
ON THE BIAS OF A SIMPLIFIED ESTIMATE
OF CORRELOGRAM

BY MITUAKI Huzπ

§ 1. Introduction.

Let X(ri) be a real-valued weakly stationary process with discrete time para-
meter n. For simplicity, we assume EX(ri)=Q.

We shall denote

and

and consider to estimate the correlogram ph when σ2 is known. We assume X(n)
to be observed at n=l, 2, 3, •••, N, ••-, N-\-h. Usually, we use the estimate

fh= "? Jf Σ χ(ri)χ(n+®

for the estimation of ph. fh is an unbiased estimate of ph.
We have shown that when X(n) is a Gaussian process,

1 1 *
V77 J

is also an unbiased estimate of ph, where sgn(y) means 1,0, —1 correspondingly as
#>0, #=0, #<0, and we have evaluated the variance of γh ([3], [4]).

In this paper, we discuss the bias of the estimate γh when the assumption
that X(n) is a Gaussian process is not satisfied. For a class of stationary processes,
which are not Gaussian, we shall show the bias of γh and its properties.

§2. Stationary processes which deviate from a Gaussian process.

In this paper, we shall assume a stationary process X(n) which deviates from
a Gaussian process to be as follows.

Let X(n) be, furthermore, a strictly stationary process and f(x, y) denote the
probability density of the joint distribution of the variables X(ri) and X(n+h).
Clearly, /(#, y) does not depend on n. We have

Received May 7, 1966.

373



374 MITUAKI HUZΠ

EX(ri)=EX(n+h)=Q, EX(n)2=EX(n+h)2=σ2

and

Let Φz(x, y\ σ2, σ2ph) denote the probability density function of the two-dimensional
Gaussian distribution function with the mean vector

(Ί\ 0 /

and the variance-covariance matrix

Now, we shall assume that f(x, y) satisfies

S oo poo ?2(r ?Λ

-1. φj,^.,',,
Let us use the notations

(ΌO

L2(R)= g(χ)\ \
J —00

and

( poo p oo

h\X) y)>\ \ h («^> yjdxdy^
J —00 J —00

Then the condition (1) can be written as

-co .

Now we shall make two random variables

U(n)=X(n)-phX(n+K),

V(n+h)=X(n+h)

and treat these random variables U(n) and V(n-\-h) instead of X(n) and X(n+h).
Clearly we have

EU(n)V(n+K)=0.

Corresponding to the above transformation, we change the variables as follows:

u=x—pny, v=y.
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By this transformation, we assume /(#, y) is transformed into f(u, v).
Let us denote

Then we find

Φ»(a, M\ σ\ o*pύ = Φ1(u

and the condition (1) can be written as

that is

/(«,-

§3. A complete orthonormal system of L2(R2).

Here we shall prepare for an orthogonal development of the function which
belongs to L2(#2).

We assume that Hn(x) represents the Hermite polynomial defined by the relation

-^z^(-iγHn(x}e-^ (n=Q, 1, 2, .-).

Hn(x) is a polynomial of degree n, and we have

H0(x)=l,

Then, as is generally known, the system

- _

^T (27Γ)1/4 "

is a complete orthonormal system on (—00, oo):

\/ m I /

We write

n v ττ _
(x)e-*''* dx =

1 for w=rc,
0 for

(m, «=0,1, 2, -).

1)- —HnWΛ/Φύx, Γ) (»=0,1, 2, -).
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Some properties of the Hermite polynomials are as follows:

(a) HZk(x) is an even function of x for &=0, 1, 2, •••.

(b) HZk+ι(x) is an odd function of x for k=Q, 1, 2, •••.

(c) HMW-xHtixi+kHk-ux^Q.

Now let us define ψm, n(x, 1; y, 1) by

ψm,n(x, 1; y, l)=0>ro(a?, l)^(ι/; 1) (m, tι=Q, 1, 2, — ).

Then the system

{^m.nGr, 1; y, 1)}

is a complete orthonormal system of L2(R2).

§ 4. An orthogonal expansion of f(u, v) derived from the two-dimensional
Gaussian distribution.

In this section, we shall discuss an expansion of f(u, v) by orthogonal func-
tions which are induced in § 3. The two-dimensional Gaussian distribution plays a
leading part in this expansion. We consider f(u, v) to be slightly different from
the two-dimensional Gaussian distribution function, that is, Φι(u, σ2(l—pfι2))Φι(v, σ2).

In accordance with the section 3, we define ψp,q(u, σ\/l.—ph

z\ v, σ) by

ΦP.^U, σA/rqs?; v, *)=;̂ ff*(^p=^);̂

Then {ψp,q(u, σ^/\—ph^ v, σ)} is a complete orthonormal system of L2(R2)
Now, by the condition (2), we have

so we can find the expansion such that

where

Γ ^ l f f < ι \ — f ( u , v)dudv.
— 2

L—jO/ί. / \ σ

In the above expression, we find
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o = \ \ f(u, v)dudυ=1,

_Γ Γ ff ( U \ f(r .ΛΛ.A._ _^^»)
0— \ \ / 2 l l /= 2 ~ j / \ *

J J \ ^v 1 — /OΛ, /

/ w Λ— !/(«, v)dudυ=

-.-JMv ~ ,r r
A — /(«» v)dudv

EV(n+hγ

So we have

/(«,

[ ____ P,Q -i

p,g=o - ? ^ J J

§5. An orthogonal expansion of (w-j-^ι )sgn(ι ).

At the beginning, let us arrange our discussion. The essential point of our
discussion is to evaluate the value of EX(ri)$gn(X(n-{-h)\ Now, the value of
EX(ri)sgn(X(n-}-ti)) is as follows:

EX(n) sgn (X(n+h))= ( (x sgn (y)f(x, y)dxdy

(v)f(u, v)dudv.

The function (u+phv)sgn(v) does not belong to L%(R2). But by the condition (2),

belongs to L2(R2). So, let us express the above value as follows:
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EX(n) sgn (X(n+h))=(((u+phv) sgn (v)f(u, v}dudv

*» sgn („

Then both

i, σ2(l-^«^) and

belong to
Here we shall discuss an orthogonal expansion of the function

(u+phv) sgn (v

As this function belongs to LZ(R2), we can expand this function by the orthogonal
system

We consider that this expansion is

ι(u, σ2(l— ptι2))Φι(v, <72)=l.i.m. Σ Σck,ιψk.ι(u, σ*/ϊ--ph2', v, σ).
K,L^ook = Ol = Q

Now we have

Ck, i = \ \(u+phV) sgn (V)A/^I(«, σ^-p^^v^σ2} ψk, ι(u, σ*/l-ph

2l v, σ)dudv

The first term of the above expression is
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(fH-.

0,

ι>, *2)<fo, A=l, /=2ΐ+l (ι=0, 1, 2,

otherwise.

The second term is as follows. As stated in § 3, it holds

v π v \ π v \_ι./77 ( u\— Hι[— ]=Hι+ι[ — -H/iί-i — .
σ \ σ J \ σ \ σ

Using this relation, we have

y, σ2)dudv

X

=0, /=0,

=0, /=

V 0,

Therefore we find

otherwise.
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' pΛWΦ^v, σ2)dv,

hθ ^/27j-j sgnftOffiy+i ( -~ J Φι(v, σ2)dv

=0, l=2j

^=^o, ortherwise.

Consequently we have

hV) sgn

= l.i.m. Λ"^Γ ^Λ^O, o(w, 0\/l— ̂ 2; z;, σ)
'

§6. Evaluation of the bias of the estimate γh

Using the results in §4 and §5, we shall, in the first place, evaluate the value
of EX(n)sgn(X(n+hy).

EX(n) sgn (X(n+h))= ( (x sgn (y)f(x, y)dxdy

= \ \(u+phV) sgn (v)f(u, v)dudv

= lim \ \ A — σphφoίo(u,

_ __

+ Σ Co, ziφo, 2ί(u, σ*/l.—phz\ V, σ) + Σ Ci, 21+1^1, 2i+ι(w, ^\/i— Ph2} V, σ)

X

___ P,Q ______ ]
o.o(«, ^Λ/l-^2; v, <τ)+ Σ ap,qψp.q(u,σΛ/l—ph*; v,σ)\dudv

J
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V~2~ °° °°
- Gph 4~ Σ £θ, 2Z#0, 2ί + Σ Cl, 21 + 1&1, 2< + l

π ΐ = 2 ι=ι

So we have

V ~π~ 1 /~ττ~ I f 0 0 °°
-9- — £ "̂M S£n CXfr + A)) = pΛ + V -O- — Σ CO. 2ίtfθ,Γ2i + Σ Cl, 21+101, 2
" σ * ώ <7 [ l = 2 ϊ=ι

This means

£(r*)= 4f Σ Λ/4- 4
-iV w=l ' ^ <7

V~7Γ~ l f ° ° °° 1
-7Γ- - I Σ ^0,2i^0,2i+ Σ ^1,21+1^1, 21 + 1 Γ

ώ <T l ι=2 ι = l j

Therefore the estimate γh has the bias

/~τΓ 1 1$ , ^ I
V ~0 -- I 2j ^0,2i^0, 2ΐ T" 2_l 6>1, 21 + 1^1, 2ί + l f

V ώ O1

THEOREM 1. ITO^^ a strictly stationary process X(n) satisfies the condition
(1), the estimate γh of ph has the property:

where 6Λ is the bias and

b,
1 f oo oo 1

~o~~ 1 Σ ^0, 2i(^0)2i4- Σ ^1. 21 + 1^1, 2l + l f
ώ G l l=2 l=l J

§7. Some properties of ap,q and the relations between ap,q and moments.

In this section, we shall consider the relation between ap,q and moments, and
also the relation between ap,q and Gaussian properties.

Now,

If f(u, v) is the probability density of two-dimensional Gaussian distribution func-
tion, U(n) is independent of V(h+h). So we have clearly the following facts:

LEMMA 1. When the joint distribution of U(n) and V(n+ti) is two-dimensional
Gaussian distribution, we have
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1 for p=q=0,

0 for p^O or

LEMMA 2. If the joint distribution of U(n) and V(n+h) is Gaussian, the joint
distribution of X(n) and X(h-\-h) is also Gaussian. And the converse is also true.

LEMMA 3. When X(n) is a Gaussian process, we have

1 for p=0 and #=0,

0 for p^Q or q^O,

and γii is an unbiased estimate of pfl.

LEMMA 4. When X(n) is a strictly stationary process, ap,q depends only on h.

Now let us put

Λf*. ι=EU(n)kV(n+h)l= ((ukvlf(u, v)dudv

and

win, ι = EX(ri)kX(n+h)l=\ \xkylf(x, y)dxdy.

Clearly we have

M0,ι=m0,ι.

Let

βj(ωl9 o)2, '-, ωk)

denote a linear combination of ωly ωz, •••, O)Λ-I and ωk with constant coefficients.
Then we have the following result.

LEMMA 5. It holds

a2ic,2i=a?ι(MQ,o, Mo, 2, •••, Mo,2ί, M2f o, M2,2, •••, M2 ) 2i, •••, M2k, o, M2fc, 2, •••, M2k,2i),

a2k,2i+ι=alfϊ+1(M<)1ι,MQ,3, •• ,M0 f 2z+ι,M2,ι,M2 t3, φ ,M2,2ί+ι, •••, M2k, i, M2fc,3, •••, M2fc,2ί+ι),

a2k+ι,2i=a%+ί(Mι,0,Mι,2, •• ,Mι,2z, M3)0, M3,2, •• ,M3,2ί, •• ,M2Λ+1,0, M^+ι.2, •••, M2k+ι,2i),

*+l,2H-l = ύ3ίί}(Mι,i, Mi, 3, ••', Mi, 211-1, M8t l, M3,S, •", Ms.2Z + l,

—, M2fc-fl, 1, Mjίfc+i, 3, •", M2Λ+ι. 2ί + l) (k, 1=0, 1, 2, —)•
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As we have seen in the above, the bias of the estimate ρh is

V ~~π~ I f 0 0

-~- - j Σ £θ,2ΐ#0,2
Z 0 U=2

and this shows that the bias is affected only by {ao,2l} and {<Zι l 2 M ι }
Now we have

and

So we have

(3)

and

(4)

Examples.

0 , 2 l = «2i(M0iO, M0,2, ••', M0,2t)

=α|<+ι(wι, i, mi, 3, •••, Wi, 2ί+ι, mo, 2, m0, 4, •••, m0, 2t+2).

1 / 1 1 / 1

1 / 1/ 1 15 45 \
τ( 7? ̂ °' 6~~ 71 ̂ °' 4+ "̂ r ̂ °' 2— 15 j

1 / 1/ 1 15 , 45 1C\
ΓV^ m°' 6~ "̂  m°' 4+ ̂  m°' 2~15j

i / _ i _ _ 3 _ _ \
<^1, 3= /~θT\ ~i /1 2 ̂ 1 . 3~ ~2 /i o -̂ 1 . 1 )

V 3 ! \σ 4Λ/l— PΛ (T2Λ/1 — ph I

383
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10

When -Xζw) is a Gaussian process, it holds

M0>ίt=(2*-l)!! M0

fc

2=(26-l)ϋ

and

Mι,2*+ι=0, that is, Wι l 2 *+ι=/θΛWo,2*+2

Then, we have

Ad, Mo, 2, -, (2ι-l)ϋ Mβ',a)=β;i(l, m0, 2, -, (2i-l)ϋ <2)=0

and

Λίl+ι(0,0, -,0)

=α2

1

ί+1(pΛW0,2, 3!! /OΛW?,,, •-, (2i+l)ϋ p/^.t1, w0,2, 3 !! wj,2, ••-, (2z+l) !! wί.ί1)

-0

By the above results, we can say as follows:

THEOREM 2. If X(n) is a strictly stationary process satisfying the condition
(1) and if a0,2i=0 for i^2 and tfι,2ΐ+ι=0 for z^l, γh is an unbiased estimate
of ph. aϋ,2i and a Ί f 2 l +ι can be expressed in the form of (3) and (4) respectively.

If ΣΓ=2#o2,2i and Z^i#i,2i+i are sufficiently small in comparison with |^ΛI, E1^ is ap-
proximately equal to ph. As we have stated in the above, α0,4 is related to the
coefficient of excess. Let us consider the situation in (u, v, 2)-space. The value of
#o,4 gives a measure of flattening of the frequency curve on a section paprallel to
the (v, z)-plane. aQ,2τ will have a meaning similar to #0,4. On the other hand,
#1,21+1 gives a measure of the two-dimensional asymmetry.

The other features of the frequency surface, e.g. the one-sided asymmetry, etc.,
do not influence the bias of the estimate γh

Like the bias, will be a problem the effect on the variance of γh, when X(n)
deviates from the Gaussian process. This problem will be treated by the method
similar to the above. We shall treat this subject in the future.
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