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ON NORMAL (f, g, u, v, ^-STRUCTURES ON SUBMANIFOLDS
OF CODIMENSION 2 IN AN EVEN-DIMENSIONAL

EUCLIDEAN SPACE

BY KENTARO YANO AND MASAFUMI OKUMURA

§ 0. Introduction.

It is well known that a hypersurface of an almost Hermitian manifold admits
an almost contact metric structure naturally induced on it.

The study of hypersurfaces of a Euclidean space and of a Kahlerian manifold
on which the induced almost contact metric structure satisfies certain conditions
has been started by one of the present authors [4, 5].

On the other hand Blair [1, 2], Goldberg [3], Ludden [1, 2], Yamaguchi [8] and
the present authors [6, 9] started the study of hypersurface of an almost contact
manifold and of submanifolds of codimension 2 of an almost complex manifold.

These submanifolds admit, under certain conditions, what we call (/, g, u, v, λ)
structure. An even-dimensional sphere of codimension 2 of an even-dimensional
Euclidean space is a typical example, of a manifold which admits this kind of
structure.

In a previous paper [9], we have studied the (/, g, u, v, ̂ -structure and given
characterizations of even-dimensional sphere.

In the present paper, we study submanifolds of codimension 2 in an even-
dimensional Euclidean space which admit a normal (/, g, u, v, Λ)-structure.

In § 1, we consider submanifolds of codimension 2 of an even-dimensional
Euclidean space regarded as a flat Kahlerian manifold. In the next section, we
deal with (/, g, u, v, ̂ -structure induced on a submanifold of codimension 2 of an
even-dimensional Euclidean space.

In § 3, we find differential equations which /, g, u, v and λ satisfy. § 4 is devoted
to the study of relations between the structure equations of the submanifold and
the induced (/, g, u, v, ^-structure.

In § 5 we prove a series of lemmas which are valid for normal (/, g, u, v, λ}-
structures and in § 6 we study properties of the mean curvature vector of the
submanifold with normal (/, g, u, v, ̂ -structure.

In the last § 7, we study hypersurfaces of an odd-dimensional Euclidean space
and determine all the hypersurfaces admitting a normal (/, g, u, v, Λ)-structure.

Our main theorem appears at the end of §7.
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§ 1. Submanif olds of codimension 2 of an even-dimensional Euclidean space.

Let E be a (2n+2) -dimensional Euclidean space and denote by X the position
vector representing a point of E. Since E1 is even-dimensional, E can be regarded
as a flat Hermitian manifold, and hence there exists a tensor field F of type (1, 1)
with constant components such that

(1.1) F2=-I

and

(1.2) (FX) (FY}=X Y

for any vectors X and F, where I denotes the identity transformation and a dot
the inner product in the Euclidean space E.

We consider an orientable submanifold M of codimension 2 of E covered by a
system of coordinate neighborhoods [U',xh], where here and throughout the paper
the indices h,i,j,k, run over the range {1, 2, •••, 2ri\.

We put

(1. 3) X^=^ίX1 di=dldx\

then X% are 2n linearly independent vector fields tangent to the submanifold M
and

(1-4) gji=Xj X*

give components of the fundamental metric tensor of M regarded as a Riemannian
manifold referred to the coordinate system {U\xh}. We denote by C and D two
mutually orthogonal unit normals to the submanifold M such that Xly C, D form
the positive orientation of E. Then we have

Xi C=Q, Xi D=Q,
(1.5)

C C=1, C-D=0, D-D=1.

Now the vectors Xτy C and D being linearly independent, the transforms FXτ

of X% by F can be expressed as

FXt =f^

where fz

h are components of a tensor field of type (1. 1) and u% and Vi are com-
ponents of 1-forms in M.

As to the transform FC of C by F, we have
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by virtue of (1. 2) and consequently

where

gίh being contravariant components of the metric tensor and λ a function of M.
As to the transform FD of D by F, we have

(FD) C=(F2D) (FC}=-D (FC)=-λ,

(FD)'D=(F2D)>(FD)=-D'(FD)=Q,

and consequently

FD=-vhXh-λC,

where

Vh = ViQih.

Thus we have

(1.6) FC=-uhXh+W,

FD=-vhXh-λC.

We note here that the 1-forms uι and vt depend on the choice of unit normals
C and D but the function λ — (FC)-D does not depend on the choice of C and D.
In fact, if we choose another set of mutually orthogonal unit normals C' and Df,
we have

C^Ccosfl-Dsinfl,

D'=Csmθ+Dcosθ,

and consequently

(FC) -D' = (FCco$θ- FD sin 0) (C sin θ + D cos θ]

= (λD cos θ+λC sin θ) (C sinθ+D cos #)
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§2. (f, g, u, v, ̂ -structure on a submanifold of codimension 2.

Now applying the operator F to the first equation of (1. 6) and taking account
of (1. 6), we find

from which

Utf^t = λVίy Vtfϊ

t = — λUi.

Applying the operator F to the second equation of (1. 6), we find

from which

fi

hUί=-λVh

ί UiU
ί = l-~λ2

ί ViU1^.

Applying also the operator F to the last equation of (1. 6), we find

F*D=-tfFXi-lFC,

-D=-vί(fi

hXh+uiC+viD}-λ(-uhXh+λD\

from which

f^hV^ = λUh, UiV
ί = Oί ViV-^l-λ2.

Thus summing up, we have

/?/**=

UttJ =

(2.1)
ffu* = - λv\ /» V = λuh,

UiU*=l-λ2, uίv
ί=0) ViVl

Now, substituting the first equation of (1. 6) into

we find

X,
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that is,

(2. 2) fJtf^Sgts = Qji - UjUi - VjVi.

If we put

(2. 3) /«=//<&.,

we find, from the first equation of (2. 1),

and from (2. 2)

// /« = Qji — UjUi — VjVi.

From these two equations, we find

(2.4)

Transvecting (2. 4) with // and taking account of the first equation of (2. 1),
we find

from which

(2. 5) Λ+Λ=0,

because of the second and the third equations of (2. 1). Thus the tensor fit defined
by (2. 3) is skew-symmetric.

We call an (/, g, ut vy ^-structure the set of /, g, u, v, and λ satisfying (2. 1) and
(2. 2).

§ 3. Differential equations which f, g, u, v and λ satisfy.

We denote by {fa} the Christoffel symbols formed with g^ and by ^ the
operator of covariant differentiation with respect to {fa}. Then the equations of
Gauss of M are

(3. 1) ΓJ-S=9JX - 1 . h.
[J ι

where

hji=hij and kβ=kij

are the second fundamental tensors of M with respect to the normals C and D
respectively.

The equations of Weingarten are
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(3. 2) ?£=d£= -Wlh+ltD,

and

(3. 3) \7ίD=diD= -WXh-kC,

where

(3. 4) W=h«sf\ *,*=W

and 4 are components of the third fundamental tensor with respect to the normals
C and D. The 4 define the connection induced in the normal bundle of M.

Now applying the operator V3 of covariant differentiation to the first equation
of (1. 6) and taking account of P/F=0, we find

^=(P,ΛΛ)J^

or

from which

Applying the operator V% to the second equation of (1. 6), we find

^or

k^
from which

Applying the operator ^ to the last equation of (1. 6), we find
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/^-kΉ-/,Q = -(Pii^

or

from which

Thus, summing up, we have

Fj/iΛ =

VjUi = - hjtff - λkji + ljvt,
(3.5)

§4. Normal (f, g, u, v, ̂ -structure.

We now compute

(4. 1) Sjih

where

(4. 2) ^

is the Nijenhuis tensor formed with /Λ
Substituting (3. 5) into (4. 1), we find

ih =//( - A««Λ + ht

hUi - ktίv
h + kt

hVi

j - ktjv
h + kt

that is,
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Sji^WhS-hjWfa-WW-AiWϊuj

(4. 3)

When the tensor S#Λ vanishes identically, the (/, g, u, v, ̂ -structure is said to
be normal.

Now the equations of Gauss of the submanifold M are

(4. 4) Kw*=hfhfi-hfhΊΛ+kfkii--kfklΛ,

where

h a J M+d j \ j Λ+. . j j
J l\ [k l

j , - r ~~ I -tl I ι
k t\ [J l\ (J t\ \k I

are components of the curvature tensor of M, the equations of Codazzi are

PfcA/i— PjAjM— lkkji+ljkkι=Q,
(4.5)

and the equations of Ricci are

(4. 6) Py/i-FA+A/Art-Λi'A^O.

In the sequel, we assume that the connection induced in the normal bundle of
M has no curvature, that is, we can choose C and D in such a way that we have
/t=0, and we say in this case that the connection induced in the normal bundle
is trivial.

In this case, we have, from (4. 5),

(4. 7) r*hji-PjIιM=Q, P*kji-PjkM=0,

which say that the tensors Pfchji and Pkkji are both symmetric in all the three
indices, and, from (4. 6),

(4.8) A/*M-Ai%=0,

or

(4. 9) A/fe«-A/At<=0,

which says that hf and kf are commutative as linear transformations in the
tangent space of M.

Now for the normal (/, g, u, v, ̂ -structure of M such that the connection
induced in the normal bundle is trivial, we have, from (4. 3),

(4.10) (///^-/*//Λ^-(Λ^^
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Since 1-forms uίf Vi and lt depend on the choice of unit normals C and D, the
tensor Sjih also depends on the choice of the normals. However, the left hand side
of (4.10) does not depend on the choice of C and D. In fact, if we choose another
set of mutually orthogonal unit normals Cf and Df, we have

C'=Cco$θ-Dsmθ,
(4.11)

D'=Csmθ+Dco$θ.

Then the second fundamental tensors hrf and kμ with respect to C' and D'
are defined by

(4.12) V3X%=hji'C'+kji'D'.

Substituting (4.11) into (4.12) and comparing the resulting equation with (3.1),
we get

hf

ji=hji cos θ—kji sin 0,
(4.13)

k'ft=hji sin θ+kμ cos θ.

On the other hand (4.11) and the first equation of (1.16) show that

Ui=Ui cos θ—Vi sin 0,
(4.14)

Vi = Ui sin 0+Vί cos θ.

Consequently we have

WAi*-AiWW-W

= (ffhf—hfff)Ui—(ffhth—hffF)Uj+(//fe Λ — k f f t h ) V i — ( f f k t

h — k ί f f ) v 3 .

This shows that the conditions imposed on M are of intrinsic character.

§ 5. Some lemmas on normal (f, g, u, v, Λ)-structure.

As we have seen in § 4, the condition imposed on the submanifold M does not
depend on the choice of unit normals C and D.

The main purpose of the following discussions is to determine submanifolds of
codimension 2 of E which satisfy (4.10).

Assuming that the function Λ(l—Λ2) does not vanish almost everywhere on
My we prove following series of lemmas.

LEMMA 5.1. For the normal (/, g, u, v, ^-structure of M such that the con-
nection induced in the normal bundle is trivial, we have

(5.1) fJ

thth-hjtfth=aujuh+b(UjVh+VjUh)+cvjv
h
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and

(5. 2) fjtkth-kjtft

h=bUjUh+c(ujVh+VjUh)+dVjVh

ί

a, b, c, and d being scalars of M.

Proof. We put

(5. 3) P/=/AΛ- A//Λ Qf=W-kjW

and note that

(5. 4) Pji^ffhu+tfhtj, Qjt=fSktt+fSktj

are both symmetric with respect to j and i.
Then equation (4. 10) can be written as

(5. 5) Pjhui-Pihuj+QjhVi-QihvJ=0,

from which, by transvection with u\

PAl-^)-(«*W)wy-(Qifcw%=0

by virtue of (2. 1), that is, P/ is of the form

(5. 6) Pjh=UjPh+VjQh,

and consequently P# is of the form

(5.7) Pfl=ujPi+υjQi.

Since P# is symmetric, we have, from (5. 7),

(5. 8) ujPi-UiPj+VjQi-ViQ^Q,

from which we see that Pi must be of the form

(5. 9) Pi=aui+bvi

and Qi of the form

(5. 10) Qi=dui+cvi.

Substituting (5. 9) and (5. 10) into (5. 8), we find

Uj(aui + bvt) — Ui(auj + bvj) + Vj(dui + cvt) — Vi(duj + cvj) = 0,

or

from which, HI and Vi being orthogonal to each other, we have
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b=d,

and consequently we have

or

Ph=auh+ bvh, Qh = buh + cv\

Substituting these into (5. 6), we obtain

(5. 11) Pf = aUjUn + b(UjVh + VjUh) + cvjvh.

Similarly, we have

(5. 12) Qj

h=άuju
h+b(ujVh+VjUhϊ+dVj vh.

Substituting these into (5. 5), we find

from which

(5.13) 5=b, b = c.

Equations (5.11), (5.12) and (5.13) prove the lemma.

LEMMA 5. 2. For the normal (/, g, u, v, ̂ -structure of M such that the connection
induced in the normal bundle is trivial, we have

h fa/iii, — /v7/^ —I— fiu^ /? .^"tji — Rijft' —!— v7)^"fl>i ι/v — ( J L I Λ \^ ΏU , fl/Ί U —pl/t> \^ΎU ,

(5.14)
ly .Λ Λyl ΓVΊjh' -I— Rlfo t?-h"lfi ^?7V^ —I— ΎlfoKI (Λ —UitΛ ~ p u , KΊ u — p i A \ [ U

Proof. Transvecting (5.1) with /V, we find

(—δk+uku
l+VkV^ht1 —fk3hffth—aλvku

h+bλ(vkv
h—uku

h]—cλukv
h

by virtue of (2.1), or

—hkh+uk(u lh th)+v^hth)+h t sfkfh
s=aλvkuh+bλ(vkvh—ukuh)—cλukvh,

from which, taking the skew-symmetric part,

Uic^hth)—Uh(ulhίk}+vk(vlhth)—Vhtyhtk) = — λ(a+c}(ukvh—UhVk}.

This equation shows that ulhth and vlhth should be respectively of the form

u^th=oίuh+βvhl tfhth=βun+γvh,

that is,
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ihul = auh + βvh, hihυτ = βuh + γvh.

The other two equations will be proved in a similar way.
We note here that α, β, γ and ά, β, f are given by

LEMMA 5. 3. In Lemma 5. 2, we have

(5. 15) 2/3=α-f, 2β=γ-a.

Proof. In (4. 10), we contract with respect ot h and /, then we obtain

(5.16) //(AίHί<)-

because of

Substituting (2. 1) and (5. 14) into (5. 16), we find

fftaut + βvt) -Mifvt +fjt(βut + fvt] + λkfut = 0,

and consequently

aλVj — βλUj — λ(βUj + γVj) + βλVj — fλUj + λ(άUj + βvj) = 0,

or

from which

2β=ά-f, 2β=γ-a.

LEMMA 5. 4. In Lemma 5. 2, w0 /z<z^

(5.17) £=0, j§=0

consequently

a=γ, ά = f.

Proof. Transvecting the first equation

of (5. 14) with kjί and using (5. 14), we obtain
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ktfhihu% = a(άul + βv1} + β(βut + fv1},

= (aά + ββ)u* + (aβ + βfy.

Also transvecting the third equation

kihU* = άUh + βvh

of (5. 14) with hif and using (5. 14), we obtain

hjfkihtf = ά(α«* + βv1} + β(βu* + γv1}

= (aά + ββW + (άβ + βγW

Thus, hih and kf being commutative,

or

or using (5. 15),

from which the lemma follows.
Combining Lemma 5. 2 and Lemma 5. 4, we have

LEMMA 5. 5. For the normal (/, g, u, v, λ}- structure of M such that the con-
nection induced in the normal bundle is trivial, we have

hfu1 = auh, hihvl = avh,
(5. 18)

kiW = auh, kihvl = άvh.

We also have

LEMMA 5. 6. For the normal (/, g, u, v, λ}-structure of M such that the con-
nection induced in the normal bundle is trivial, hf and kih commute with /Λ

Proof. Transvecting (4. 10) with ul and using (2. 1) and (5. 18), we obtain

(fShth-hSfMl-λ*) + (MW+afWu^

or

that is,

f tt, h — /, t fh—
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Similarly we can prove

f tt, h _ t> t fh
J 3 «ί —KJ ft

LEMMA 5. 7. For the normal (/, g, u, v, ̂ -structure oj M such that the con-
nection induced in the normal bundle is trivial, we have

(5. 19) A* ίA t

f t=αAiΛ, ktW^άkf.

Proof. Differentiating

covariantly, we obtain

or using (3. 5)

( F*Ayi)«» + hfiWft - λkif) = (Pko)uj + α( - Aw// -

and consequently taking skew-symmetric part

because of

F*Ayi - Pjhki = 0, AyiA*1 = hkikj1.

But A*8 and ft

τ commute and consequently

(5. 20) 2hjihk

tft1'=(Pka)Uj-(Pja)uk-2ahJctfj
t

ί

from which, transvecting with uk,

or

that is,

(5. 21) (Γyα)(l-^)

Thus, Pj a being proportional to ujf we find from (5. 20)

or
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since hif and /t* commute.
Transvecting this equation with //Λ we find

or using (5. 18)

or

Similarly, we can prove

LEMMA 5. 8. In Lemma 5. 5 and Lemma 5. 7, a. and a are both constants.

Proof. Differentiating the second equation of (5. 18) covariantly and taking
account of (3. 5), we find

from which, taking the skew-symmetric part

/*//wv-^/^
because of the equation of Codazzi (4. 7).

Transvecting the above equation with v3 and making use of (2. 1) and (5. 18),
we obtain

(5. 22) (l~λψj(χ = (vΨka)Vj.

Thus, Fjo. is proportional to vjt but (5. 21) shows that Ϋjct is proportional to u3.
HJ and Vj being orthogonal to each other, we have F/α=0 and hence a= const.

§ 6. The mean curvature vector.

The mean curvature vector of the submanifold M is defined to be

(6.1) .

and the mean curvature H of the submanifold M is defined to be the length of the
mean curvature vector, that is,
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(6-2) ff^-A-KAi

If the mean curvature vector vanishes identically on M, then M is said to be
minimal.

A necessary and sufficient condition for M to be minimal is that

(6. 3) V=0, *i«=0.

We have

LEMMA 6. 1. Suppose that the submanifold M is such that the connection
induced in the normal bundle is trivial and the (/, g, u, v, λ}-structure induced on M
is normal. Then the mean curvature of M is constant.

Proof. Let a' be an eigenvalue of hp at a point of M and p* the eigenvector
corresponding to a' at the point. Then we have

Applying this hrf and taking account of (5. 19), we find

aa'pj = a/zp3,

from which

α' = α or α'=0.

Thus the only eigenvalue of hf- is a or 0. Moreover, by Lemma 5. 8, a being
constant, the eigenvalues of hih are constant.

Similarly we can show that kf- has only two constant eigenvalues a and 0.
Now, let r and 5 be multiplicities of the eigenvalues a. of hιh and of a of kih

respectively. Then, a and a being constant, r and 5 are also constant. So we
have

hiτ=ra, kit=sά.

Substituting this into (6. 2), we obtain

(6. 4) H2 = -rV (r2α2 + 52ά2) - const.
4n

This lemma shows that, in the sequel, we have to consider only two cases.
One of these is the case where the submanifold is minimal and the another is the
case where the mean curvature vector does not vanish everywhere on M.

Suppose first that the submanifold M is minimal. Then from Lemma 5. 7 we
find
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hjJl^O, kjtk
ji = 0,

from which

(6. 5) Ay<=0, kji=0.

Thus equations of Weingarten give

and consequently, the unit normals C and Z> being constant vectors, M is a 2n-
dimensional plane. Thus we have

THEOREM 6. 1. Let M of codimension 2 of E be such that the connection
induced on the normal bundle of M is trivial and the (/, g, u, v, ^-structure on M
is normal. If M is minimal, then M is a plane of codimension 2.

Suppose next that the mean curvature vector does not vanish everywhere on
M, and choose the first unit normal C along the direction of the mean curvature
vector and choose the second unit normal D in such a way that Xτ, C, D form the
positive orientation of E.

Then the 1-forms ut and vι are completely determined when M is given. We
say that such an (/, g, u, v, ̂ -structure is intrinsic.

Since the first unit normal C is chosen in the direction of the mean curvature
vector, we see, from (6. 1), that

(6. 6) A,*=0.

Thus if M is such that the connection induced in the normal bundle is trivial
and the (/, g, u, v, ̂ -structure induced on M is normal, then we have, from (5. 19),

from which

(6. 7) kJt=Q.

Thus, equations of Gauss and Weingarten become respectively

ΓJ-Xi=Ay<C, PjC=-hjhXh PjD=0,

from which D is a constant vector and consequently

that is,

X D= const,

which shows that M lies in a (2^+1) -dimensional plane. Thus we have
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THEOREM 6. 2. Let M of codimension 2 be such that the connection induced
in the normal bundle of M is trivial and the mean curvature vector does not vanish
everywhere. If the (/, g, u, v, 2)-structure induced on M is normal, then there exists
a (2n+V)-dimensional plane E2nJrl such that M is a hypersurface of it.

§ 7. Hypersurfaces of an odd-dimensional Euclidean space.

By theorem 6. 2, there exists a (2^+1)-dimensional plane Ef such that the
submanifold M under consideration is a hypersurface of it. So, in this section, we
regard M" as a hypersurface of a (2^+1)-dimensional Euclidean space E'', which is
,of course in a (2n+2) -dimensional Euclidean space E.

We consider a linear coordinate system in E' consisting of 2n+l linearly
independent vectors Eλy Eλ and D forming a linear coordinate system of E, where
here and in the sequel the indices κ,λ,μ,v,'- run over the range {1,2, •••, 2«+l}.
We put

(7.1) gμί=Ep Eλ,

all the gμλ being constant. We also have

(7.2) Eλ-D=Q.

Now, F being a complex structure of the (2n+2)-dimensional Euclidean space
E, we can put

FEλ=φfEμ+ η,D,
(7.3)

FD=-rfEf,

where

(7.4) 7'=w",

gλf being contra variant components of gμλ.
From the first equation of (7. 3), we find

F2Eλ = φλ

μ(φμ

κEκ + ημD} - ηλη
κEκ,

from which, F2 being equal to —/,

From the second equation of (7. 3), we find
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from which

37^ =

Moreover, from the first equation of (7. 3), we have

from which, (FEμ} (FEλ] being equal to Eμ Eλ=gμλ,

gμλ = φμvφλκgvκ + ημηλ

Summing up, we have

φλμφμ

κ=—dl + ηλr/κ,

(7.5) φfηp = 0, 0>iV = 0,

that is, (φ*,ηjί,gμι) defines an almost contact metric structure of the (2n+\)
dimensional Euclidean space E'.

Now we consider a 2^-dimensional submanifold M in Er in E and represent it
by the position vector

X=X(x)=XK(x)EK,

the origin of the coordinate system being on E'.
The vectors X% tangent to M and the unit normal vector C to M can be

expressed as

(7. 6) X^BfEc, C=CΈK,

respectively, where

Applying the operator F to the both sides of the first equation of (7. 6), we
find

or

f^hBh

κEκ + UiC *EK
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by virtue of (1. 6), (7. 3) and (7. 6), from which

Applying the operator F to the both sides of the second equation of (7. β), we
find

FC=CΨEλ,

or

- U\BiKEK} + W = Cλ(φλ

κEκ

by virtue of (1. 6), (7. 3) and (7. 6), from which

Summing up, we have

(7.7)

It will be easily verified that, φλ

κ, ηλ, gμλ defining an almost contact metric structure,
/Λ Qji, Mi, Vi, λ define an (/, g, u, v, ^)-structure.

Now the equations of Gauss and Weingarten of M in Ef are respectively

(7. 8)

and

(7.9)

or

(7. 10)

and
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Differenting the first equation of (7. 7) covariantly, we find

from which, taking account of the second equation of (7. 7),

Differentiating the second equation of (7. 7) covariantly and taking account of
(7. 7), we find

or

from which

Differentiating the third equation of (7. 7) covariantly, we find

from which

Finally differentiating the last equation of (7. 7) covariantly, we find

from which

Summing up, we have

(7. 12)

We assumed that (/, g, u, v, ̂ )-structure on M is normal, that is,
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(7.13) Sy«W/W-/WyM^

As we have seen in § 6, the only eigenvalue of the tensor HJ1 is a or 0. We denote
the eigenspaces corresponding to the eigenvalues a and 0 by Va and Fo respectively.
Since the multiplicity r of a is constant, Va(x) at x and VQ(X) at x, x$M, define
respectively r- and (2n— r)-dimensional distributions Da and DQ over M. They are
complementary in the sense that they are mutually orthogonal and their Whiteney
sum is Γ(M).

LEMMA 7. 1. The distributions Da and DQ are both integrable.

Proof. Let ph and qh be two arbitrary eigenvectors of hih with constant
eigenvalue α^O, then we have

hihp% = aph, hihqz = aqh,

from which

Thus

by virtue of the equations of Codazzi, that is, if ph and qh belong to Da, then
[p, q]h also belongs to Da. Consequently the distribution Da spanned by eigenvectors
of hi1 with eigenvalue α^O is integrable.

Similarly we can also prove that the distribution DQ spanned by eigenvectors
of hih with eigenvalue 0 is integrable.

LEMMA 7. 2. Each integral manifold of Da is totally geodesic in M and so
is each integral manifold of D0.

Proof. Let ph and qh be two arbitrary vectors belonging to the distribution
Da. Then we have

(7. 14) hihph = apiy hihqh = aq*

Differentiating the first equation of (7. 14) covariantly, we obtain

from which
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by virtue of the equations of Codazzi. Transvecting this equation with q* and
taking account of (7. 14), we have

from which

or

which shows that if ph and qh are two arbitrary vectors belonging to the distribu-
tion Da, then qΨjph also belongs to the distribution Da. Thus each integral
manifold of Da is totally geodesic in M.

Similarly we can prove that each integral manifold of D0 is totally geodesic
in M.

Moreover, if p% and w% belong respectively to D0 and Da, we have

(w*Pjhih)p% = wΨj(hihpί)-hi

hwΨjp't = -

and

that is,

(7. 15)

and

(7. 16)

vector of the form qh being written as (qh)a + (qh)o, where (qh)a and (qn\ respectively
denote the Da and D0 components of qh. Hence we get

because of the equation of Codazzi.
Consequently we have

(7. 17) (wΨjpϊ)a=Q, that is,

and
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(7. 18) (pjpjWh)0=Q, that is,

Thus we see that the distributions DQ and Da are parallel. So, using de Rham's
decomposition theorem [7], we have

LEMMA 7. 3. If the submanifold M is complete, then M is a product of Ma

and MQ, Ma corresponding to the integral manifold of Da and M0 to that of D0.

LEMMA 7. 4. The Ma is totally umbilical in Er and M0 is totally geodesic in Ef.

Proof. We represent Ma by

(7. 19) xh=x\ua\

where ua are local coordinates on Ma. Thus we have

(7.20) XK=XK(x(u)\

from which

(7.21) Bb

κ=Bb

hBh

κ,

where

Bb*=dbX', Bb

h=dbx
h (3b=dldub).

From (7. 21), we find by covariant differentiation

because of ycBb

z=Q, from which

PcBit

or

(7.22) Pc

because Bb

h are eigenvectors of hf- with eigenvalue α. Equation (7. 22) shows that
Ma is totally umbilical in Ef.

We can similarly prove that M0 is totally geodesic in E'.

LEMMA 7. 5. The Ma is a sphere and M0 is a plane.

Proof. The M0 being totally geodesic in E1 ', it is a plane. Thus Ma is a
hypersurface of a Euclidean space.
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For the covariant derivative of C* along Ma, we have

BC

J being an eigenvector of hf with eigenvalue a, from which

and consequently

Aκ being a constant vector. This equation shows that Ma lies on a sphere. Thus,
Ma being the intersection of a plane and a sphere, Ma is itself a sphere.

From these lemmas, we have

THEOREM 7. 1. Let M be a 2n- dimensional complete differentiate hypersurface
in a (2n + l)-dimensional Euclidean space E'. If the (f,g,u,v, λ}- structure induced
on M is normal, then M is a product of a sphere and a plane.

Combining Theorems 6. 1, 6. 2 and Theorem 7. 1, we obtain

THEOREM 7. 2. Let a complete differentiable submanifold M of codimension 2
of an even- dimensional Euclidean space be such that the connection induced in the
normal bundle of M is trivial. If the (/, g, u, v, λ)- structure induced on M is normal,
then M is a sphere, a plane, or a product of a sphere and a plane.

As a special case of Theorem 7. 2, we have from (4. 3)

THEOREM 7. 3. Let a complete differentiable submanifold M of codimension 2
of an even- dimensional Euclidean space be such that the connection induced in the
normal bundle of M is trivial. If the linear transformations hj% and kf which are
defined by the second fundamental tensors of M commute tυith //, then M is a
sphere, a plane, or a product of a sphere and a plane.
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