{2}\right) \omega_{1} \wedge \omega_{2} \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\left\{d \log (f-i g)-d \log \lambda-\mathrm{i} \omega_{12}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right) \tag{1.7}
\end{equation*}
$$

$$
-\frac{i}{f-i g} \tilde{\omega} \wedge\left\{f\left(\left(2 \sigma-\frac{1}{\sigma}\right) \omega_{1}+\frac{i}{\sigma} \omega_{2}\right)-i g\left(\frac{1}{\sigma} \omega_{1}+i\left(2 \sigma-\frac{1}{\sigma}\right) \omega_{2}\right)\right\}=0 .
$$

From (α) and (1.4) we get $\sigma^{2}=1$, i.e. $\sigma=1$ or -1 . We may suppose $\sigma=1$, then from (β) and (1.5) we get

$$
\begin{equation*}
c=-2 \lambda^{2}, \tag{1.8}
\end{equation*}
$$

which is a negative constant. Since λ is constant on W^{2} from (1.8), we have $\tilde{\omega}=2 \omega_{12}$ from (1.3). Then, from (1.6), we get

$$
f^{2}+g^{2}=2 \lambda^{2}\left(\lambda^{2}-c\right)=6 \lambda^{4}
$$

Hence we may put $f+i g=\sqrt{6} \lambda^{2} e^{i \varphi}$ on W^{2}. Using the relations above and (1.7), we have $\omega_{12}=-(1 / 3) d \varphi$, and hence we get $c=0$, which contradicts to (1.8). Thus there is no minimal submanifold with M-index 2 , whose dimension is not less than 3 , satisfing the conditions $(1)^{\prime},(2), \cdots,(\beta)$.

§ 2. Minimal surfaces with M-index 2 and $\boldsymbol{\psi}_{v}$ of rank 1.

In this section, we discuss a minimal surface M^{2} with M-index 2 and ψ_{v} of rank 1 in a Riemannian manifold $M^{2+\nu}$ with constant curvature \bar{c}. Using the notations in [1] for our case, we can choose a frame $b \in B_{1}$ such that
(2.1) $\quad\left\{\begin{array}{lll}\omega_{13}=\lambda \omega_{1}, & \omega_{23}=-\lambda \omega_{2}, & \omega_{i \alpha}=0, \quad i=1,2, \\ \omega_{14}=\mu \omega_{2}, & \omega_{24}=\mu \omega_{1}, & \lambda \neq 0, \quad \mu \neq 0, \quad 3 \leqq \alpha \leqq 2+\nu .\end{array}\right.$

Since ψ_{v} is of rank 1, we can choose a frame $b \in B_{1}$ such that $F=f e_{5}$ and $G=g e_{5}$, $f^{2}+g^{2} \neq 0$. Let B_{2} be the set of such $b \in B_{1}$ satisfing (2.1). Then, using (2.1) and the structure equations, we get

$$
\begin{array}{ll}
\lambda \omega_{35}=f \omega_{1}+g \omega_{2}, & \omega_{3 r}=0, \tag{2.2}\\
\mu \omega_{45}=g \omega_{1}-f \omega_{2}, & \omega_{4 \gamma}=0, \quad 5<\gamma .
\end{array}
$$

Analogously to Theorem 1 in [1], we can verify that the geodesic codimension becomes 3 . On B_{2}, we have the equations

$$
\begin{equation*}
\left\{d \log \lambda-i\left(2 \omega_{12}-\sigma \tilde{\omega}\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left\{d \sigma+i\left(1-\sigma^{2}\right) \tilde{\omega}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{12}=-\left(\bar{c}-\lambda^{2}-\mu^{2}\right) \omega_{1} \wedge \omega_{2}, \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
d \tilde{\omega}=-\frac{1}{\lambda \mu}\left(2 \lambda^{2} \mu^{2}-f^{2}-g^{2}\right) \omega_{1} \wedge \omega_{2}, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left\{d \log (f-i g)-d \log \lambda-i \omega_{12}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right) \tag{2.7}
\end{equation*}
$$

$$
-\frac{i}{f-i g} \tilde{\omega} \wedge\left\{f\left(\left(2 \sigma-\frac{1}{\sigma}\right) \omega_{1}+\frac{i}{\sigma} \omega_{2}\right)-i g\left(\frac{1}{\sigma} \omega_{1}+i\left(2 \sigma-\frac{1}{\sigma}\right) \omega_{2}\right)\right\}=0,
$$

where $\tilde{\omega}=\omega_{34}$ and $\sigma=\mu / \lambda$.
Now, we suppose that
(α) $\tilde{\omega} \neq 0$ and $\sigma=$ constant on M^{2},

$$
M^{2} \text { is of constant curvature } c .
$$

Then we have $\sigma^{2}=1, \tilde{\omega}=2 \omega_{12}, c=0$ and $2 \lambda^{2}=\bar{c}$. Hence we may suppose that $\sigma=1$ and $\omega_{12}=d \theta$, then we get

$$
\begin{equation*}
\tilde{\omega}=2 d \theta, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
d x=\Re\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\bar{D}\left(e_{1}^{*}+i e_{2}^{*}\right)=\lambda\left(e_{3}^{*}+i e_{4}^{*}\right) d \bar{z}, \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
& \bar{D}\left(e_{3}^{*}+i e_{4}^{*}\right)=-\left(e_{1}^{*}+i e_{2}^{*}\right) \lambda d z+\sqrt{ } 2 \lambda e_{5} d \bar{z}, \tag{2.11}\\
& \bar{D} e_{5}=-\sqrt{ } 2 \tag{2.12}\\
& \lambda\left(\left(e_{3}^{*}+i e_{4}^{*}\right) d z\right),
\end{align*}
$$

where $e_{1}^{*}+i e_{2}^{*}=e^{i \theta}\left(e_{1}+i e_{2}\right), e_{3}^{*}+i e_{4}^{*}=e^{2 i \theta}\left(e_{3}+i e_{4}\right)$ and z is an isothermal coordinate of M^{2} such that $\omega_{1}+i \omega_{2}=e^{-i \theta} d z$. Since \bar{c} is positive constant, we may suppose $\bar{c}=1$, i.e. $\bar{M}^{5}=S^{5}$ (unit sphere). Then we have that $\lambda^{2}=1 / 2$. When $\lambda=1 / \sqrt{2}$, considering as $S^{5} \subset E^{6}$, we get the Frenet formulas:
(2.13)

$$
\left\{\begin{array}{l}
d x=\Re\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z} \\
d\left(e_{1}^{*}+i e_{2}^{*}\right)=\frac{1}{\sqrt{2}}\left(e_{3}^{*}+i e_{4}^{*}\right) d \bar{z}-e_{6} d z, \\
d\left(e_{3}^{*}+i e_{4}^{*}\right)=-\frac{1}{\sqrt{2}}\left(e_{1}^{*}+i e_{2}^{*}\right) d z+e_{5} d \bar{z} \\
d e_{5}=-\Re\left(\left(e_{3}^{*}+i e_{4}^{*}\right) d z\right) .
\end{array}\right.
$$

These formulas are nothing but ones when formally we put $p=0$ and $n=2$ in the case $\bar{M}^{n+3}=S^{n+3}$ in [1]. Analogously to the case $\bar{M}^{n+3}=E^{n+3}$ in [1], we can give a solution of (2.13) as follows

$$
x=A_{1} \exp \frac{i\left(u_{1}+\sqrt{3} u_{2}\right)}{\sqrt{2}}+\bar{A}_{1} \exp \frac{-i\left(u_{1}+\sqrt{3} u_{2}\right)}{\sqrt{2}}+A_{2} \exp \sqrt{2} i u_{1}
$$

$$
\begin{equation*}
+\bar{A}_{2} \exp \left(-\sqrt{2} i u_{1}\right)+A_{3} \exp \frac{i\left(u_{1}-\sqrt{3} u_{2}\right)}{\sqrt{2}}+\bar{A}_{3} \exp \frac{-i\left(u_{1}-\sqrt{3} u_{2}\right)}{\sqrt{2}} \tag{2.14}
\end{equation*}
$$

where $z=u_{1}+i u_{2}$ and A_{1}, A_{2}, and A_{3} are fixed vectors in C^{3} satisfing

$$
A_{\imath} A_{\jmath}=A_{i} \bar{A}_{k}=0, \quad \sum_{j=1}^{3} A_{j} \bar{A}_{\jmath}=\frac{1}{2} \quad \text { and } \quad A_{j} \bar{A}_{\jmath}=\frac{1}{6}, \quad(i, j, k=1,2,3, i \neq k) .
$$

References

[1] Ōtsuki, T., On minimal submanifolds with M-index 2. To appear in J. of Diff. Geometry.

Department of Mathematics,
Tokyo Institute of Technology.

