
ON INVARIANT SUBSPACES OF DIVISION ALGEBRAS

BY SHIGEMOTO ASANO

1. Introduction.

The well known Cartan-Brauer-Hua theorem states that if a division subring Δ
of a division ring D with center Z is invariant relative to all inner automorphisms (in
short, invariant), then either Δ=D or Jc:Z(see for instance [16], p. 186). Relating to
this theorem, Hattori [10] proved: If T is an invariant subring of a (not necessarily
finite dimensional) simple algebra A over a field Φ satisfying the minimum condition
for left ideals, then either T=A or T^Z, Z being the center of A, with one exception
(the case when A is a matrix ring of degree 2 over Z=GF(2)). Similar (but somewhat
more general) results were obtained by Kasch [19] independently. Namely, he proved
that if U is an invariant submodule of the ring A of all linear transformations of a
left vector space Fover a division ring D with center Zy then either U^ZΌ or B^U,
where £=the submodule generated by {Deίjf i^j\ D(eu—ejj)\ [A, d2]eu) dly d^D}.
Here, it is assumed that the left dimension [ V : D ] L of V over D is not 1, and not
both [V:D]=2 and D=GF(2,)m, eij(i, /=!, 2, •••) is an element of A which maps ul

to Uj and other UK to 0, ul(i=l)2, •••) being a basis of Fover D; and finally,
[Ji, J2] denotes the commutator dιd2—dzdι. From this he derived, in the case when
n=[V: D]L<°O, the same result on invariant subrings as Hattori's.

These results have been further generalized by a number of authors ([2], [5],
[13], [21]). In particular, Amitsur [2] showed that if A is a simple algebra with
center Z over a field Φ=^GF(2), containing an idempotent^l and A is not a
4-dimensional algebra over a field of characteristic 2, then for every invariant
subspace U of A it holds either U^Z or [A, A]=ihe submodule generated by
{[tfi, #2]; tfi, a2eA}^ U. From these results, however, we cannot deduce a cor-
responding one on invariant submodules (or subspaces) of division rings, since the
proofs of them essentially utilize the assumption that the ring in question has at
least one non-trivial idempotent.

The main purpose of this paper is to prove: If M is an invariant subspace of
an algebraic division algebra D with center Z over a field Φ, then either M^Z or
[D, D]<^M. The finite dimensional case is of particular interest, and for this case
we give a quite self-contained proof (up to the classical theory of finite dimensional
simple algebras). In the proof of the general case, nevertheless, we need a theorem
of Herstein [11] on the Lie structure of simple rings. We also prove a result which
is in a sense a sharpening of another theorem of Herstein [12]. That is: Every

Received February 24, 1966.
1) D is regarded to be a subring of A, as usual.
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non-central element a of a non-commutative and infinite dimensional division
algebra D over an infinite field Φ has an infinite number of conjugates which are
linearly independent over Φ. This and some other results (one of them is a
characterization of [D, D], where D is finite dimensional over the center Z, and
another one is the normal basis theorem for finite dimensional central simple
algebras) are obtained through a series of discussions which constitute the proof of
the main theorem.

2. Preliminary results on subspaces of a division algebra.

One of the basic ideas of this paper is to notice certain " linear separability"
property of subspaces of a division algebra D, relative to right (or left) multiplica-
tions by elements of D. In this section we give a number of results concerning
this property. These results will be useful in later sections.

Let Z) be a (not necessarily finite dimensional) division algebra over a (com-
mutative) field Φ. If S is a subset of D and a is an element in D, we write
Sa[aS] for the subset {sa; sεS} [{as', seS}]. We first prove the following

PROPOSITION 1. Let D be a division algebra over a field Φ. Let a be an
arbitrary element of D and let M and N be two Φ-subspaces of D such that
M^N=0. Suppose card Φ, cardinal number of Φ as a set, is greater than the
dimension [M:Φ] of M over Φ. Then there exists at least one element ξ in Φ
satisfying M(ξJra)^^N=0. If moreover Φ is an infinite field, then there exist
infinitely many elements in Φ with this property.

Proof. If a$Φ, the proposition is trivial. Hence we assume a$Φ. Now consider
a subspace

of M, for each element ζ in Φ. We shall see that {F(£); feΦ} is an independent
set of subspaces of M2) Thus assume that ^e€<Ju*£oF(f)^F(?o) contains a non-
zero element x, for some ξ&Φ. Then we can write x=xι-\ ----- \-xr where x&V(ξi\
ξι being a finite number of different elements of Φ. Assume this expression of x
is a shortest one. Then it is clear that xι are linearly independent over Φ. From
the definition of V(ζi), we have Xi(ζi+ά)eN, hence ΣξίXi+(Σxi)a=Σζixί-}-xaςN.
Since on the other hand x(ζQ+a)=ξoΣxi+xa€N, this implies Σ(ξi—ξ0)xί=0 and,
since xt are linearly independent, ξί=ξ0 (*=1, 2, •••, r), contrary to assumption.
Now, by the assumption card Φ>[M: Φ], it is clear that Φ contains at least one
ζ such that F(£)=0, i.e. M(ζ+a)^N=Q. The last statement of the proposition
follows immediately from the same argument.

2) See for example Jacobson [16], p. 60. Also, we shall say at times simply subspaces
instead of saying Φ-subspaces, if there is no possibility of misunderstanding.
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Applying the proposition just proved, we have the following result.

PROPOSITION 2. Let D be a division algebra over Φ, let L and N be two linearly
independent Φ-subspaces: L^N=0, and let Hbe a subspace of N. Assume that for a
non-zero element a of D the subspaces L, N, Ha are linearly independent (that is, the
sum of them is direct). Then there is at least one ξzΦ such that (L+H) (ξ+a)^N=0,
provided that card Φ>[L:Φ]. If, moreover, Φ is an infinite field then Φ contains
infinitely many elements with this property.

Proof. Since Lr^(NJrffa)=0 and card Φ>\L: Φ], Proposition 1 shows that there
exists an element ξzΦ such that L(ξJ

Γa)^(NJrHa)=0. From this we have
L(ς+a)ΛN+H(ς+ά))=Q, for H(ξ+a)^N+Ha by the hypothesis. On the other
hand, N^Ha=Q and H^N clearly imply H(t~+a)^N=Q. We can verify directly
that the element ξεΦ has the required property. The last assertion concerning the
case of infinite Φ follows from Proposition 1.

REMARK. In Propositions 1 and 2 we confined ourselves to the properties of
subspaces of a division algebra D relative to the (right) multiplications by elements
of D. But, it is possible to generalize the propositions somewhat. In fact, we
may replace D by an arbitrary vector space V over Φ, and M, N, etc. by sub-
spaces of V. (Thereby the multiplication by an element asD is replaced by an
^-isomorphism σ of a pertinent subspace (M, etc.) into V.)

We can now prove

THEOREM 1. Let D be a division algebra over Φ, M a finite dimensional sub-
space, N an arbitrary subspace. Suppose that [D—N: Φ]>[M: Φ], D~N being the
difference space of D modulo N, and that card Φ>[M:Φ]. Then there exists a
non-zero element a in D such that M<Vv/V=0.8) If moreover Φ is an infinite field,
then D has infinitely many elements with this property. Finally, if K is a proper
division subalgebra of D, then these elements can be chosen outside of K.

Proof. The last two statements are direct consequences of the first assertion
and Proposition 1. Hence it suffices to prove the existence of a non-zero a$D with
Ma^N=Q. If M^N=Q, we can take a=l. We assume therefore M^Λ/^0.
Now let b be a non-zero element of D, and suppose V=Mb^N^Q. Let L denote
a complementary Φ-subspace of V in Mb: Mb=V®L (direct sum). Then L^N=0
and L+N is a proper subspace of D. It follows that for any element x^O in V
we can choose an element c in D such that xc$L+N. Clearly c$Φ. Let

3) This result was proved by the present author ([4], Proposition 2) under the assump-
tion [Z):Φ]<oo, and used to deal with a different problem. For the sake of completeness,
we include the proof here, which is a modification of the original one, Cf. also footnote 4.
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be a complementary subspace of Vc^L+N) in Vc. We set H=H'c~l. Since
L, N, He are linearly independent and H^V^N, Proposition 2 can be applied.
(Note that [L: Φ]<[L+ V: Φ]=[M: 0]<card Φ.) The conclusion is that there is an
element ξ in Φ with (L+H) (ξJrc)^N=0. On the other hand, if we set b(ξ+c)=d,
then d*Q and (L+H)(ξ+c)^Md, for L+H^Mb by definition. From these
we can easily verify that [Md^N:Φ]<[V:Φ]=[Mb^N:Φ]. Applying this
arguement successively, we can construct a sequence of non-zero elements of
D: {#1 = 1, #2, ffβ, •••} satisfying

[Mαt^N: Φ]>[MαM^N: Φ] (f=l, 2, •••).

But, the construction must break off in a finite number of steps, since the dimen-
sions [Mdt^N : Φ] does not exceed [M : Φ] which was assumed to be finite. Thus
we must have Mαk^N=Q for some k. This completes the proof.

In Theorem 1, the assumption of finiteness of [M:Φ] is not superfluous. In
fact, consider the rational function field R(x) of one variable over the field R of
real numbers. The ring R[x] of all polynomials in x is an ^-subspace of R(x). If
we set D—R(x) and M=N=R[x] then the conditions of the theorem are satisfied
except [M:Φ]<oo. But the conclusion of the theorem does not hold, since for any
non-zero αzD we have Mα

By specializing our result to the finite dimensional case we have the following

COROLLARY 1. Let D be α division algebra over Φ with [D:Φ]=n<oo and let
M and N be Φ-subspaces of D. Suppose that Φ contains at least [n/2] elements.^
Then there exists an element a^Q in D such that Ma^N=Q or Ma+N=D,
according as [M : Φ]+[N : Φ]<n or [M: Φ]+[N: $]>«, respectively. If Φ is an
infinite field then D has an infinite number of such elements. If moreover K is a
proper division subalgebra of D then these elements can be taken outside of K.

We note at this place that if A is a Φ-algebra and if the subspaces of A
have the property described in the corollary relative to the multiplications by
elements of A, then A is necessarily a division algebra.

COROLLARY 2. Let D be a division algebra over Φ such that [D:Φ]=oo;
assume that Φ is an infinite field. If M is a finite dimensional subspace of D
over Φ then Ma^M=§ for infinitely many elements a in D. Moreover, if K is a
proper division subalgebra of D then these elements can be taken such that a$K.

Proof. Take N=M in the theorem. The conditions of the theorem is obviously
fulfilled.

4) [n/2] means the greatest integer ^n/2. In [4], the result (cf. footnote 3) was
stated in the form of this corollary, in the case when M and N satisfy [M: ΦJ-f-fΛ7": Φ]=n.
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We remark finally that the arguements and the results of this section remain
still valid if we replace right by left everywhere. (In Theorem 1, for example, we
may replace Ma by aM).

3. Invariant subspaces of arbitrary and algebraic division algebras.

Let D be again a division algebra over a field Φ and let Z be its center. As
usual we identify Φ with a subfield of Z: Φ^Z. We call a submodule U of D an
invariant submodule if U is mapped into itself by every inner automorphism of D.
An invariant ($-) subspace of D is defined similarly. It is obvious that the sub-
space generated by an invariant submodule is invariant. Also, every submodule
(or subspace) of Z is invariant; in view of this we shall henceforth assume D to
be non-commutative.

The starting point of our considerations on invariant subspaces is a simple
arguement concerning inner mappings in an arbitrary division ring, which goes
back to Brauer [6]. For the convenience of later references, we shall briefly
summarize Brauer's method and obtain, by modifying it slightly, an almost obvious
but useful identity.

Let a, x be two elements of D and assume a$Φ. Then we have the relations

ax=(xIa)cP* and (a+V)x=(xIa-\i) (0+Ί).

By subtracting the first from the second one obtains

(Bi) X — Xla+ι = (xla+ί — Xla}a.

Now take a+ζ, where ξ is an arbitrary non-zero element of Φ, instead of a+l.
Then in the same way we have ξ(x—xla+ξ) = (xl<nξ—xla)a. From this it follows
readily that (xla—xla+ξ)(a+ζ)=ξ(xla—x) and finally

(B2) ζ-l(xIa-xIa+ξ) = (xIa-X) (d + £)~\

Observe that the relation (B2) will remain valid if we assume a$Z and f(^=0)eZ.6)

Now let D be an infinite dimensional division algebra over an infinite field Φ,

5) Id is the inner automorphism in D denned by a: x-^axcr1; xla represents the
image of x under the automorphism 7α, etc.

6) Starting from the relations xa=a(xla') (where 7α' denotes the inner mapping
x-*arlxά) etc., we can also derive similar identities: (Bj)' x—xIά+ι=a(xIά+\—xIa) and
(B2)' ξ-1(xIa

r—xIά+ξ)=(a+£)-1(xIa—x') In (B2)' we make substitutions: £=1, a+l = a' and
ari=x'; then if a' and x' are such that a'x'^x'a' we have the relation

a1=(x'-1 - (a1 - l)-V-i(0' - !))(<*'-V-V - (a1 -1)-1^'-1^' -1))-1.

This is nothing but the identity which was the starting point of Hua's [14].
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M an invariant subspace such that MφZ. Suppose that x is a non-central element
of M. Then VD(X)Ί^ is a proper division subalgebra of D. Let a be an arbitrary
element not contained in VD(X). Then by (Bi) we have x—xla^ι = (xla+ι—xla)a^ΰ,
which implies that M^Ma^Q. Corollary 2 to Theorem 1 now shows that we
must have [M:Φ]=oo. This proves the following

THEOREM 2. Let D be a division algebra over an infinite field Φ such that
[D:Φ]=oo, and M an invariant subspace of D. Then we have either M^Z, the
center of D, or [M:Φ]=oo.

The following result is, in the case of infinite dimensional D, a sharpened
form of a theorem proved by Herstein [12],8) which states that every non-central
element of a division ring has infinite conjugates.

COROLLARY. Let D, Φ, Z be as in the theorem. Then every non-central element
a of D has an infinite number of conjugates (i.e. elements of the form aid, dzD)
which are linearly independent over the base field Φ.

Proof. Let M be the subspace generated by all conjugates of a. Since M is
invariant and MfZ, we have [M:Φ]=oo by the theorem.

As usual, the additive commutator ab—ba of two elements a, bzD is denoted
by [a, b\. Also, if U, V are submodules of D, [U, V] shall mean the submodule of
D generated by all [u, v\ where us U, VG V. If azD and U is a submodule then we
define [a, U]={[a, u\\ u<=U}; the definition of [U, a\ is similar. Clearly [U, V]=[V, U]
and [a, U]=[U, a]. [U, V] and [a, U} are subspaces when U is a subspace.

We now proceed to prove

PROPOSITION 3. Let D be a division algebra over Φ, a an algebraic element
of D relative to Φ and M an invariant subspace of D. Suppose Φ has at least
\Φ(d): Φ] (=degree of a) non-zero elements. Then M contains the subspace [#, M].

Proof. Let x be an element of M. We have to show that [a, x]=ax—xa is
in M. If x commutes with a then certainly [a, x]=QεM. Otherwise, we have
ax^xa] when that is so, clearly both a and x are not in Z, the center of D. Now
let [Φ(ά)\Φ]=s (finite) and let ξlt ξ2, ~, ξs be 5 (distinct) non-zero elements of Φ.
Then, by (B2), we have

7) If S is a subset of Z>, we denote the totality of those elements in D that are
commutative with every element of S as F/>(S). This is clearly a division subalgebra of
D containing Z.

8) Cf. also Faith [7], [8].
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But (α-hfO"1 are 5 linearly independent elements of Φ(ά) over Φ.9) From this it
follows that

(xla— x)Φ

which implies, specifically, that (xla—χ)a=ax—xa lies in M.

Next we assume MφZ and a$Z. Then there exists at least one element
which does not commute with a. To see this, we need only to note that the
division subalgebra generated by M is D itself, 10) and so that Vo(M)—Z. Set
v=xla— x. Then v is a non-zero element of M and we have vΦ(a}^M by the
proof of above proposition. Also, since Φ(a)a=Φ(a\ we have vΦ(d)^Ma. Thus we
have proved the following

LEMMA 1. Let D be a division algebra with center Z over Φ, a an algebraic
element and M an invariant sub space of D. Assume that a$Z, MφZ and Φ has
at least \Φ(ά):Φ] non-zero elements. Then M contains an element v^O such that
vΦ(a)(^Mr^Ma. The element v can be taken as v=xla—x where x is any element
of M not commuting with a.

Hereafter we shall be concerned with algebraic division algebras. Suppose D
is an algebraic division algebra over Φ (i.e., every element of D is algebraic).
Then we know that if Φ is a finite field then D is commutative (Jacobson [15]).
We may therefore assume that Φ is an infinite field.

THEOREM 3. Let D be an algebraic division algebra with center Z over an
(infinite) field Φ and let M be an invariant subspace of D such that MφZ. Then
M contains the subspace [D, M], which is itself an invariant Z-subspace not con-
tained in Z.

Proof. That [D, M]QM and that [D, M] is an invariant Z-subspace follow im-
mediately from Proposition 3 and the definitions. It remains to prove that [D, M]
is not contained in Z. Let a be a non-central element of D. By Lemma 1 there is
an element xzM with [a, x]^0. If [a, x]$Z we are enough. If, on the other hand,
[a, x]=teZ then we have (xla— x)a2=[a, x]a=λasM, for vΦ(a) = (xIa,—x)Φ(a)^ίM by
the same lemma. From this it follows that [D, a] = [D, 2a]<^[D, M]. Now suppose
[D, M] is contained in Z. Then [D, M] = [D, D]^Z by what we have just proved.
But the last inclusion does not hold since D is non-commutative.n) This con-

9) This fact can be verified easily in a straight-forward manner.
10) Cartan-Brauer-Hua theorem. See for example Brauer [β].
11) In fact: Let [D, D]c:Z and let acD be a non-central element. Then there is an

element btD such that ab—ba^Q. Set ab—la=λ^ ba~l—a-λb—λ^ (λ^λtfZ}. Then we have
aba-1—b=2ia-1=j.2<Zi and hence a2=λίλz-

1fZ. Since this (azeZ) holds for any element of
D, D must be commutative. (Cf. Kaplansky [17].)
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tradiction proves the theorem.

If M is moreover minimal in the sense that there is no proper invariant Φ-
subspace of M not contained in Z, then our result indicates that M=[D, M] ( f Z )
and hence that M is at the same time an invariant Z-subspace.

4. The case of finite dimensional division algebras.

The results of sections 2 and 3 will be now applied to prove the main theorem
of this paper that has been announced in the introduction (section 1). In this
section we shall consider finite dimensional division algebras over the base field Φ.
As we have seen in Theorem 3, every invariant Φ-subspace M of a non-commuta-
tive, algebraic division algebra D with center Z over Φ (such that MφZ) contains
an invariant Z-subspace that is not contained in Z. In view of this it will be
sufficient if we further restrict ourselves to the case of finite dimensional central
division algebras: Z=Φ. Our proof below is in close connection with the classical
theory of subalgebras of finite dimensional central simple algebras. We shall also
state some results on these algebras which will be obtained as by-products in the
proof of the main theorem.

Let D be a central division algebra over Φ with finite dimension and let the
index of D be s: [D:Φ]=n=s2. As before we assume that D is non-commutative,
i.e. ^>1; the center Φ has then an infinite number of elements. It is well known
that D possesses a maximal subfield of degree s which is separable over Φ. In
connection with this, Corollary 1 to Theorem 1 may be sharpened somewhat. The
precise result is the following

LEMMA 2. Let D be α central division algebra of finite dimension n (>1) over
Φ and let M, N be subspaces of D. Then there exists a separable element a of D
over Φ such that (1) Φ(ά) is a maximal subfield of D, and (2) a satisfies either
Ma^N=ΰ or Ma-}-N=D according as [M\ Φ]+[N\ Φ}<n or [M: Φ] + [N: Φ]>n,
respectively.

Proof. Clearly it suffices to consider the case [M: Φ] + [N: Φ] < n. We shall
first prove that D contains a separable element 0(^0) over Φ such that Ma^N=Q.
By Corollary 1 to Theorem 1 there is a non-zero element b in D satisfying Mb^N=Q.
If b is separable then we are through. Suppose therefore b is inseparable over Φ.
Then we have T(&)=0.12) Now let c be an element of D for which T(c)*Q holds.
(Since the discriminant of Z)13) does not vanish, D contains an element d not
in Φ with non-zero trace). We set x=b~1c. Now Proposition 1 implies that
Mb(ς+x)^N=M(bξ+c)πN=Q for an element ξ in Φ. Since T(bξ+c)=T(c)*Q,
bξ-\-c is a separable element over Φ. Thus there is a non-zero element a$D which

12) The (reduced) trace function in D.
13) See for instance Albert [1], p. 124.
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is separable over Φ and which satisfies Ma^N=Q. Now, if Φ(ά) is a maximal
subfield of D then there remains nothing to prove. Otherwise there exists a
maximal separable subfield Φ(d) of D containing Φ(a) as a proper subfield. Set
y=a~ld. It follows again from Proposition 1 that Φ contains infinitely many
elements ζ such that Ma(ξ+y)r^N=M(aξ-{-d)^N=Q. To complete the proof we
have only to observe that the elements aζ+d are primitive elements of Φ(d) except
(possibly) for a finite number of them.

Next we state the following

LEMMA 3. Let D be a finite dimensional central division algebra over Φ and
suppose [D:Φ]=n(>l). Then the Φ-subspace [D, D] is a proper invariant subspace
of dimensionality n—\ over Φ: [[D, D]:Φ]=n—I. Moreover, an element x of D is
in [D, D} if and only if T(x)=Q.

This result is generally well known.14)15) It should be noted that Φ^[D, D] if
and only if the characteristic of the base field is a factor of n.

Now let M be an invariant subspace of D, a central division algebra with finite
dimension n=s2(>l) over its center Φ, and suppose MfΦ. We note that M^[D, D]
is also an invariant subspace not contained in Φ. In fact, from Lemma 1 we have
Mv^M^O for every element a$Φ\ this, combined with Corollary 1 to Theorem 1, im-
plies that [M: Φ]>n/2. Since ^>4 and [[D, D]: Φ]=n-l, we have [M^[D, D]:Φ]>1
and so M^[D, D]φΦ. (The fact that M^[D, D] is invariant is obvious. Cf. also
Theorem 3.) In view of this we shall assume for some time M<^[D, D]. Observe
that [M:Φ~\>n/2 still holds.

By Lemma 2, we can choose an element a$D such that \_Φ(ά): Φ]=s, i.e. a is a
primitive element of a separable maximal subfield of D, and such that Ma+M=D.
Moreover, we may assume T(a)^Q', this can be seen from the proof of Lemma 2.
(In fact, Φ(ά) contains an element with non-zero trace, even if T(ά) = Q.) Note that
this implies Φ(a)φM since we assumed M^[D, D]. On the other hand, Lemma 1

14) The proof may be carried out as follows. Let n=sz, let {u%\ l^i^n} be a basis

of D over Φ and let Ω be a splitting field of D over Φ. As is well known, Do=D®φΩ

can be identified with Ωs, the total matrix algebra over Ω. Now it is obvious that [D, D]

is generated by [ui,Uj\, l<j, j<n\ this is also true for [DΩ,DΩ]=[ΩS, Ωs] But the Ω-

subspace [ΩS,ΩS] of Ωs has dimensionality s2—1 over Ω (a simple proof of this fact will

be found in Kasch [19]), and hence the set {[«$,«/]; l^i,j^n} contains exactly n—l linearly

independent elements. These are of course linearly independent over Φ, as elements of

D. Thus [[D,D]:Φ]=n—L As to the second assertion we note that T([a,b])=Q for all

a.beD. The subset U={x\xcD,T(x)=Q} of D is therefore a subspace containing [D,D].

On the other hand, since D contains an element with non-zero trace, we have [U:Φ]<n—I.

This implies that U=[D,D].

15) The result does not hold for an arbitrary division ring D with center Φ. In fact,

Harris [9] constructed an example of division rings such that [D, D]=D.
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shows that M contains an element xl which does not commute with a, and that
if v1=x1Ia—xι then VιΦ(a)^M^Ma; we have hence [M^Ma:Φ]>s. From these
we obtain:

2[M : Φ]=[M: Φ\+\Ma : Φ]=[D : Φ]+[M^Ma : Φ]>s2+s,

i.e. [M:Φ]>(s2jrs)/2. We shall now prove the following preliminary result on the
dimensionality [M:Φ].

(P) Under the same assumptions and notations as above, we have [M: Φ]>s2— s/2.

Proof of (P). We have already seen that [M: 0]>(s2+s)/2. If s=2, this
inequality gives [M: 0]>3, which coincides with the inquality of (P). Consequently
we assume s>3. We have then (*) [M:Φ]>(s2+s)/2>2s. Let xl and vi be as
before: xl^Mί^VD(d)] Vι=xja—x\, VιΦ(a)^M^Ma. Suppose x2 be a second ele-
ment of M satisfying the same conditions as xl and set V2=x2la—x2. We now
consider under what circumstances v2 is contained in v\Φ(a). The condition
v2Gv$(a) may be stated as follows: There is a polynomial f(X)€Φ[X] such that
xzla— ̂ 2=Oι/α— #ι)/(tf), or equivalently, (x2—xif(a))Ia=x2—xif(a). This means
X2.—xιf(ά)£VD(ά)=Φ(ά), and so we have x2ςχjΦ(d)+Φ(ά). Now [xιΦ(ά)+Φ(ά) : Φ]=2s
and Φ(a)φM, by assumption; hence we have [(xιΦ(ά)+Φ(ά))/^M:Φ']<2s. It follows
from (*) that we can find an element x2 which is in M and not in XιΦ(ά)-\-Φ(ά).
If we set V2=x2la—x2, as above, then v2--^0 and vz$v$(a) by what we have seen.
Since v2Φ(a) is also contained in M^JVLa (Lemma 1), v$(d)-\-v$(d) (direct sum) is
a subspace of M^Ma. Hence [M^Ma : Φ]>2s. And, this implies

2[M: Φ]=[D : Φ]+[M^Ma : Φ]>s2+2s,

as before. Similarly, we can easily verify successively the following inequalities:

2[M: Φ]>s2+3s, .-, 2[M: Φ]>s2-\-(s-l)s.

The details of the verification will be omitted since we have only to repeat the
same arguement as above, with obvious modifications. Now from the last inequality
we have [M: Φ]>s2— 5/2, which was to be proved.

Let M be again an invariant subspace of D satisfying MφΦ, M^[D, D].
Suppose that b is an element of D such that Φ(b) is a separable maximal subfield
of D: [Φ(b):Φ]=s.1^ Since we know that [M: 0]>s2-s/2>(s-l)s, a similar
arguement as in the proof of (P) will be available. Thus we can choose a set of
elements yι,y^ •••, y&-ι of M with the following property: If we set Wι=yιh—yi
then Wi^O and w$(b)^M(l<i<s—l)', and moreover WiΦ(b) are independent sub-
spaces of M By symmetry we have

16) It is easy to see that Φ(b) contains an element with non-zero trace. (Note that
the reduced trace T(x) coincides with the usual trace of x for Φ(b) over Φ, if xcΦ(b}.}

Thus Φ(ϋ)φM.
17) Cf. the proof of Lemma 1. Also see the footnote 6.
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We now consider D as a (Φ(b), $(&))-module; but this is equivalent to considering
D as a (Φ(&)(x)φΦ(6))-module.18) Since Φ(b)®ΦΦ(b) is a semi-simple algebra of finite
dimension over Φ (remember that Φ(b) is separable over Φ\ D is completely reducible
as a (Φ(£)(x)φΦ(&))-module. The subfield Φ(b) is evidently a (Φ(δ)(g)φΦ(δ))-submodule
moreover, this is a homogeneous component150 of (Φ(&)®φΦ(£))-module D. Hence, we
have a (unique) direct sum decomposition

D=Φ(V)®B(V)

of D as a (Φ(6), Φ(£))-module.
Now let £7 be the (Φ(b), Φ(£))-submodule of D generated by the elements

Wi(l<i<s—1). As we have seen, WiΦ(b)^M andΦ(b)Wi^M(l<i<s—l). From this
we see that U^M. In fact, we decompose the elements yl according to the de-
composition D=Φ(b)+Σl-ιWiφ(V) yi = yί+yi' Then for each i we have yi'Φ(b)ζM
and Wi=y'ί

flt>—yί/', and, if ^(^0) is an element of Φ(b) then WiCl = (y(rCi)h~-y'ifcl.
This gives Φ(b)Wid<^M, for we may replace yι and wι by y('cl and wτcl} respec-
tively, in our previous arguements. Thus Φ(b)wiΦ(b)^M, since c% was arbitrary.
This proves the inclusion U^M. We have then Φ(b)φU. On the other hand,
Φ(b)+U=D. From these we can easily deduce that U=B(b) = Σl-lwtΦ(b)^M.

We shall prove next that the Φ-subspace B of D, generated by all the B(b) as
above (i.e. b is a primitive element of a separable maximal subfield), coincides with
[D, D]. In fact: The inclusion B<^\P, D] is already proved above. We have
therefore to show [a, b]zB for any a, b^D. If one of the two elements, say a, is a
primitive element of a separable maximal subfield, we decompose b according to
D=Φ(d)®B(ά): £=&'+&"; then [a, b]=[a, bf']=ab"-bf'azB(a)<^B. Next, if a, say,
is separable over Φ, we imbed Φ(d) in a separable maximal subfield Φ(c); then we
have [a, b]€B(c), similarly as above. Finally, let a be arbitrary. We may suppose
that Γ(0)=0. We take an element c with T(c)^Q; then \c,b]GB and [a+cy b]$B.
Hence [a, b]=[a+c, b]-[c, b]eB. Thus we have B=[D, D\. On the other hand,
B^M^[D, D] as we have seen, and so we have M=[Z), D].

Our result may be summarized in the following main theorem.

THEOREM 4. Let D be a division algebra of finite dimension over an (infinite)
field Φ. Suppose M is an invariant subspace. Then either M is contained in Z,
the center of Z>, or M contains [D, D]. In particular, if D is moreover central
then the only subspaces of D are 0, Φ, [D, D] and D.

Concerning separable maximal subfields and the submodule [D, D] we have

THEOREM 5. Let D be a central division algebra over Φ and let [D:Φ]=n<co.
Suppose that K is a separable maximal subfield of D and that b is a primitive
element: K=Φ(b). Then there is a unique direct sum decomposition of D as a

18) See for example Jacobson [16], p. 102.
19) In the sense of Jacobson [16], section 4. 2.
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(Φ(b\Φ(b))-module: D=Φ(b)@B(b)', and when that is so, B(b)=[b, £>].20) Further-
more, [D, D] is characterized as the minimal submodule containing all such sub-
modules as B(b).

Proof. It remains only to show B(b)=[b, D]. The inclusion [b, U]^B(b) is
clear from the proof of B=[D, D] (in the proof of Theorem 4). Conversely, let y
be in B(b). y is expressible as y = Σl=\WίCt, c^Φ(b), notations being the same as
before. But, it follows easily from the definition of wι that Wid£\b, D]. Hence

)=[ft, D\.

Finally we state the normal basis theorem for a central division algebra D of
finite dimension over Φ.

THEOREM 6. Let D be a finite dimensional central division algebra over Φ and
let [D:Φ] = n. Suppose x is an element of D not in the center Φ. Then x generates
a normal basis over Φ (i.e. there exist n inner automorphisms IaiO-<i<n) such that
{xlat} constitutes a Φ -basis of D) if and only if T(x)^0, where T(x) denotes the
(reduced) trace of x. (There exist infinitely many elements in D with this property^

Proof. Let M be the invariant subspace generated by x. Since x$Φ, Theorem
4 implies [D, D]cM On the other hand, it is clear that x generates a normal basis
if and only if M=D. But this is the case if and only if z$[D, D], which is equivalent
to the condition T(x)^0. The last statement (in parentheses) is obvious.

5. Another proof of the main theorem and extension to the case of algebraic
division algebras.

In this section we shall give an alternative proof of Theorem 4 and at the
same time extend the result to an arbitrary algebraic division algebra. The proof
is short, but not elementary, since it requires a result of Herstein [11]22) from the
theory of Lie ideals of simple rings. Suppose A is a ring and U a submodule of
A. If [U, AJc; U then U is called a Lie ideal of A. Herstein's theorem states that
if U is a Lie ideal of a simple ring A then either U<^Z, the center of A, or
UlΞ>[A, A] except if A is of characteristic 2 and is of dimension 4 over Z.

THEOREM 7. Let D be an algebraic division algebra with center Z over Φ.
Suppose that M is an invariant Φ-subspace of D. Then either M<^Z or MΏ.[D, D].

Proof. If Φ is a finite field then D is commutative and the theorem is trivial.
Hence we may assume Φ is an infinite field. Then by Proposition 3 we have

20) This has been proved by Kasch [19] (Hilίssatz 2).
21) From this result we can also deduce the existence of a normal basis of a finite

dimensional central simple algebra. Cf. Kasch [19], Satz 4.
22) See also Amitsur [3], Herstein [13].
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[M, D]^M; M is therefore a Lie ideal of D. Herstein's theorem now implies that
either M^Z or M^[D, £>].23)
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23) The exceptional case, when D is of characteristic 2 and is 4-dimensional over Z,
is to be considered separately.




