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ON A SYSTEM OF LINEAR ORDINARY DIFFERENTIAL
EQUATIONS RELATED TO A TURNING

POINT PROBLEM

BY MINORU NAKANO

§ 1. Introduction.

1° In order to analyse the so called turning point problem, sometimes the
given equation will be reduced to a simpler type. If the given equation, however,
has a "complicated" turning point, it will be investigated in several domains
separately, where the original equation behaves in a quite different manner, and
each solution obtained in the corresponding domain will be matched with the
solutions in adjacent domains by adequate methods. Iwano [2] analysed how to
divide the domain where the equation is defined and how to reduce the equation
in each of the divided domains. For instance, the equation with a turning point
at the origin

dy _
dx
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can be changed by a transformation ^/=diag[l, xd/2]u to

Γ 0
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in a domain |a;|gM2 |s |1 / 2. Here <50 is a small constant and Mi (i=l, 2) are large
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ones. The first equation would be investigated away from the turning point and
the solution expansible in x~*ε could be obtained at least formally since its first
coefficient has different characteristic roots: 1 and —1. The second equation may
require the global consideration, for it must be investigated for ξ both small
and large, and queerly enough three new secondary turning points appeared, i.e.,
roots of f3—1=0. The last equation is apparently of regular perturbation type.
A difference from the ordinary regular perturbation is that it must be analysed
globaly because the new independent variable η varies for \η\^M2 with M2 large
and it may be infinity in some case. Notice ζ=0 corresponds to the original
turning point x=0 but the roots of f3—1=0 do not.

The differential equation of the above example does not satisfy the " one-
segment condition" of its characteristic polygon (Iwano [2]), it is the case satis-
fying the simplest " two-segment condition " and will be investigated lateron.

Here we shall consider the case of an apparent regular pertrubation—such as
the transformed last equation of the above example—and widen a central angle of
the corresponding inner domain maximal in a sense in which a special type of
asymptotic expansion for the solution is valid. We use a term " inner domain " to
be the domain containing the original turning point.

As for the maximality of the complement of the inner domain, see, e.g.,
Nishimoto [5]. The widening central angles may be necessary not only for mathe-
matical interests but also for applications, say, for boundary value problems.

The author wishes to express his thanks to Professor Y. Hirasawa and his
colleague T. Nishimoto for their valuable advice.

The equation considered is followed from an equation of the type

(1)

where σ is a positive integer, ε is a complex small parameter, Y is an ^-dimen-
sional column vector or an n-by-n matrix function holomorphic in x and ε for
|#|=.ro, 0< |ε | = ε 0 , |argε|^εi, and admits an asymptotic expansion such that

A(x,ε)~ΣAr(x)er

r=0

as ε tends to zero.
This paper is a partial continuation of the previous one [4], which was con-

centrated on the formal theory and assumed that the differential equation (1)
satisfies following conditions:

(a) A0(x)=άiΆg[a1(x\ a2(x), •••, an(x)]xk,

where av(x) is holomorphic in |# |^#o and av(x)^aμ(x) for v^μ and for all values
of x: \x\^x0. For r ^ l , Ar(x) is of lower triangular and

and aS?,m<p*0;
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(β) The one-segment condition: hold the inequalities

and ™vμ

 >k-^Σ±-.—L f o r

v+l—μ σ v+l—μ

Thus the origin is a turning point of order k^l.

§2. The problem and notations.

3° The equation to be considered in the present paper is as follows:1:)

(2) ηjL=A(ztP)U,

where U is an ^-dimensional column vector or an n-by-n matrix, p is a small
complex parameter and A(z, p) is an n-by-n matrix holomorphic for both z and
p in the region

3: all z for \z\^0, 0<p^p0,

with p0) pi small constants, and A{z, p) asymptotically expansible such that

oo

A(z, p)~ Σ Ar(z)pr as £-*() in 3.
r=0

The coefficient A0(z) possesses the form

ly a2i •••, an]zk,

where k is a positive integer, a1,a2,'-',an are complex constants and are charac-
terized by

av^aμ for v*?μ,

arg αi^arg δ 2 ^ ^arg δn-i,^<arg άlμ+2π,

in which

and a designates a complex conjugate of a.
Ar(z), r=l, 2, 3, •••, is a polynomial of degree pr+q, or

vpr+q Λ (~Λ (Λ.— 1 O Q "\
<, *jrLr\/6j \r—±j Διt Oj ' Jy

where p and q are integers such a s ^ l , p+q^O and Ar(z) is bounded for \z\ large.

1) The equation (2) is of a slightly more generalized form than one dealt in the
previous paper [4] §3, and this is followed from (1) by appropriate stretching and shear-
ing transformations as introduced in the example of this introduction.
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The above asymptotic expansion means precisely that

A(z, P)-Σ Ar{z)9

r=z*EUz, 9) (zpp)m+1 for \z\ large,
0

where Elm(z, p) is bounded in 3, and Elm(z, p)z^
m+^+^ is bounded for \z\ small in 3.

The problem is to obtain solutions of (2) as p—>0, and the main consequence
is two theorems: Theorem A in § 3 and B in § 6.

4° Definition of admitted sectors. We define sectors, called maximal admis-
sible, bounded by straight lines, argz=Θ+ and argz=Θ_, passing through the
origin in the z-plane.

First of all, two lines aτgz=Φψ and arg£=Φ^° are chosen such that

This choice is always possible, for the relation argάlμ+3π/2—(arg άn-i,μ—Sπ/2)>π
holds.

Notice determination of Φψ> is not unique and refer 7° about the notation Λ .
Further we define

The sector bounded by Φ^ is called admitted for UCμ\ the μ-th column of the
matrix solution U.

Let

Θψ=sup Φ(/>, θφ=inf φw,

where Φ(f are to satisfy all the properties above.
Let the domain (δ(A° be defined by the inequalities

© ( r t : β « = j ^ - (arg an^μ- -|τr) < a r g z < j^(argάlμ+ -|τr) =«£*.

and let the exterior sector ^ and the inteήor &ίμ) be defined such that @£° is a
subset of the sector ©CAI) for |ε| large, and ©J*0 is a complement of the exterior in
©C/0. The precise definition of @£° and 6^ } will be given later (as in Figure 2
in 8°).

The sector © (Λ) is called maximal admissible for UCft\ We define a sector ©
the maximal intersection of © ( / 0 with respect to μ = l , 2, 3, •••, ^, that is, if (9± are
defined:

6>x = min Θ^\ 6>_ - max ΘL̂ ,
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then

©: θ _ < a r g z < θ + or @= Π @c#0.

The notations ©β, ©* and the like are to be understood similarly to the case of

The angle of the sector ©<"> is just 3τr/(*+l) for w=2, and for the case ^ = 2
and k=l this result corresponds to the well-known property of the asymptotic
expansion of the Bessel function.

We remark the maximal admissibility sector © for k=l contains possibly the
whole real axis, if necessary, by rotation of the axes.

§ 3. A formal solution.

This and the following two sections are devoted to existence of formal solutions
of the given equation (2).

5° One of our main purposes is the following

THEOREM A. The differential equation (2) possesses the formal solution such
that

U(z, p)~ Σ Ur(z)pr as p-*0 in 3 and
r=0

The coefficients Ur(z) are defined as follows'.

U0(z)=exp B(z),

Ur{z)= U*(z).exp B(z) ( r=l , 2, 3, •

where

= ^Ao(z)dz=zk+1l(k+l).άiag[a1, a2,..., flr«]=diag|j81(z), β2(z), »., βn(z)].

In the interior sector ©* Uf(z) is bounded, and in the exterior domain Θe Uf
=zm*rU*(z) ( r=l,2,3, ~),m*=p+q+l and U*(z) is bounded in @β.

The proof is long and so will be, for convenience, separated into several stages.
The value μ is arbitrarily fixed in the following proof.

6° Construction of integral equations. Let
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be a formal solution of (2). Then inserting it into (2) we obtain the following
recurrence formulae:

(3)o

ήTl r

( 3 ) , -^=Ao(z)Ur+ΣΛj(z)Ur-} (r=l,2,3, - )
az

Since A0(z) is diagonal, we get at once the solution of (3)0:

(z).

The solution of the equation (3)r, a non-homogeneous type of (3)0, must satisfy an
integral equation

( 4 ) Ur(z)= [ ^W-BCC) 2 Aj(ζ)Ur-j(ζ)dζ,

where $(*) is a matrix consisting of elements %μ(z) (v, μ=l,2,-~,ri) and each of
them is respectively a path, ending z from oo, for the 0, μ)-element of the matrix
Ur(z). Here we omitted the index r of the path-matrix since the paths %μ(z) can
be chosen independently of r as shown later.

Let

Vo(z)=I and Ur(z)= Fr(^) exp B(z) ( r=l , 2, 3,...).

Then from (4), we obtain

Let the value r be fixed and change notations:

Vr(z)= V(z) and £ MO F r_X0-M(ζ).

Thus the above integral equation is written in new notations as

V(z)=[ eB™-B^M(QeB^-B™dζ.

If the matrix V(z) possesses Vvμ(z) as its (y, ^-element, where μ is fixed as
mentioned already and v is arbitrary, then Vvμ(z) has to satisfy

(5) Vvμ{z)Λ exv[βvμ(z)-βvμ(Q] Mvμ(Qdζ,
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where

βvμ(z)=βXz)-βμ(z)=avμ

LEMMA 1. In the sector &e

μ) the path ^>vμ{z) can be so chosen that the follow-
ing inequality holds:

for all values of v, all points z in Θ£°, and all points ζ of the path ψvμ(z).

The proof will be given in the following section.

§ 4. The paths of integration ψvμ(z).

In this section we shall construct the path %μ(z) with the desired property,
from the point of infinity to the point z, and complete the lemma.

7° Let a symbol A denote a transformation:

By this transformation, we get from (5)

6) KW

where Mvμ consists of elements of M multiplied by factors bounded in <§£°, which
is an image of the exterior sector @£° by A .

The inequality of Lemma 1 is equivalent to an inequality:

for all values of ι>, all points z in <δ£°, and all points ζ on the path fyvμ(z)

In the sequel, we consider exclusively not in the original plane but in the
transformed plane, i.e., in the ζ -plane.

8° We shall define the paths %μ(z) as follows. For v^μ

$vμ(z): ζ = Z+σηvμ (0^(T<oo),

where the vector ηvμ, whose magnitude is unit, satisfies properties:20

2) A sector in which these properties are valid is called admitted, and in the admitted
sector denned in 4° they are fulfilled.
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The path %μ(z) lies in the sector (S(/°; and the relation

holds.

In order to fulfill the above properties, we have only to choose the ηvμ in such
a way that

( i ) arg avμ- y τ < < +
μ+ -jπ,

(ii)

Indeed, the first property is followed from (ii) and from the third inequality
in the definition of Φf (see 4°), i.e., from Φ(^<Φ(f-π<arg^μ<Φ(J!)Jrπ<Φ(f.

The second is just the same as (i), for the relation \—a.rgavμ+argηvμ\
= \argavμηvμ\<πl2 holds.

For v=μ, the condition Reavμ(z—ζ)—0 holds for any point ζ, and so the path
%μ(z) is chosen as a segment combining z and an arbitrary bounded point in <§£°,
say, the point ζ0 which is an intersection of the path and the boundary of &e

u) as
shown in Figure 3.

FIG. 1, Determination of the vectors ψμ (w=4).
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f* v "

FIG. 2. The exterior and the interior sectors.

If we define the sectoi &e

μ) as the region bounded by Φϊ } and the circle |£|=Zo,
zo large, then some paths fyvμ(z), which end in certain regions, would intersect
the circle. These regions are called shadow zones, whose definition is obvious and
see Figures 2 and 3.

Thus we define the sector <3£°, for simplicity, as the region bounded by Φ{1\ the
circle | £ | = z 0 and out of shadow zones. More precisely, we must define the
sector <δ$ for each value of v and a fixed value of μ, which is bounded by Φ%\
the circle | £ | = z 0 and the shadow zone this shadow zone is a set bounded by
Φ{1\ the circle \ζ\=z0 and the lines, tangent to the circle, with the same direction
as the vector ηvμ.

Therefore the exterior sector <S£° is equal to the set Π ?=i ©eί, and conse-
quently the interior sector %lμ) is a subregion of the set <SC/0 cut out of the set

9° In view of the above choice of the paths and the definition of sectors,
we can show the validity of the lemma. Since on every path the condition
Reavμ(z—£)^0 is always true, we have Reavμ(z—ζ)=—σReavμηvμ^k0 for all values
of v, Thus Lemma 1 is completely proved,
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FIG. 3. Shadow zones and the paths of integration fyυμ(z).

§ 5. Some lemmas and the proof of Theorem A: completion.

In this section we shall get formal solutions of the given equation in the
sectors ©e and ©* respectively and show the relation between them.

10° Lemma 1 yields some results in regard to the integral equation. The
first is

LEMMA 2. In the integral equation (5), if the function Mvμ(z)z~c (c>0) is
bounded in &e

μ) then Vvμ(z)z~cc+1^ is bounded in ©£°. In other words, MCμ\z)=O(zc)
in (&(

e

μ) implies VCμ\z)=O(zc+1) in ©^. 3 )

Proof. Let

Mvμ(z)=O(zc) in &e

μ\ that is

Mvμ(z)=O(zc/«+1>) in <§<">

β ^ M (̂ ) is bounded in

3) and Viμ) denote the ^-th columns of matrices M and V respectively.
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For v^pμ, we have

1 + — - ) . exp - min Re avμηvμ \dσ
0 \ \Z\ ) L l^v^n J

=0(2cc-*)/ct+D) i n

) in ©<*>,

in which the constants ci and c2 are independent of p.
Along the path %μ(z) the following relations hold:

Jo

hl) in ©<».

Here c3 is a constant dependent on μ only. Q.E.D.

LEMMA 3. The n-dimensional vector function Vi?\ the μ-th column of the
matrix Vr, is of order zrm*, m*=pJ

rq+ly as z tends to the infinity in <5(

e

μ). In
other words,

V(/\z)=zrm*V(

r

μ)(z) (r = 1, 2, 3, ),

where V(/\z) is bounded in ^K
The n-by-n matrix Vr(z) is, in fact, a polynomial of the degree rm*.

Proof For r = l ,

M(z)=ΣAj(z)V1-J{z)=A1(z)
3=1

is, by definition, a polynomial of the degree p-\-q^O. Therefore, in view of the
previous lemma, V[μ\z) is a polynomial of the degree p+q+1.

For r^2, we can show after a short calculation that

M(z)=ΣΛj(z)Vr-j(z)

is a polynomial of the degree r(p+q)+r—l. The application of the previous lemma
implies V(/\z) is a polynomial of the degree r(p+q+l).
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The value of μ is fixed and arbitrary. Then the lemma is proved. Q.E.D.

From the previous lemmas and the definition of Vr we obtain the μ-th column
of a formal series solution of the given differential equation.

LEMMA 4. In the exterior sector ©£° the differential equation (2) possesses
the formal vector solution

= Γ Σ zrmW)(z)pr\[exvB(z)]μμ as p-*0 in 3 and ©<">,
Lr=0 oo J

where zrm*JJ{

r

μ\z) is a polynomial of the degree rm* and so Urμ\z) is bounded in ©£°,
oo oo

[expi?(2)]^ is equal to eχip(aμz
k+1l(k-\-l)) i.e., to the μ-th diagonal element of the

diagonal matrix exp B(z).

Since £/(/0 is the μ-th column of the matrix U, Lemma 4 yields

COROLLARY TO LEMMA 4. In the exterior sector ©e the differential equation
(2) possesses the formal matrix solution

= Σ zrm*Ur(z)pr exp£(z)
Lr=0 oo J

as p-+0 in 3 and ©e,

where Uo(z) = I and zrm*(Jr(z) is a polynomial of the degree rm* and so Ur(z) is bounded
oo oo oo

in ©β.

11° In the region near the origin, i.e., in the interior sector &Y\ we at once
obtain solutions of (2). That is to say, we have

LEMMA 5. In the interior sector (δ^} the differential equation (2) possesses
the formal vector solution

z)]μμ as ^ 0 in 3 and

where Urμ\z) is bounded in &iμ).
o

COROLLARY TO LEMMA 5. In the interior sector @$, the differential equation
(2) possesses the formal matrix solution
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U(Z, p)~ ΣU(, p) Σ
0 r=0 0

= Σ Ur(z)pr exp £(<r) as p->0 in $ and @<,
Lr=0 0 J

where (jo(z)=I and ϋr(z) is bounded in (£>*.
o o

12° The solution jj{z, p) is an expression of the solution U(z, p) for \z\ large

and the solution U(z, p) is an expression of the same solution, i.e., of U(z, a), for
0

\z\ small. Thus the relation between the two solutions is to be obtained by calcula-
ting a constant matrix Cr 0 = 1 , 2,3, •••) of

o

Here the constant Cr is given by

r=[°
Jo

which converges by the choice of the paths of integration.
Indeed, since Ur{z) is the solution of the integral equation (4):

we can reform this as follows

and this must be also a solution for \z\ small, i.e., Ur(z).
o

Therefore we have completed the proof of the theorem A.

§ 6. Existence of an actual solution.

13° In the sequel we shall show existence of an actual solution asymptotically
expansible in the formal solution obtained so far.

THEOREM B. In the (z, p)-domain defined by

with po, pi and c0 small constants, the formal solution in Theorem A is, for every
integer m>0, the asymptotic representation up to order m of an actual solution.
That is to say,
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m

U(z, p)- Σ Ur(z)pr=E2m(z, P) [2m>]m + 1 exp B(z) for ze<Se,
r=0

where E2m(z, p) is bounded in ©, zcm+1:>m* E2m(z, p) is bounded in © for z£&iy and

The proof will be for convenience divided into several steps.

14° Construction of integral equations. Let Um(z, p) be the truncated series
of U(z,p), i.e., Um(zf p)=Σ?=o Ur{z)ρr. Then Um(z, p) is a solution of the differential
equation

dUm(z, p) dUm TJ_X^- =Am(z, p)Um(z, p), Am= - ^ — Um\

Notice Uΰ1 really exists. Because Um(z, p) = {I+O(zκ^m*)} exp B(z), where the
function κ(z) is defined by

ίO for
κ(z)=\

(1 for ,

and since exp^(2:) is clearly non-singular, if we take c0 of © small enough the
determination of Um(z, p) is nearly equal to the one of expi?(X) for \zκCz:>m*p\^Co.
Therefore Um(z, p) is non-singular and bounded for c0 sufficiently small. We
notice c0 depends on m.

In order to obtain an integral equation, we reform the equation (2)

~ =A(z, p)U=AmU+(A-Am)U

Namely,

dz ~Δ

where ' denotes differentiation with respect to z.
The last equation is equivalent to the following integral equation

U(z, p)= Um(z, p)+ Um(z, p) [ Uή%, p)[A(ζ, p)Um(ζ, p)- Uttζ, p)] WCC, p) U(ζ, p)dζ,

where the path-matrix ζp(z) is so chosen that the integral converges, and the
precise choice of £PO) is given later.

Let

Um(z, p) = Wm(z, p) exp B(z), U(z, p) = W(z, p) - exp B(z).
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Then remarking the relation

A(z, p)Um(z, p)- UUz, p)=E(z> p)[z*™mmp]m+1z~'™ exp B(z)

with E(z, p) bounded on ©, we can rewrite the above integral equation in regard
to U(z, p) as follows:

W(z, p)= Wm(z, p)+ WJLz, p)\ e*™-*«> W?(ζ, p)E(ζ, p) WJ(ζ, p)

(7)
X W(ζ, jO)^«)--BW.ζ«Cζ)CCm+l)m -l] / Om+lJζ j

where Wm(z, p)E(z, p) Wm\zy p) is bounded in © in view of the definition of Wm(z, p)
and of the boundedness of Um(z, p) and exp B(z) for c0 sufficiently small.

The (y, μ)-component of the integral part of (7) can be written in

exv[βvμ(z)-βvμ(ζ)] >Nvμ[mζ, rtK'K^w-V"1^,

and by introducing new variables, likewise in 7°, defined by z=zk+1l(kJ

rl) or
ζ=ζk+1l(k+l), it is further rewritten as

where ZV"̂  is the image of iV^ by the Λ-transformation and Nvμ[W(z, p)] is a
linear form of the //-th column of W(z, p) with bounded coefficients.

15° The integral equation (7) can be regarded as an operator from some
space into intself whose point W is defined: W(z, p) is a matrix function defined
on %iμ\ holomorphic for 2^00 and

| |TO,p)l l=max Σ \Wvμ{z,
l£v£n μ=l

The domain S ) ^ is an obvious notation, i.e.,

with pΌ, ρ[ and c'o appropriate constants.
The integral operator thus defined is written as

(8) W(z, p)= Wn(z, p){I+ X[W]}>

and we shall show that this operator is of the contraction. In order to show it we
shall first of all prove the following

LEMMA 6. Denote by W the least upper bound of W on the domain Φ C A 0 , and
choose appropriately the integral path Φvμ(z). Then the following inequality is
valid:
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Proof. Since the value of \Nvμ(W)\ is always not greater than c6W, the
lemma would be followed if we could show the estimate

is valid for the appropriate path and γ a positive constant, and a quantity of the
integralintegral

is bounded.
The validity of the above estimate will be shown in the following sections.

§7. Paths of integration Φvμ(z).

16° Paths of integration Φvμ(z), from the initial point zvμ to z, are chosen as
follows. The initial point zvμ situated on the circle \ζ,m*β\=c'o is common to all
the values of 2€©CA° and it will be defined precisely in the following paragraph.
We want to choose Φvμ(z) so that the relation Reavμ(z—ζ)^0 holds along it.

17° In the following discussion, we shall assume argηvμ=0. This does not
lose generality, for other cases could be reduced to this case by an appropriate
rotation of axes.

On the circular part of the boundary of &n for |argζ|^τr/2 there exists for
every pair v,μ(v*pμ) a point zvμ at which Reavμt assumes its maximum in © ^
for |argζ|^π/2. In fact, since we have \argavμ\<π/2 from the assumption axgηvμ

=0 and |arg£|^τr/2, the value of a.τgavμζ varies between — π and π.
The quantity Reavμ (z—t) increases as ζ moves from zvμ to a point z, |argf|

^τr/2 in ©cί/), along a segment (see /, /// or V in FIG. 4).
If a point z lies in ί)CAί) for |argi |^π/2, we choose as the path Φvμ(z) a segment,

parallel to the line a r g ζ = a r g ^ , from the point z to the point intersecting a line
defined by argζ=±ττ/2, and a segment from this intersection to the point zvμ (see
// or IV in FIG. 4).

Along the path Φvμ(z) from zvμ to z, the quantity Reavμ(z—ζ) is always nega-
tive, thus by the mean value theorem there exists a positive constant ω, in-
dependent of v, μ and p, such that

Reavμ(z-ξ)^-ω\z-ζ\
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FIG. 4. Paths of integration φvμ{z). Paths φμμ(z) are segments from
the origin to £.4)

if ζ is on Φvμ{z).
For v=μ, the paths Φμμ(z) may be taken as the segments from the origin to z.
We take as paths 3>υμ{z) the antecedents of Φvμ(z) in the ζ-plane.

§ 8. Proof of Theorem B: completion.

18° We shall complete Lemma 6.
First, we consider the case when the whole path Φvμ(z) lies in

we have
.5) Then

4) The quantity p[f vanishes if the parameter p is real.
5) Angles of <&{

e

μ) and ( § ^ is less than ones in the formal theory if p is complex.



LINEAR EQUATIONS RELATED TO TURNING POINT PROBLEM 489

For each of the parts /, Ih (J //2, IIIi, IVi or Vi U F 3 in FIG. 4,

\ \z\/

For each of the other parts κ(z)=0 or κ(t)=0 and so along the path

The quantity of the last integral is bounded for
Finally, if v=μ, we find

IL
for ζ€<§^°, and

is bounded

if ζ lies in <§£°. Thus Lemma 6 is completed.

19° The integral operator (8) is the contraction one , that is to say, the inequality

\\Wm(z,p)X[W]mcίV, 0<c<l

will be shown.

As already shown in 14°, the function Wm(z, p) is bounded in ©, and the ele-
ments of X[l/Π satisfy the estimate in Lemma 6. Therefore we have

Then if c0 of \pzm*\^c0 is taken sufficiently small the inequality

clo\pz*wmm\m+1<l

is true. The constant c0 of the domain ® can be, from the outset, assumed so
small that the contraction property is satisfied and that the non-singularity of
the matrix Um(z, p) is guaranteed (cf. 14°).

From (8) and its contraction property, we obtain

which is clearly equivalent to the asymptotic property U(z, p) in Theorem B.
Summing up the above statements we have the following

LEMMA 7. For each fixed integer m} there exists a unique actual solution
m

U(z,ρ)=U(z,p) of the differential equation (2) asymptotically expansible in the
formal solution.
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Thus Theorem B has been completely proved.
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