ON A RIEMANNIAN MANIFOLD ADMITTING KILLING VECTORS WHOSE COVARIANT DERIVATIVES ARE CONFORMAL KILLING TENSORS

By Cheng-Hsien Chen

§ 1. Let M^{n} be an n-dimensional Riemannian manifold with metric $g_{a b .}{ }^{1)}$ Let ∇_{a} denote the operator of covariant differentiation with respect to the Riemannian connection. We denote the Riemannian curvature tensor, the Ricci tensor and the scalar curvature respectively by $R_{a b c}{ }^{e}, R_{b c}=R_{e b c}{ }^{e}$ and $R=g^{b c} R_{b c}$.
M^{n} is called a manifold of constant curvature if its Riemannian curvature tensor is given by

$$
R_{a b c}{ }^{e}=(R / n(n-1))\left(\delta_{a}{ }^{e} g_{b c}-g_{a c} \delta_{b}{ }^{e}\right) .
$$

A vector field v^{c} is called a Killing vector if it satisfies
(1.1)

$$
\begin{equation*}
\nabla_{b} v_{c}+\nabla_{c} v_{b}=0, \quad\left(v_{c}=v^{e} g_{e c}\right) . \tag{1.1}
\end{equation*}
$$

It is well known that a Killing vector v^{c} satisfies

$$
\begin{equation*}
\nabla_{a} \nabla_{b} v_{c}+R_{\text {eabov }} v^{e}=0 . \tag{1.2}
\end{equation*}
$$

A skew symmetric tensor field $u_{b c}$ is called a conformal Killing tensor, if there exists a vector field p^{c} such that

$$
\begin{equation*}
\nabla_{a} u_{b c}+\nabla_{b} u_{a c}=2 p_{c} g_{a b}-p_{a} g_{b c}-p_{b} g_{a c}{ }^{2)} \tag{1.3}
\end{equation*}
$$

Such a vector field p^{c} is called an associated vector of $u_{b c}$ and is given by

$$
\begin{equation*}
\nabla^{e} u_{e c}=(n-1) p_{c} . \tag{1.4}
\end{equation*}
$$

Tachibana studied such a tensor and got the following:
Theorem A. ([2]) In a Riemannian manifold M^{n} of constant curvature, the covariant derivative $\nabla_{b} v_{c}$ of any Killing vector v_{c} is a conformal Killing tensor.

It is well known that the set of all Killing vectors constitutes a Lie algebra L. We assume L to be transitive, i.e., there exists a Killing vector v^{c} satisfying $v^{c}(p)=V^{c}$ for any point p and for any direction V^{c}. Then, we know the converse of Theorem A is valid as follows.

Received June 18, 1970.

1) Indices a, b, c, \cdots run over the range $1,2, \cdots, n$.
2) This definition is prımarily given by Tachibana in [2].

Theorem 1. In a Riemannian manifold $M^{n}(n>2)$, if the Lie algebra L of all Killing vectors v^{c} is transitive and the covariant derivative $\nabla_{b} v_{c}$ of any Killing vector v_{c} is a conformal Killing tensor, then M^{n} is a manifold of constant curvature.

Proof. Taking $u_{b c}=\nabla_{b} v_{c}$ in (1.4) and by making use of (1.2), we find

$$
\begin{equation*}
p_{c}=-(1 /(n-1)) R_{e c} v^{e} . \tag{1.5}
\end{equation*}
$$

Again, taking $u_{b c}=\nabla_{b} v_{c}$ in (1.3) and substituting (1.2) and (1.5) into what follows, we have

$$
\left(R_{e a b c}+R_{e b a c}\right) v^{e}=(1 /(n-1))\left(2 R_{e c} g_{a b}-R_{e a} g_{b c}-R_{e b} g_{a c}\right) v^{e} .
$$

Since the last equation is valid for any v^{e}, by the assumption, we have

$$
\begin{equation*}
R_{e a b c}+R_{e b a c}=(1 /(n-1))\left(2 R_{e c} g_{a b}-R_{e a} g_{b c}-R_{e b} g_{a c}\right) . \tag{1.6}
\end{equation*}
$$

Contracting (1.6) with $g^{e c}$, we get

$$
R_{a b}=(R / n) g_{a b} .
$$

By virtue of the last equation, (1.6) becomes

$$
\begin{equation*}
R_{e a b c}+R_{e b a c}=(R / n(n-1))\left(2 g_{e c} g_{a b}-g_{e a} g_{b c}-g_{e b} g_{a c}\right) . \tag{1.7}
\end{equation*}
$$

Interchanging indices a, b, c in (1.7) as $a \rightarrow b \rightarrow c \rightarrow a$, we have

$$
\begin{equation*}
R_{e b c a}+R_{e c b a}=(R / n(n-1))\left(2 g_{e a} g_{b c}-g_{e b} g_{c a}-g_{e c} g_{b a}\right) . \tag{1.8}
\end{equation*}
$$

If we form (1.7)-(1.8), we get

$$
R_{e b a c}=(R / n(n-1))\left(g_{e c} g_{b a}-g_{e a} g_{b c}\right)
$$

on taking account of the first Bianchi identity. Thus the proof is completed.
In the next section, we shall study analogous facts in a Kählerian manifold.
§ 2. A Kählerian manifold \mathscr{M}^{n} is an even dimensioanl Riemannian manifold with a mixed tensor $F_{a}{ }^{b}$ and with a Riemannian metric $g_{a b}$ satisfying the following conditions

$$
\begin{array}{ll}
F_{a}^{e} F_{e}{ }^{b}=-\delta_{a}{ }^{b}, & F_{a}{ }^{e} F_{b}{ }^{r} g_{e r}=g_{a b}, \\
\nabla_{a} F_{b}{ }^{c}=0, & F_{a b}=F_{a}{ }^{e} g_{e b}=-F_{b a} .
\end{array}
$$

It is well known that there holds the following relations:

$$
R_{a b c e} F_{a}{ }^{e}=R_{a b d e} F_{c}^{e}, \quad R_{a b}=R_{e r} F_{a}{ }^{e} F_{b}^{r},
$$

$$
\begin{equation*}
R_{a}{ }^{e} F_{e}{ }^{b}=-(1 / 2) R_{c r a}{ }^{b} F^{k r} \tag{2.1}
\end{equation*}
$$

If we define a tensor $S_{a b}$ by

$$
\begin{equation*}
S_{a b}=(1 / 2) R_{a b e r} F^{e r}, \tag{2.2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
R_{a e} F_{b}^{e}=S_{a b}, \quad S_{a e} F_{b}^{e}=-R_{a b} \quad \text { and } \quad R=-S_{e r} F^{e r} . \tag{2.3}
\end{equation*}
$$

\mathscr{M}^{n} is called a manifold of constant holomorphic sectional curvature or a locally Fubinian manifold if its Riemannian curvature tensor is given by

$$
\begin{equation*}
R_{a b c}{ }^{e}=(R / n(n+2))\left(\delta_{a}{ }^{e} g_{b c}-g_{a c} \delta_{b}{ }^{e}+F_{a}{ }^{e} F_{b c}-F_{a c} F_{b}{ }^{e}-2 F_{a b} F_{c}{ }^{e}\right) . \tag{2.4}
\end{equation*}
$$

For a skew symmetric tensor field $W_{b c}$ in \mathscr{M}^{n}, if there exists two vector fields p^{c} and q^{c} such that

$$
\begin{equation*}
\nabla_{a} w_{b c}+\nabla_{b} w_{a c}=2 p_{c} g_{a b}-p_{a} g_{b c}-p_{b} g_{a c}+3\left(q_{a} F_{b c}+q_{b} F_{a c}\right) \tag{2.5}
\end{equation*}
$$

then, corresponding to a conformal Killing tensor $u_{b c}$ in M^{n}, we shall call $w_{b c}$ an F-conformal Killing tensor and p^{c} and q^{c} are associated vectors of $w_{b c}$.

Corresponding to Theorem A, we know the following
Theorem B. ([1]) In a manifold of constant holomorphic sectional curvature, the covariant derivative $\nabla_{b} v_{c}$ of any Killing vector v_{c} is an F-conformal Killing tensor.

We know the converse case of Theorem B is also valid as follows.
Theorem 2. In a Kählerian manifold $\mathscr{M}^{n}(n>2)$, if the Lie algebra L of all Killing vectors v^{c} is transitive and the covariant derivative $\nabla_{b} v_{c}$ of any Killing vector v_{c} is an F-conformal Killing tensor, then \mathscr{M}^{n} is a manifold of constant holomorphic sectional curvature.

Proof. Taking $w_{b c}=\nabla_{b} v_{c}$ in (2.5) and by making use of (1.2) we know (2.5) becomes

$$
\begin{equation*}
-\left(R_{e a b c}+R_{e b a c}\right) v^{e}=2 p_{c} g_{a b}-p_{a} g_{b c}-p_{b} g_{a c}+3\left(q_{a} F_{b c}+q_{b} F_{a c}\right) . \tag{2.6}
\end{equation*}
$$

Transvecting (2.6) with $g^{a b}$, we get

$$
\begin{equation*}
-R_{e c} v^{e}=(n-1) p_{c}+3 q^{e} F_{e c} . \tag{2.7}
\end{equation*}
$$

On the other hand, transvecting (2.6) with $F^{b c}$, we have

$$
-S_{e a} v^{e}=p^{e} F_{a e}+(n+1) q_{a} .
$$

Transvecting the last equation with $F_{c}{ }^{a}$, we get

$$
\begin{equation*}
R_{e v} v^{e}=-p_{c}-(n+1) q^{e} F_{e c} . \tag{2.8}
\end{equation*}
$$

If we form $(2.7)+(2.8)$, we obtain

$$
\begin{equation*}
p_{c}=q^{e} F_{e c} \tag{2.9}
\end{equation*}
$$

provided $n>2$. Consequently (2.7) and (2.8) imply

$$
\begin{equation*}
p_{c}=-(1 /(n+2)) R_{e c} v^{e} \quad \text { and } \quad q_{c}=-(1 /(n+2)) S_{e c} v^{e} . \tag{2.10}
\end{equation*}
$$

Substituting (2.10) into (2.6), we have

$$
\left(R_{e a b c}+R_{e b a c}\right) v^{e}=(1 /(n+2))\left[2 R_{e c} g_{a b}-R_{e a} g_{b c}-R_{e b} g_{a c}+3\left(S_{e a} F_{b c}+S_{e b} F_{a c}\right)\right] v^{e}
$$

Since the last equation holds good for any v^{e}, therefore by the assumption, we obtain

$$
\begin{equation*}
R_{e a b c}+R_{e b a c}=(1 /(n+2))\left[2 R_{e c} g_{a b}-R_{e a} g_{b c}-R_{e b} g_{a c}+3\left(S_{e a} F_{b c}+S_{e b} F_{a c}\right)\right] \tag{2.11}
\end{equation*}
$$

Transvecting (2.11) with $g^{e c}$ and taking account of (2.3), we know

$$
R_{a b}=(R / n) g_{a b}
$$

Substituting the last result into (2.11), we get

$$
\begin{equation*}
R_{e a b c}+R_{e b a c}=(R / n(n+2))\left[2 g_{e c} g_{a b}-g_{e a} g_{b c}-g_{e b} g_{a c}+3\left(F_{e a} F_{b c}+F_{e b} F_{a c}\right)\right] \tag{2.12}
\end{equation*}
$$

Interchanging indices a, b, c in (2.12) as $a \rightarrow b \rightarrow c \rightarrow a$, and then substracting what follows from (2.12), we get the desired result

$$
R_{e b a c}=(R / n(n+2))\left(g_{e c} g_{b a}-g_{e a} g_{b c}+F_{e c} F_{b a}-F_{e a} F_{b c}-2 F_{e b} F_{a c}\right)
$$

I am grateful to Professors T. Adati and S. Tachibana for many suggestions and criticisms.

References

[1] Chen, C. H., On F-conformal Killing tensors in a Kählerıan space. To appear.
[2] Tachibana, S., On conformal Killing tensors in a Riemannıan space. Tôhoku Math. Journ. 21 (1969), 56-64.
[3] Yamaguchi, S., On a product-conformal Killing tensor in locally product Riemannıan spaces. Tensor, N. S. 21 (1970), 75-82.
[4] Yano, K., Differntial geometry on complex and almost complex spaces. Pergamon Press (1965).

Department of Mathematics,
Science University of Tokyo.

