ON REGULARLY BRANCHED THREE-SHEETED COVERING RIEMANN SURFACES

By Kiyoshi Niino

\S 1. Let R be an open Riemann surface. Let $\mathfrak{M}(R)$ be the family of nonconstant analytic functions meromorphic on R. Let f be a member of $\mathfrak{M}(R)$. Let $P(f)$ be the number of Picard's exceptional values of f, where we say α a Picard's exceptional value of f when α is not taken by f on R. Let $P(R)$ be a quantity defined by

$$
P(R)=\sup _{f \in 刃(R)} P(f)
$$

In general $P(R) \geqq 2$. It has been shown that $P(R)$ is an important quantity belonging to R for a criterion of non-existence of analytic mapping (cf. Ozawa [5, 6]).

From now on we shall confine ourselves to the following Riemann surfaces:
Let R be a regularly branched three-sheeted covering Riemann surface formed by elements $p=(z, y)$ for each z, y satisfying the equation

$$
\begin{equation*}
y^{3}=g(z), \tag{1.1}
\end{equation*}
$$

where $g(z)$ is an entire function having no zero other than an infinite number of simple or double zeros. Then we have $P(R) \leqq 6$ from Selberg's theory [9].

Hiromi and the author [1] has given a characterization of Riemann surfaces R with $P(R)=6$ and proved that there is no regularly branched three-sheeted covering Riemann surface R with $P(R)=5$ and that every Riemann surface R defined by the equation (1.1) with an entire function $g(z)$, which have no zero other than an infinite number of simple zeros or have no zero other than an infinite number of double zeros, always satisfies $P(R) \leqq 4$.

Hence as an example of surface R with $P(R)=4$, we have a Riemann surface R defined by the equation (1.1) with $g(z)=e^{z}+1$.

As for surfaces with $P(R) \leqq 4$ nothing is known other than above facts. Therefore we wish to get a perfect characterization of surfaces with $P(R)=4$. The author regrets to say that he could not give any perfect characterization of surfaces with $P(R)=4$ till now. In the present paper, however, under a certain additional condition we shall give a characterization of surfaces with $P(R)=4$ in $\S 4$ and a criterion for $P(R) \leqq 4$ in $\S 5$.

Next let S be another surface of the same type as R. Then Muto [3] has established a perfect condition for the existence of analytic mappings from R into S. If $P(R)=P(S)=6$, then the possibility on the existence of analytic mappings from R into S remains by means of Ozawa's criterion on non-existence of analytic

Received December 23, 1965.
mapping [5]. In the present paper we shall give a perfect condition of the existence of analytic mappings between the special surfaces with $P(R)=P(S)=6$ in $\S 6$.

The author wishes to express his heartiest thanks to Professors Y. Komatu and M. Ozawa and Mr. G. Hiromi for their valuable advices and kind encouragements in preparing the paper.
§ 2. Let R be a regularly branched three-sheeted covering Riemann surface defined by the equation (1.1). In the first place let us recall the following results which Hiromi and the author [1] established about regular functions on R :

Let f be a three-valued entire algebroid function of z which is single-valued and regular on R. Then there exist two entire functions $f_{1}(z), f_{2}(z)$ and a meromorphic function $f_{3}(z)$ single-valued and regular with exception of all the double zeros of $g(z)$ at which $f_{3}(z)$ has simple poles, such that

$$
\begin{equation*}
f(p)=f_{1}(z)+f_{2}(z) y+f_{3}(z) y^{2} \tag{2.1}
\end{equation*}
$$

Conversely the function $f(p)$ defined by (2.1) with $f_{1}(z), f_{2}(z)$ and $f_{3}(z)$ having the described properties is clearly regular on R. Let the defining equation of f be

$$
\begin{equation*}
F(z, f) \equiv f^{3}-S_{1}(z) f^{2}+S_{2}(z) f-S_{3}(z)=0 \tag{2.2}
\end{equation*}
$$

where $S_{1}(z), S_{2}(z)$ and $S_{3}(z)$ are entire functions. Then from (2.1) we have the following relations:

$$
\left\{\begin{array}{l}
S_{1}(z)=3 f_{1}(z) \tag{2.3}\\
S_{2}(z)=3 f_{1}(z)^{2}-3 f_{2}(z) f_{3}(z) g(z) \\
S_{3}(z)=f_{1}(z)^{3}+f_{2}(z)^{3} g(z)+f_{3}(z)^{3} g(z)^{2}-3 f_{1}(z) f_{2}(z) f_{3}(z) g(z)
\end{array}\right.
$$

Let $D(z)$ be the discriminant of the cubic equation (2.2). Then we have

$$
\begin{equation*}
D(z)=-27 g(z)^{2}\left(f_{2}(z)^{3}-f_{3}(z)^{3} g(z)\right)^{2} \tag{2.4}
\end{equation*}
$$

and from (2.2)

$$
\begin{equation*}
D(z)=-4 S_{1}(z)^{3} S_{3}(z)+S_{1}(z)^{2} S_{2}(z)^{2}+18 S_{1}(z) S_{2}(z) S_{3}(z)-4 S_{2}(z)^{3}-27 S_{3}(z)^{2} \tag{2.5}
\end{equation*}
$$

Eliminating f_{1} and f_{3} or f_{1} and f_{2} from (2.3) we see that $f_{2}{ }^{3} g$ and $f_{3}{ }^{3} g^{2}$ are two roots of a quadratic equation

$$
\begin{equation*}
X^{2}-\left(\frac{2}{27} S_{1}(z)^{3}-\frac{1}{3} S_{1}(z) S_{2}(z)+S_{3}(z)\right) X+\frac{1}{27}\left(\frac{1}{3} S_{1}(z)^{2}-S_{2}(z)\right)^{3}=0 \tag{2.6}
\end{equation*}
$$

Let. $D_{1}(z)$ be the discriminant of the quadratic equation (2.6). The from (2.5) we get

$$
\begin{equation*}
D_{1}(z)=-\frac{1}{27} D(z) . \tag{2.7}
\end{equation*}
$$

§ 3. Lemmas. For our purpose we need some preparatory lemmas. The notations T, m, N, N_{1} and \bar{N} on meromorphic functions are used in the sense of Nevanlinna [4]. Hiromi and Ozawa [2] proved the following lemma A and lemma B :

Lemma A. Let $a_{0}(z), a_{1}(z), \cdots, a_{n}(z)$ be meromorphic functions and let $g_{1}(z), \cdots$, $g_{n}(z)$ be entire functions. Further suppose that

$$
T\left(r, a_{j}\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right), \quad j=0,1, \cdots, n,
$$

holds outside a set of finite measure. If the identity

$$
\sum_{\nu=1}^{n} a_{\nu}(z) e^{g_{\nu}(z)}=a_{0}(z)
$$

holds, then we have an identity

$$
\sum_{\nu=1}^{n} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=0,
$$

where $c_{\nu}, \nu=1, \cdots, n$, are constants which are not all zero.
Lemma B. Let $a_{1}(z), \cdots, a_{n}(z)$ be meromorphic functions and let $g(z)$ be an entire function. Further suppose that

$$
T\left(r, a_{j}\right)=o\left(m\left(r, e^{g}\right)\right), \quad \jmath=1,2, \cdots, n
$$

holds outside a set of finite measure. Then the identity

$$
\sum_{\nu=1}^{n} a_{\nu}(z) e^{\nu g(z)}=0
$$

is impossible unless all $a_{1}(z), \cdots, a_{n}(z)$ are identically zero.
Now we shall prove
Lemma 1. Let $a_{0}(z), a_{1}(z), \cdots, a_{n}(z)$ be meromorphic funclions and lel $y_{1}(z), \cdots$, $g_{n}(z)$ be entire functions. Further suppose that

$$
T\left(r, a_{j}\right)=o\left(m\left(r, e^{q_{v}}\right)\right)
$$

and

$$
T\left(r, a_{j}\right)=o\left(m\left(r, e^{g_{1}-g_{\nu}}\right)\right), \quad \jmath=0,1, \cdots, n ; \quad \nu=k, k+1, \cdots, n,
$$

outside a set of finite measure. If $a_{1}(z) \not \equiv 0$ and the identity

$$
\begin{equation*}
\sum_{\nu=1}^{n} a_{\nu}(z) e^{g_{\nu}(z)}=a_{0}(z) \tag{3.1}
\end{equation*}
$$

halds, then we have

$$
\sum_{\nu=1}^{k-1} c_{\nu} a_{\nu}(z) e^{q_{\nu}(z)}+c_{0} a_{0}(z)-0,
$$

where $c_{1}=1$ and $c_{\nu}, \nu=0,2,3, \cdots, k-1$, are suitable constants.
Proof. Suppose that the identity (3.1) holds. Then, by virtue of lemma A we get

$$
\begin{equation*}
\sum_{\nu=1}^{n} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=0, \tag{3.2}
\end{equation*}
$$

where $c_{\nu}, \nu=1, \cdots, n$, are constants which are not all zero.
If $c_{1}=0$, then $a_{\nu}(z) e^{q_{\nu}(z)}, \nu=2, \cdots, n$, are linearly dependent. Hence by climinating a suitable term, say $a_{n}(z) e^{g_{n}(z)}$, from (3.1), we get

$$
\sum_{\nu=1}^{n-1} d_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=a_{0}(z)
$$

where $d_{1}=1$ and the other d_{ν} are suitable constants. Here if $d_{\nu}=0, \nu=k, k+1, \cdots$, $n-1$, then there is nothing to prove. If at least one of $d_{\nu}, \nu=k, \cdots, n-1$, is not zero, then by virtue of lemma A we have

$$
\begin{equation*}
\sum_{\nu=1}^{n-1} d_{\nu}^{\prime} d_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=0, \tag{3.3}
\end{equation*}
$$

where $d_{1}=1$ and $d_{\nu}{ }^{\prime}$ are constants which are not all zero.
If $c_{1} \neq 0$ and $c_{\nu}=0, \nu=k, \cdots, n$, then there is nothing to prove.
If $c_{1} \neq 0$ and at least one of $c_{\nu}, \nu=k, \cdots, n$, say c_{n}, is not zero, then we have

$$
\sum_{\nu=1}^{n-1} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)-g_{n}(z)}=-c_{n} a_{n}(z),
$$

and by applying lemma A to this identity, we get

$$
\sum_{\nu=1}^{n-1} c_{\nu}{ }^{\prime} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)-g_{n}(z)}=0,
$$

where $c_{\nu}{ }^{\prime}$ are constants which are not all zero. Hence we obtain

$$
\begin{equation*}
\sum_{\nu=1}^{n-1} c_{\nu} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=0 . \tag{3.4}
\end{equation*}
$$

Thus (3.2) implies (3.3) or (3.4). By the repetition of this process, we finally arrive at the desired result. Q.E.D.

The notations T, m, N on algebroid functions are used in the sense of Selberg [9]. Let $f(z)$ be an algebroid function. In a neighborhood of a zero z_{0} of $f(z)$, let $f(z)$ be expanded:

$$
\begin{equation*}
f(z)=a_{\tau}\left(z-z_{0}\right)^{\tau / \lambda}+\cdots, \quad\left(a_{\tau} \neq 0\right) . \tag{3.5}
\end{equation*}
$$

Let $N_{1} *(r, 0, f)$ and $N_{2}{ }^{*}(r, 0, f)$ be the counting functions of zeros of $f(z)$ with $\tau>\lambda$ and $\tau \leqq \lambda$ in (3.5), respectively. Let $N\left(r, \mathfrak{X}_{f}\right)$ and $N\left(r, 3_{f}\right)$ be the quantities defined by Selberg [9].

Lemma 2. Let $H(z)$ be an entire function and $h(z)$ be a k-valued entire algebroud function. If

$$
m(r, h)=o\left(m\left(r, e^{H}\right)\right)
$$

holds outside a set of finite measure, then we have

$$
N_{1}^{*}\left(r, 0, e^{I I}-h\right)=o\left(m\left(r, e^{I I}\right)\right) \quad \text { and } \quad N_{2} *\left(r, 0, e^{I I}-h\right) \sim m\left(r, c^{I I}\right)
$$

outside a set of finite measure.

Proof. We set

$$
f=\frac{e^{I I}-h}{-h} .
$$

Then f is a k-valued algebroid function regular on $\mathfrak{x}_{l / \text {. Using ramification theorem }}$ (cf. Ullrich [10], Selberg [9]), we get

$$
\begin{aligned}
& N(r, \infty, f)=N(r, 0, h) \leqq m(r, h)+O(1)=o\left(m\left(r, e^{H}\right)\right), \\
& N(r, 1, f)=N\left(r, 0, e^{H}\right)=0 \\
& N\left(r, \infty, f^{\prime}\right) \leqq 2 N(r, 0, h)+N\left(r, \mathfrak{x}_{n}\right) \\
& \quad \leqq 2 N(r, 0, h)+(2 k-2) T(r, h)+O(1)=o\left(m\left(r, e^{I I}\right)\right), \\
& T(r, f) \leqq T\left(r, e^{H}\right)+T(r, h)+T(r, 1 / h)+O(1) \leqq m\left(r, e^{H}\right)+o\left(m\left(r, e^{H}\right)\right)
\end{aligned}
$$

and

$$
m\left(r, e^{H}\right) \leqq m\left(r, e^{H}-h\right)+m(r, h)+O(1) \leqq T(r, f)+o\left(m\left(r, e^{I I}\right)\right)
$$

outside a set of finite measure. Nevanlinna-Selberg's second fundamental theorem applied to f gives

$$
T(r, f) \leqq N(r, 0, f)+N(r, \infty, f)+N(r, 1, f)-N\left(r, \mathcal{B}_{f}\right)+N\left(r, \mathscr{X}_{f}\right)+O(\log r T(r, f))
$$

outside a set of finite measure. Since

$$
\begin{aligned}
N\left(r, \mathcal{Z}_{f}\right)-N\left(r, \mathfrak{X}_{f}\right) & =2 N(r, \infty, f)+N\left(r, 0, f^{\prime}\right)-N\left(r, \infty, f^{\prime}\right) \\
& =N\left(r, 0, f^{\prime}\right)+o\left(m\left(r, e^{H}\right)\right)
\end{aligned}
$$

and

$$
N\left(r, \mathscr{X}_{f}\right)=N\left(r, \mathfrak{X}_{h}\right) \leqq(2 k-2) T(r, h)-\vdash O(1)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure, we have

$$
\begin{aligned}
T(r, f) & \leqq N(r, 0, f)-N\left(r, 0, f^{\prime}\right)+o\left(m\left(r, e^{I I}\right)\right) \\
& \leqq N_{2}{ }^{*}(r, 0, f)+\bar{N}_{1}^{*}(r, 0, f)+N\left(r, \mathfrak{X}_{f}\right)+o\left(m\left(r, e^{I I}\right)\right) \\
& =N_{2}^{*}\left(r, 0, e^{H}-h\right)+\bar{N}_{1} *\left(r, 0, e^{H}-h\right)+o\left(m\left(r, e^{H}\right)\right)
\end{aligned}
$$

outside a set of finite measure. On the other hand we have

$$
\begin{aligned}
& N_{2} *\left(r, 0, e^{I I}-h\right)+N_{1} *\left(r, 0, e^{H}-h\right)-\bar{N}_{1} *\left(r, 0, e^{H}-h\right)+\bar{N}_{1} *\left(r, 0, e^{H}-h\right) \\
= & N\left(r, 0, e^{H}-h\right)=N(r, 0, f) \leqq T(r, f)+O(1) \\
\leqq & N_{2}^{*}\left(r, 0, e^{H}-h\right)+\bar{N}_{1} *\left(r, 0, e^{H}-h\right)+o\left(m\left(r, e^{I}\right)\right)
\end{aligned}
$$

outside a set of finite measure. Thus we obtain

$$
\bar{N}_{1}^{*} *\left(r, 0, e^{H}-h\right) \leqq N_{1} *\left(r, 0, e^{I I}-h\right)-\bar{N}_{1} *\left(r, 0, e^{I I}-h\right)=o\left(m\left(r, e^{I I}\right)\right),
$$

and hence

$$
N_{1}{ }^{*}\left(r, 0, e^{I}-h\right)=o\left(m\left(r, e^{H}\right)\right),
$$

and by means of $T(r, f)=m\left(r, e^{H}\right)+o\left(m\left(r, e^{H}\right)\right)$, we finally have

$$
N_{2}^{*}\left(r, 0, e^{I I}-h\right)=m\left(r, e^{I I}\right)+o\left(m\left(r, e^{I I}\right)\right)
$$

outside a set of finite measure. Thus lemma 2 has been proved.
Let $f(z)$ be an algebroid function. Let $\hat{N}_{2}{ }^{*}(r, 0, f)$ be the counting function of zeros of $f(z)$ with $\tau=\lambda=1$ in (3.5) whose projections do not coincide with projections of all the branch points of \mathfrak{X}_{f}.

Lemma 3. Under the hypotheses of lemma 2, we have

$$
\hat{N}_{2}{ }^{*}\left(r, 0, e^{H}-h\right) \sim m\left(r, e^{H}\right)
$$

outside a set of finite measure.
Proof. By virtue of ramification theorem we have clearly

$$
\begin{aligned}
N_{2}^{*}\left(r, 0, e^{H}-h\right)-\hat{N}_{2}^{*}\left(r, 0, e^{I I}-h\right) & \leqq N\left(r, \mathfrak{X}_{h}\right)+(k+1) \bar{N}\left(r, \mathfrak{X}_{h}\right) \\
& \leqq(k+2)(2 k-2) T(r, h)+O(1)=o\left(m\left(r, e^{\mu \prime}\right)\right)
\end{aligned}
$$

outside a set of finite measure. Therefore lemma 2 gives our desired result. Q.E.D.
Let $f(z)$ be a meromorphic function. Let $N_{2}(r, 0, f)$ be the counting function of simple zeros of $f(z)$.

Lemma 4. Let $H(z)$ and $\varphi_{j}(z)(j=1, \cdots, \mu)$ be entire functions satisfying

$$
m\left(r, \varphi_{j}\right)=o\left(m\left(r, e^{H}\right)\right), \quad j=1, \cdots, \mu,
$$

outside a set of finite measure. If the algebraic equation

$$
\begin{equation*}
Q_{\mu}(h) \equiv h^{\mu}+\varphi_{1}(z) h^{\mu-1}+\cdots+\varphi_{\mu}(z)=0 \tag{3.6}
\end{equation*}
$$

is irreducible, then we have

$$
N_{2}\left(r, 0, Q_{\mu}\left(e^{H}\right)\right) \sim \mu m\left(r, e^{I I}\right) \quad \text { and } \quad N_{1}\left(r, 0, Q_{\mu}\left(e^{I}\right)\right)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure.
Proof. Let $h(z)$ be μ-valued entire algebroid function defined by the equation (3. 6) and $h_{j}(z)(j=1, \cdots, \mu)$ its μ determinations. Then we have

$$
\sum_{j=1}^{\mu} \hat{N}_{2}^{*}\left(r, 0, e^{H}-h_{j}\right) \leqq N_{2}\left(r, 0, Q\left(e^{H}\right)\right) \leqq \sum_{j=1}^{\mu} N_{2}^{*}\left(r, 0, e^{H}-h_{j}\right)
$$

and

$$
N_{1}\left(r, 0, Q\left(e^{H}\right)\right) \leqq \sum_{j=1}^{p} N_{1}^{*}\left(r, 0, e^{I I}-h_{j}\right) .
$$

Therefore lemma 4 follows from lemma 2 and lemma 3.
Remark. If $h(z)$ in lemma 2 reduces to an entire function or if $\mu=1$ in lemma 4, then these lemmas reduce to that of Hiromi and Ozawa [2], that is,

Lemma C. Let $H(z)$ be an entire function and let $g(z)$ be an entire function satisfying $m(r, g)=o\left(m\left(r, e^{H}\right)\right)$ outside a set of finite measure. Then we have

$$
N_{2}\left(r, 0, e^{H}-g\right) \sim m\left(r, e^{H}\right) \quad \text { and } \quad N_{1}\left(r, 0, e^{I I}-g\right)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure.
Let $f_{1}(z)$ and $f_{2}(z)$ be two meromorphic functions. Let $N_{0}\left(r, 0 ; f_{1}, f_{2}\right)$ be the counting function of common zeros of $f_{1}(z)$ and $f_{2}(z)$.

Lemma 5. Let $H(z), \varphi_{j}(z)(j=1, \cdots, \mu)$ and $\varphi_{k}^{*}(z)(k=1, \cdots, \nu)$ be entire functions satisfying

$$
m\left(r, \varphi_{j}\right)=o\left(m\left(r, e^{H}\right)\right), \quad j=1,2, \cdots, \mu
$$

and

$$
m\left(r, \varphi_{k}^{*}\right)=o\left(m\left(r, e^{I I}\right)\right), \quad k=1,2, \cdots, \nu,
$$

outside a set of finite measure. If the equations

$$
Q_{\mu}(h) \equiv h^{\mu}+\varphi_{1}(z) h^{\mu-1}+\cdots+\varphi_{\mu}(z)=0
$$

and

$$
Q_{\nu}^{*}(h) \equiv h^{\nu}+\varphi_{1}^{*}(z) h^{\nu-1}+\cdots+\varphi_{\nu}^{*}(z)=0
$$

are irreducible, respectively, and $Q_{\mu}\left(e^{H}\right) \not \equiv Q_{\nu}^{*}\left(e^{H}\right)$, then we have

$$
N_{0}\left(r, 0 ; Q_{\mu}\left(e^{H}\right), Q_{\nu}^{*}\left(e^{H}\right)\right)=o\left(m\left(r, e^{I I}\right)\right)
$$

outside a set of finite measure.
Proof. We denote the resultant of $Q_{\mu}(h)$ and $Q_{\nu}^{*}(h)$ by $J(z)$, that is,

Then by means of hypotheses of the lemma, we have

$$
N(r, 0, J)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure. Hence we have

$$
N_{0}\left(r, 0 ; Q_{\mu}\left(e^{H}\right), Q_{\nu}^{*}\left(e^{H}\right)\right) \leqq N(r, 0, J)+o\left(m\left(r, e^{I}\right)\right)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure, which proves lemma 5.
Finally, we need

Lemma D. ${ }^{1)}$ Let $g(z)$ be a transcendental entire function and let $P(z)$ and $Q(z)$ be two polynomials. If the equation

$$
g \circ h(z)=P(z) g(z)+Q(z)
$$

holds, then $h(z)$ must be of the form $a z+b$.
§4. Now we shall consider to give a characterization of Riemann surfaces with $P(R)=4$ under an additional condition.

Let R be a regularly branched three-sheeted covering Riemann surface defined by the equation (1.1) and suppose that $P(R)=4$. Then there exists a meromorphic function $f \in \mathbb{M}(R)$ with $P(f)=4$. Further we may assume that its four Picard's exceptional values are $0, a_{1}, a_{2}$ and ∞. Then f becomes a three-valued entire algebroid function of z which is regular on R and satisfies (2.2) and (2.3). By Rémoundos' reasoning [8] of his celebrated generalization of Picard's theorem, it is sufficient to consider the following five cases:

$$
\left(\begin{array}{l}
F(z, 0) \\
F\left(z, a_{1}\right) \\
F\left(z, a_{2}\right)
\end{array}\right)=\quad \text { (i) }\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\beta e^{H}
\end{array}\right), \quad \text { (ii) }\left(\begin{array}{c}
\beta e^{H} \\
c_{1} \\
c_{2}
\end{array}\right), \quad \text { (iii) }\left(\begin{array}{c}
c \\
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H 2}
\end{array}\right), \quad \text { (iv) }\left(\begin{array}{c}
\beta_{1} e^{H 1} \\
c \\
\beta_{2} e^{H_{2}}
\end{array}\right), \quad \text { (v) }\left(\begin{array}{c}
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{3}}
\end{array}\right) \text {, }
$$

where $c, c_{1}, c_{2}, \beta, \beta_{1}, \beta_{2}$ and β_{3} are non-zero constants and $H(z), H_{1}(z), H_{2}(z)$ and $H_{3}(z)$ are non-constant entire functions satisfying $H(0)=H_{1}(0)=H_{2}(0)=H_{3}(0)=0$.

After calculation we obtain

$$
\left\{\begin{array}{l}
S_{1}=\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} \beta e^{I I}-\frac{1}{a_{1} a_{2}} c_{1}-\frac{1}{a_{1}\left(a_{1}-a_{2}\right)} c_{2}+a_{1}+a_{2} \tag{4.1}\\
S_{2}=\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} \beta e^{I I}-\frac{a_{1}+a_{2}}{a_{1} a_{2}} c_{1}-\frac{a_{2}}{a_{1}\left(a_{1}-a_{2}\right)} c_{2}+a_{1} a_{2} \\
S_{3}=-c_{1}
\end{array}\right.
$$

in the case (i), and

$$
\left\{\begin{array}{l}
S_{1}=-\frac{1}{a_{1} a_{2}} \beta e^{H}-\frac{1}{a_{1}\left(a_{1}-a_{2}\right)} c_{1}+\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} c_{2}+a_{1}+a_{2} \tag{4.2}\\
S_{2}=-\frac{a_{1}+a_{2}}{a_{1} a_{2}} \beta e^{I I}-\frac{a_{2}}{a_{1}\left(a_{1}-a_{2}\right)} c_{1}+\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} c_{2}+a_{1} a_{2} \\
S_{3}=-\beta e^{I I}
\end{array}\right.
$$

in the case (ii), and

1) This lemma has been proved by considering the growth of $g \circ h(z)$ in contrast with that of $g(z)$ or $P(z) g(z)$ in Ozawa's note which is yet unpublished.

$$
\left\{\begin{array}{l}
S_{1}=-\frac{1}{a_{1}\left(a_{1}-a_{2}\right)} \beta_{1} e^{H_{1}}+\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{2} e^{I_{2}}-\frac{1}{a_{1} a_{2}} c+a_{1}+a_{2}, \tag{4.3}\\
S_{2}=-\frac{a_{2}}{a_{1}\left(a_{1}-a_{2}\right)} \beta_{1} e^{I_{1}}+\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{2} e^{H_{2}}-\frac{a_{1}+a_{2}}{a_{1} a_{2}} c+a_{1} a_{2}, \\
S_{3}=-c
\end{array}\right.
$$

in the case (iii), and

$$
\left\{\begin{array}{l}
S_{1}=-\frac{1}{a_{1} a_{2}} \beta_{1} e^{H_{1}}+\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{2} e^{H_{2}}-\frac{1}{a_{1}\left(a_{1}-a_{2}\right)} c+a_{1}+a_{2} \tag{4.4}\\
S_{2}=-\frac{a_{1}+a_{2}}{a_{1} a_{2}} \beta_{1} e^{H_{1}}+\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{2} e^{H_{2}}-\frac{a_{2}}{a_{1}\left(a_{1}-a_{2}\right)} c+a_{1} a_{2} \\
S_{3}=-\beta_{1} e^{H_{1}}
\end{array}\right.
$$

in the case (iv), and

$$
\left\{\begin{array}{l}
S_{1}=-\frac{1}{a_{1} a_{2}} \beta_{1} e^{H_{1}}-\frac{1}{a_{1}\left(a_{1}-a_{2}\right)} \beta_{2} e^{H 2}+\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{3} e^{H I_{3}}+a_{1}+a_{2}, \tag{4.5}\\
S_{2}=-\frac{a_{1}+a_{2}}{a_{1} a_{2}} \beta_{1} e^{H_{1}}-\frac{a_{2}}{a_{1}\left(a_{1}-a_{2}\right)} \beta_{2} e^{H I_{2}}+\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{3} e^{I I_{3}}+a_{1} a_{2}, \\
S_{3}=-\beta_{1} e^{H_{1}}
\end{array}\right.
$$

in the case (v).
Cases (i) and (ii). These cases are similar to the cases (i) and (ii) of $\S 5$ in Hiromi and the author [1]. Hence the discriminant $D(z)$ of the cubic equation (2.2) is a polynomial of degree 4 of e^{H}. From the same reasoning of $\S 5$ in [1] there exists a meromorphic function $f \in \mathfrak{M}(R)$ with $P(f)=6$, if the constant term ${ }^{2)}$ of $D(z)$ does not vanish or if the constant term of $D(z)$ vanishes but the constant term of

$$
S(z) \equiv-\left(\frac{2}{27} S_{1}(z)^{3}-\frac{1}{3} S_{1}(z) S_{2}(z)+S_{3}(z)\right)
$$

in (2.6) does not vanish. Hence the constant terms of $D(z)$ and $S(z)$ must be zero. Therefore from the quadratic equation (2.6) we obtain the equations

$$
\begin{array}{ll}
f_{2}^{3} g=A e^{H}\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right), & A \neq 0, \tag{4.6}\\
f_{3}^{3} g^{2}=A e^{H}\left(e^{H}-\gamma^{\prime}\right)\left(e^{H}-\delta^{\prime}\right), & A \neq 0 .
\end{array}
$$

From (4.6) we see that γ and δ do not vanish simultaneously. Hence we may assume that γ is not zero.

First we assume that $\gamma \neq \delta$. Since a simple zero point z_{1} of $e^{H}-\gamma$ is a simple zero point of the right hand term of (4.6), z_{1} is a simple zero point of $g(z)$. Hence
2) Here we say "constant term" when we take $D(z)$ for a polinomial of $e^{I I(z)}$. And we use the term "constant term" in this sense also for $S(z)$.
the equation (4.7) gives $\gamma=\gamma^{\prime}$ or $\gamma=\delta^{\prime}$, say $\gamma=\gamma^{\prime}$. Besides, since z_{1} is a double zero point of $f_{3}{ }^{3} g^{2}$, we get $\gamma=\gamma^{\prime}=\delta^{\prime}$. Therefore if $\delta \neq 0$, then similarly we have $\delta=\gamma^{\prime}=\delta^{\prime}$, which contradicts $\gamma \neq \delta$. Thus we obtain $\gamma=\gamma^{\prime}=\delta^{\prime}$ and $\delta=0$, that is,

$$
f_{2}{ }^{3} g=A e^{2 H}\left(e^{H}-\gamma\right) \quad \text { and } \quad f_{3}{ }^{3} g^{2}=A e^{H}\left(e^{H}-\gamma\right)^{2}, \quad A \gamma \neq 0 .
$$

Next we assume that $\gamma=\delta$. Then similarly we get $\gamma=\gamma^{\prime}$ or $\gamma=\delta^{\prime}$, say $\gamma=\gamma^{\prime}$. If $\gamma^{\prime}=\delta^{\prime}$, then from (4.6) a simple zero point z_{1} of $e^{H}-\gamma^{\prime}$ is a double zero point of $g(z)$ and from (4.7) z_{1} is not a double zero point of $g(z)$, which is a contradiction. If $\gamma^{\prime} \neq \delta^{\prime}$ and $\delta^{\prime} \neq 0$, then, by virtue of (4.7) and the properties of $f_{3}(z)$, a simple zero point z_{2} of $e^{H}-\delta^{\prime}$ is a double zero point of $g(z)$. Therefore we get $\gamma=\delta^{\prime}$, which contradicts $\gamma=\gamma^{\prime} \neq \delta^{\prime}$. Thus we obtain $\gamma=\delta=\gamma^{\prime}$ and $\delta^{\prime}=0$, that is,

$$
f_{2}^{3} g=A e^{H}\left(e^{H}-\gamma\right)^{2} \quad \text { and } \quad f_{3}^{3} g^{2}=A e^{2 H}\left(e^{I I}-\gamma\right), \quad A \gamma \neq 0 .
$$

After all in the cases (i) and (ii), we have

$$
\begin{equation*}
f^{*}(z)^{3} g(z)=e^{I I(z)}-\gamma \tag{4.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{f}^{*}(z)^{3} g(z)=\left(e^{I I(z)}-\gamma\right)^{2}, \tag{4.9}
\end{equation*}
$$

where $f^{*}(z)=f_{2}(z) e^{-2 H(z) / 3} / \sqrt[3]{A}$ and $\tilde{f}^{*}(z)=f_{2}(z) e^{-H(z) / 3} / \sqrt[3]{A}$ are two entire functions and γ is a non-zero constant.

Conversely, let R be a regularly branched three-sheeted covering Riemann surface defined by the equation (1.1) with $g(z)$ satisfying (4. 8). Then the function $f_{0}=\sqrt[3]{e^{H}-\gamma}$ belong to $\mathfrak{M}(R)$ and $P\left(f_{0}\right)=4$. Hence we have $P(R) \geqq 4$. In order to prove $P(R)=4$, by virtue of theorem 1 and theorem 2 in [1], it suffices to show the impossibility of an identity of the form

$$
\begin{equation*}
\tilde{f}(z)^{3}\left(e^{H(z)}-\gamma\right)=\left(e^{L(z)}-\alpha\right)\left(e^{L(z)}-\beta\right)^{2}, \quad \alpha \beta(\alpha-\beta) \neq 0, \tag{4.10}
\end{equation*}
$$

where $L(z)$ is a non-constant entire function with $L(0)=0, \alpha$ and β are two constants and $\tilde{f}(z)$ is a meromorphic function which has zeros and poles possibly at the zeros of order at least 3 of $\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}$ and $e^{H}-\gamma$, respectively.

Now we shall show the impossibility of the identity (4.10) using lemma C. Let N_{3} be the counting function of double zeros of the refered meromorphic function. Then we have

$$
\begin{gathered}
N_{2}\left(r, 0, e^{I I}-\gamma\right) \leqq N_{2}\left(r, 0, \tilde{f}^{3}\left(e^{I}-\gamma\right)\right) \leqq N_{2}\left(r, 0, e^{I I}-\gamma\right)+N_{1}\left(r, 0, e^{I I}-\gamma\right), \\
N_{2}\left(r, 0,\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}\right)=N_{2}\left(\gamma, 0, e^{L}-\alpha\right),
\end{gathered}
$$

and thus

$$
m\left(r, e^{L}\right) \sim m\left(r, e^{H}\right)
$$

outside a set of finite measure. On the other hand we have

$$
\begin{gathered}
N_{3}\left(r, 0, \tilde{f}^{3}\left(e^{H}-\gamma\right)\right) \leqq 2 N_{1}\left(r, 0, e^{H}-\gamma\right), \\
2 N_{2}\left(r, 0, e^{L}-\beta\right) \leqq N_{3}\left(r, 0,\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}\right) \leqq 2 N_{2}\left(r, 0, e^{L}-\beta\right)+2 N_{1}\left(r, 0, e^{L}-\alpha\right),
\end{gathered}
$$

and thus

$$
2 m\left(r, e^{L}\right)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure. This is a contradiction. Thus we have shown the impossibility of the identity (4.10), that is, $P(R)=4$.

Secondly let R^{\prime} be a regularly branched three-sheeted covering Riemann surface defined by the equation (1.1) with $g(z)$ staisfying (4.9). Then the function $f_{0}=1 / \sqrt[3]{e^{H}-\gamma}$ belongs to $\mathfrak{M}\left(R^{\prime}\right)$ and $P\left(f_{0}\right)=4$. Hence $P\left(R^{\prime}\right) \geqq 4$. However we can similarly show the impossibility of the identity of the form

$$
\tilde{f}(z)^{3}\left(e^{I(z)}-\gamma\right)^{2}=\left(e^{I(z)}-\alpha\right)\left(e^{I(z)}-\beta\right)^{2}, \quad \alpha \beta(\alpha-\beta) \neq 0,
$$

where $L(z)$ is a non-constant entire function with $L(0)=0, \alpha$ and β are two constants and $\tilde{f}(z)$ is a meromorphic function which has zeros and poles possibly at the zeros of order at least 3 of $\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}$ and $\left(e^{H}-\gamma\right)^{2}$, respectively. Hence we have also $P\left(R^{\prime}\right)=4$.

Therefore we obtain a perfect characterization of R with $P(R)=4$ in the cases (i) and (ii).

Now, we shall discuss the cases (iii), (iv) and (v). Let us suppose that one of the growth of $e^{H_{1}}, e^{H_{2}}$ and $e^{H_{3}}$ in (4.3), (4.4) and (4.5) is more rapid than the others. We denote by e^{H} the function having the above property. Then substituting (4.3), (4.4) and (4.5) into (2.5), respectively, we get an equation of the form

$$
\begin{equation*}
D(z)=A\left(e^{4 H(z)}+\zeta_{1}(z) e^{3 H(z)}+\zeta_{2}(z) e^{2 H(z)}+\zeta_{3}(z) e^{H(z)}+\zeta_{4}(z)\right), \tag{4.11}
\end{equation*}
$$

where A is a non-zero constant and all $\zeta_{\jmath}(z)(j=1, \cdots, 4)$ are polynomials of $e^{I I_{1}}$ or $e^{I_{2}}$ in the cases (iii) and (iv), or all are polynomials of two of $e^{I_{1}}, e^{H_{2}}$ and $e^{I_{3}}$ in the case (v). Hence we have, in these cases,

$$
m\left(r, \zeta_{j}\right)=o\left(m\left(r, e^{I I}\right)\right), \quad j=1,2,3,4,
$$

outside a set of finite measure. On the other hand from (2.4) we have

$$
\begin{equation*}
-27 g^{2}\left(f_{2}{ }^{3}-f_{3}{ }^{3} g\right)^{2}=A\left(e^{4 H}+\zeta_{1} e^{3 H}+\zeta_{2} e^{2 H}+\zeta_{3} e^{H}+\zeta_{4}\right) . \tag{4.12}
\end{equation*}
$$

If the equation

$$
Q_{4}(h) \equiv h^{4}+\zeta_{1}(z) h^{3}+\zeta_{2}(z) h^{2}+\zeta_{3}(z) h+\zeta_{4}(z)=0
$$

is irreducible, then, by virtue of lemma 4 , the right hand side of (4.12) has simple zeros, while the left hand side has not any simple zero. This is a contradiction. Hence the equation, $Q_{4}(h)=0$, is not irreducible. According to the similar discussion as the above using lemma 4 and lemma 5 , we finally get

$$
\begin{equation*}
D(z)=A\left(e^{2 H}+\zeta_{1}^{*}(z) e^{H(z)}+\zeta_{2}^{*}(z)\right)^{2} . \tag{4.13}
\end{equation*}
$$

Then (4.11) and (4.13) yield
(4. 14) $\quad \zeta_{1}(z)=2 \zeta_{1}^{*}(z), \quad \zeta_{2}(z)=\zeta_{1}^{*}(z)^{2}+2 \zeta_{2}^{*}(z), \quad \zeta_{3}(z)=2 \zeta_{1}^{*}(z) \zeta_{2}^{*}(z), \quad \zeta_{4}(z)=\zeta_{2}^{*}(z)^{2}$.

Case (iii). First let us suppose that in (4.3)

$$
m\left(r, e^{H_{1}}\right)=o\left(m\left(r, e^{H_{2}}\right)\right)
$$

outside a set of finite measure. Then by substituting (4.3) into (2.5) and taking
$e^{H} \equiv \beta_{2} e^{H_{2}}$ in (4.11) and (4.13) into account, we have

$$
\begin{aligned}
& \zeta_{1}^{*}=-\frac{1}{a_{1}{ }^{2}}\left[a_{2}\left(a_{1}+a_{2}\right) \beta_{1} e^{H_{1}}+\left(a_{1}-a_{2}\right)\left(2 a_{1}-a_{2}\right) c+a_{1}{ }^{2} a_{2}\left(a_{1}-a_{2}\right)\left(a_{1}-2 a_{2}\right)\right], \\
& \begin{aligned}
\zeta_{2}^{*}=\left(\zeta_{2}-\zeta_{1}^{* 2}\right) / 2=\frac{1}{a_{1}{ }^{4}} & {\left[a_{1} a_{2}{ }^{3} \beta_{1}{ }^{2} e^{2 H_{1}}+a_{2}\left(a_{1}-a_{2}\right)\left\{\left(a_{1}{ }^{2}-2 a_{1} a_{2}+2 a_{2}{ }^{2}\right) c\right.\right.} \\
& \left.-a_{1}{ }^{2} a_{2}\left(2 a_{1}{ }^{2}-2 a_{1} a_{2}+a_{2}{ }^{2}\right)\right\} \beta_{1} e^{H 1}+a_{1}\left(a_{1}-a_{2}\right)^{2}\left\{\left(a_{1}-a_{2}\right) c^{2}\right. \\
& \left.\left.+a_{1} a_{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right) c-a_{1}{ }^{3} a_{2}{ }^{3}\left(a_{1}-a_{2}\right)\right\}\right],
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
& \zeta_{4}-\zeta_{2}^{* 2}=\frac{-4}{a_{1}{ }^{8}}\left[a_{1} a_{2}{ }^{4}\left(a_{1}-a_{2}\right)^{3}\left(c-a_{1}{ }^{2} a_{2}\right) \beta_{1}{ }^{3} e^{3 H_{1}}+a_{2}{ }^{3}\left(a_{1}-a_{2}\right)^{3}\left\{\left(a_{1}{ }^{2}+a_{1} a_{2}-a_{2}{ }^{2}\right) c^{2}\right.\right. \\
& \left.-a_{1}{ }^{2}\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right) c+a_{1}{ }^{5} a_{2}\left(a_{1}{ }^{2}-a_{1} a_{2}-a_{2}{ }^{2}\right)\right\} \beta_{1}{ }^{2} e^{2 H 1}+a_{1} a_{2}{ }^{3}{ }^{2}\left(a_{1}\right. \\
& \left.-a_{2}\right)^{3}\left\{\left(a_{1}-a_{2}\right) c^{3}+a_{1} a_{2}\left(2 a_{1}{ }^{2}-2 a_{1} a_{2}+a_{2}{ }^{2}\right) c^{2}-a_{1}{ }^{5}\left(a_{1}{ }^{2}-2 a_{1} a_{2}\right.\right. \\
& \left.\left.+2 a_{2}{ }^{2}\right) c+a_{1}{ }^{7} a_{2}{ }^{2}\left(a_{1}-a_{2}\right)\right\} \beta_{1} e^{H_{1}}+a_{1}{ }^{3} a_{2}{ }^{3}\left(a_{1}-a_{2}\right)^{4} c\left\{\left(a_{1}-a_{2}\right) c^{2}\right. \\
& \left.\left.-a_{1}{ }^{2}\left(a_{1}{ }^{2}-3 a_{1} a_{2}+a_{2}{ }^{2}\right) c-a_{1}{ }^{5} a_{2}\left(a_{1}-a_{2}\right)\right\}\right]=0 .
\end{aligned}
$$

From lemma B we have
$c-a_{1}{ }^{2} a_{2}=0$ and $A^{\prime} \equiv\left(a_{1}{ }^{2}+a_{1} a_{2}-a_{2}{ }^{2}\right) c^{2}-a_{1}{ }^{2}\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right) c+a_{1}{ }^{5} a_{2}\left(a_{1}{ }^{2}-a_{1} a_{2}-a_{2}{ }^{2}\right)=0$. By substituting $c=a_{1}{ }^{2} a_{2}$ into A^{\prime}, however, we have $\Lambda^{\prime}=a_{1}{ }^{5} a_{2}{ }^{2}\left(a_{1}-a_{2}\right) \neq 0$, which contradicts $A^{\prime}=0$.

Next let us suppose that in (4.3)

$$
m\left(r, e^{H_{2}}\right)=o\left(m\left(r, e^{H_{1}}\right)\right)
$$

outside a set of finite measure. Then we have similarly a contradiction.
Therefore the case (iii) does not occur under a condition that one of the growth of $e^{H_{1}}$ and $e^{H_{2}}$ is more rapid than the other.

Case (iv). First let us suppose that in (4.4)

$$
m\left(r, e^{H 1}\right)=o\left(m\left(r, e^{I I 2}\right)\right)
$$

outside a set of finite measure. Then by substituting (4.4) into (2.5) and taking $e^{I I} \equiv \beta_{2} e^{I I 2}$ in (4.11) and (4.13) into account, we have, similarly as in the case (iii),

$$
\begin{aligned}
\zeta_{4}-\zeta_{2}^{* 2}=-\frac{4}{a_{1}{ }^{8}} & {\left[a_{1} a_{2}{ }^{3}\left(a_{1}-a_{2}\right)^{4}\left\{c+a_{1}{ }^{2}\left(a_{1}-a_{2}\right)\right\} \beta_{1}{ }^{3} e^{3 H_{1}}+a_{2}{ }^{3}\left(a_{1}-a_{2}\right)^{3}\left\{\left(a_{1}{ }^{2}+a_{1} a_{2}\right.\right.\right.} \\
& \left.-a_{2}{ }^{2}\right) c^{2}+a_{1}{ }^{2} a_{2}\left(2 a_{1}{ }^{2}-2 a_{1} a_{2}+a_{2}{ }^{2}\right) c-a_{1}{ }^{5}\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}-3 a_{1} a_{2}\right. \\
& \left.\left.+a_{2}{ }^{2}\right)\right\}{\beta_{1}{ }^{2} e^{2 H_{1}}+a_{1} a_{2}{ }^{3}\left(a_{1}-a_{2}\right)^{3}\left\{a_{2} c^{3}-a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right) c^{2}\right.} \\
& \left.-a_{1}{ }^{5}\left(a_{1}{ }^{2}-2 a_{1} a_{2}+2 a_{2}{ }^{2}\right) c-a_{1}{ }^{7} a_{2}\left(a_{1}-a_{2}\right)^{2}\right\} \beta_{1} e^{H 1}-a_{1}{ }^{3} a_{2}{ }^{4}\left(a_{1}\right. \\
& \left.\left.-a_{2}\right)^{3} c\left\{a_{2} c^{2}-a_{1}{ }^{2}\left(a_{1}{ }^{2}-a_{1} a_{2}-a_{2}{ }^{2}\right) c-a_{1}{ }^{5} a_{2}\left(a_{1}-a_{2}\right)\right\}\right]=0 .
\end{aligned}
$$

From lemma B we have

$$
c=-a_{1}^{2}\left(a_{1}-a_{2}\right)
$$

and

$$
B^{\prime} \equiv\left(a_{1}^{2}+a_{1} a_{2}-a_{2}^{2}\right) c^{2}+a_{1}^{2} a_{2}\left(2 a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}\right) c-a_{1}^{5}\left(a_{1}-a_{2}\right)\left(a_{1}^{2}-3 a_{1} a_{2}+a_{2}^{2}\right)=0
$$

By substituting $c=-a_{1}{ }^{2}\left(a_{1}-a_{2}\right)$ into B^{\prime}, however, we have $B^{\prime}=a_{1}{ }^{5} a_{2}\left(a_{1}-a_{2}\right) \neq 0$, which contradicts $B^{\prime}=0$.

Next let us suppose that in (4.4)

$$
m\left(r, e^{H_{2}}\right)=o\left(m\left(r, e^{H_{1}}\right)\right)
$$

outside a set of finite measure. Then by substituting (4.4) into (2.5) and taking $e^{H} \equiv \beta_{1} e^{H_{1}}$ in (4.11) and (4.13) into account, we have

$$
\begin{aligned}
\zeta_{4}=\frac{1}{\left(a_{1}-a_{2}\right)^{6}} & \left\{a_{1}{ }^{2} \beta_{2} e^{H_{2}}-a_{2}{ }^{2} c+a_{1}{ }^{2} a_{2}{ }^{2}\left(a_{1}-a_{2}\right)\right\}^{2}\left[a_{1}{ }^{2} \beta_{2}{ }^{2} e^{2 H_{2}}-2\left\{a_{1} a_{2} c+a_{1}{ }^{2} a_{2}\left(a_{1}\right.\right.\right. \\
& \left.\left.\left.-a_{2}\right)^{2}\right\} \beta_{2} e^{H_{2}}+a_{2}{ }^{2} c^{2}-2 a_{1} a_{2}{ }^{2}\left(a_{1}-a_{2}\right)^{2} c+a_{1}{ }^{2} a_{2}{ }^{2}\left(a_{1}-a_{2}\right)^{4}\right]=\zeta_{2}^{* 2} .
\end{aligned}
$$

Hence by means of lemma C, we see that the quantity in the brackets [] must be of the form $a_{1}{ }^{2}\left(\beta_{2} e^{H_{2}}-\gamma\right)^{2}$. However, the discriminant of the quadratic equation

$$
a_{1}^{2} X^{2}-2\left\{a_{1} a_{2} c+a_{1}^{2} a_{2}\left(a_{1}-a_{2}\right)^{2}\right\} X+a_{2}^{2} c^{2}-2 a_{1} a_{2}^{2}\left(a_{1}-a_{2}\right)^{2} c+a_{1}^{2} a_{2}^{2}\left(a_{1}-a_{2}\right)^{4}=0
$$

is equal to $16 a_{1}{ }^{3} a_{2}{ }^{2}\left(a_{1}-a_{2}\right)^{2} c \neq 0$. This is a contradiction.
Therefore the case (iv) does not occur under a condition that one of the growth of $e^{H_{1}}$ and $e^{H_{2}}$ is more rapid than the other.

Case (v). First let us suppose that in (4.5)

$$
m\left(r, e^{H_{2}}\right)=o\left(m\left(r, e^{H_{1}}\right)\right) \quad \text { and } \quad m\left(r, e^{H_{3}}\right)=o\left(m\left(r, e^{I I_{1}}\right)\right)
$$

outside a set of finite measure. Then by substituting (4.5) into (2.5) and taking $e^{H} \equiv \beta_{1} e^{H_{1}}$ in (4.11) and (4.13) into account, we have, similarly as in the case (iii),
$\zeta_{4}-\zeta_{2}^{* 2}=\frac{-4 a_{1}{ }^{3} a_{2}{ }^{3}}{\left(a_{1}-a_{2}\right)^{8}}\left[a_{2}\left(a_{1}-a_{2}\right) \beta_{2}{ }^{3} \beta_{3} e^{3 H_{2}+I I_{3}}-\left(a_{1}{ }^{2}-3 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{2}{ }^{2} \beta_{3}{ }^{2} e^{2 H_{2}+2 H_{3}}\right.$

$$
-a_{1}\left(a_{1}-a_{2}\right) \beta_{2} \beta_{3}{ }^{3} e^{H_{2+3} H_{3}}+a_{2}{ }^{2}\left(a_{1}-a_{2}\right)^{3} \beta_{2}{ }^{3} e^{3 H_{2}}-a_{1}{ }^{2}\left(a_{1}-a_{2}\right)^{3} \beta_{3}{ }^{3} e^{3 I I_{3}}
$$

$$
+a_{1}\left(a_{1}-a_{2}\right)^{2}\left(a_{1}^{2}-2 a_{1} a_{2}+2 a_{2}^{2}\right) \beta_{2}^{2} \beta_{3} e^{2 H_{2}+I I 3}+a_{2}\left(a_{1}-a_{2}\right)^{2}\left(2 a_{1}^{2}\right.
$$

$$
\left.-2 a_{1} a_{2}+a_{2}^{2}\right) \beta_{2} \beta_{3}^{2} e^{H_{2}+2 H_{3}}+a_{2}\left(a_{1}-a_{2}\right)^{5}\left(a_{1}^{2}-a_{1} a_{2}-a_{2}^{2}\right) \beta_{2}^{2} e^{2 H_{2}}
$$

$$
+a_{1}\left(a_{1}-a_{2}\right)^{5}\left(a_{1}^{2}+a_{1} a_{2}-a_{2}^{2}\right) \beta_{3}^{2} e^{2 H_{3}}+\left(a_{1}-a_{2}\right)^{6}\left(a_{1}^{2}+a_{2}^{2}\right) \beta_{2} \beta_{3} e^{I_{2} \vdash I I_{3}}
$$

$$
\left.-a_{1} a_{2}^{2}\left(a_{1}-a_{2}\right)^{8} \beta_{2} e^{H_{2}}-a_{1}^{2} a_{2}\left(a_{1}-a_{2}\right)^{8} \beta_{3} e^{I I_{3}}\right]=0
$$

Now we shall show the impossibility of the identity (4.15). If $3 I_{2}+H I_{3} \neq 0$, $H_{2}+3 H_{3} \not \equiv 0,2 H_{2}+H_{3} \not \equiv 0, H_{2}+2 H_{3} \not \equiv 0, H_{2}+H_{3} \not \equiv 0,3 H_{3}-H_{2} \not \equiv 0$ and $2 H_{3}-H_{2} \neq 0$, then, by virtue of lemma 1 , we have

$$
a_{1} a_{2}^{2}\left(a_{1}-a_{2}\right)^{8} \beta_{2} e^{H_{2}}+d a_{1}^{2} a_{2}\left(a_{1}-a_{2}\right)^{8} \beta_{3} e^{H_{3}}=0
$$

where d is a constant. Since $H_{2} \not \equiv$ const., we get $d \neq 0$ and $H_{2}-H_{3} \equiv$ const. $(=0)$. Then, writing the identity (4.15) in the form

$$
\begin{aligned}
& \beta_{2} \beta_{3}\left\{a_{2}\left(a_{1}-a_{2}\right) \beta_{2}{ }^{2}-\left(a_{1}{ }^{2}-3 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{2} \beta_{3}-a_{1}\left(a_{1}-a_{2}\right) \beta_{3}{ }^{2}\right\} e^{4 I I} 2+\left(a_{1}-a_{2}\right)^{2}\left\{a _ { 2 } { } ^ { 2 } \left(a_{1}\right.\right. \\
& \left.\left.-a_{2}\right) \beta_{2}^{3}+a_{1}\left(a_{1}{ }^{2}-2 a_{1} a_{2}+2 a_{2}{ }^{2}\right) \beta_{2}{ }^{2} \beta_{3}+a_{2}\left(2 a_{1}{ }^{2}-2 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{2} \beta_{3}{ }^{2}-a_{1}^{2}\left(a_{1}-a_{2}\right) \beta_{3}^{3}\right\} e^{3 I I_{2}} \\
& +\left(a_{1}-a_{2}\right)^{5}\left\{a_{2}\left(a_{1}^{2}-a_{1} a_{2}-a_{2}^{2}\right) \beta_{2}{ }^{2}+\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}+a_{2}^{2}\right) \beta_{2} \beta_{3}+a_{1}\left(a_{1}^{2}+a_{1} a_{2}-a_{2}{ }^{2}\right) \beta_{3}{ }^{2}\right\} e^{2 I I 2} \\
& -a_{1} a_{2}\left(a_{1}-a_{2}\right)^{8}\left(a_{2} \beta_{2}+a_{1} \beta_{3}\right) e^{H_{2}}=0,
\end{aligned}
$$

we obtain, by means of lemma B,

$$
a_{2} \beta_{2}+a_{1} \beta_{3}=0
$$

and

$$
C^{\prime} \equiv a_{2}\left(a_{1}^{2}-a_{1} a_{2}-a_{2}^{2}\right) \beta_{2}^{2}+\left(a_{1}-a_{2}\right)\left(a_{1}^{2}+a_{2}^{2}\right) \beta_{2} \beta_{3}+a_{1}\left(a_{1}^{2}+a_{1} a_{2}-a_{2}^{2}\right) \beta_{3}^{2}=0 .
$$

By substituting $\beta_{3}=-a_{2} \beta_{2} / a_{1}$ into C^{\prime}, however, we have $C^{\prime}=a_{2}{ }^{2}\left(a_{1}-a_{2}\right) \beta_{2}{ }^{2} \neq 0$. This is a contradiction.

If $3 H_{2}+H_{3} \equiv 0$ or $H_{2}+3 H_{3} \equiv 0$ or $2 H_{2}+H_{3} \equiv 0$ or $H_{2}+2 H_{3} \equiv 0$ or $H_{2}+H_{3} \equiv 0$ or $3 H_{3}-H_{2} \equiv 0$ or $2 H_{3}-H_{2} \equiv 0$, then the identity (4.15) is impossible by virtue of lemma B because of $a_{2}{ }^{2}\left(a_{1}-a_{2}\right)^{3} \beta_{2}{ }^{3} \neq 0$, which is a coefficient of $e^{3 I_{2}}$ in (4.15).

If $2 H_{3}-H_{2} \equiv 0$, then the identity (4.15) is also impossible because of $a_{2}\left(a_{1}-a_{2}\right) \beta_{2}^{3} \beta_{3} \neq 0$, which is a coefficient of $e^{3 H_{2}+H_{3}}$ in (4.15).

Secondly let us suppose that in (4.5)

$$
m\left(r, e^{H_{1}}\right)=o\left(m\left(r, e^{H_{3}}\right)\right) \quad \text { and } \quad m\left(r, e^{H_{2}}\right)=o\left(m\left(r, e^{I I_{3}}\right)\right)
$$

outside a set of finite measure. Then by substituting (4.5) into (2.5) and taking $e^{I I} \equiv \beta_{3} e^{H_{3}}$ in (4.11) and (4.13) into account, we have, similarly as in the case (iii),

$$
\begin{aligned}
\zeta_{4}-\zeta_{2}^{* 2}=-\frac{a_{2}{ }^{3}}{a_{1}{ }^{8}}\left(a_{1}-a_{2}\right)^{3} & {\left[a_{1}\left(a_{1}-a_{2}\right) \beta_{1}{ }^{3} \beta_{2} e^{3 H_{1+}+H_{2}}+\left(a_{1}{ }^{2}+a_{1} a_{2}-a_{2}{ }^{2}\right) \beta_{1}{ }^{2} \beta_{2}{ }^{2} e^{2 H_{1}+2 H_{2}}\right.} \\
& +a_{1} a_{2} \beta_{1} \beta_{2}{ }^{3} e^{H_{1}+3 H_{2}}+a_{1}{ }^{3}\left(a_{1}-a_{2}\right)^{2} \beta_{1}{ }^{3} e^{3 H_{1}}-a_{1}{ }^{3} a_{2}{ }^{2} \beta_{2}{ }^{3} e^{3 H_{2}} \\
& +a_{1}{ }^{2} a_{2}\left(2 a_{1}{ }^{2}-2 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{1}{ }^{2} \beta_{2} e^{2 H 1+I I_{2}}-a_{1}{ }^{2}\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}\right. \\
& \left.+a_{2}{ }^{2}\right) \beta_{1} \beta_{2}{ }^{2} e^{H H_{1}+2 H_{2}}-a_{1}{ }^{5}\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}-3 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{1}{ }^{2} e^{2 H_{1}} \\
& +a_{1}{ }^{5} a_{2}\left(a_{1}{ }^{2}-a_{1} a_{2}-a_{2}{ }^{2}\right) \beta_{2}{ }^{2} e^{2 H 2}-a_{1}{ }^{6}\left(a_{1}{ }^{2}-2 a_{1} a_{2}+2 a_{2}{ }^{2}\right) \beta_{1} \beta_{2} e^{H 1^{\prime} \cdot I_{2}} \\
& \left.-a_{1}{ }^{8} a_{2}\left(a_{1}-a_{2}\right)^{2} \beta_{1} e^{H 1}+a_{1}{ }^{8} a_{2}{ }^{2}\left(a_{1}-a_{2}\right) \beta_{2} e^{I I_{2}}\right]=0 .
\end{aligned}
$$

Now we shall show the impossibility of the identity (4.16). By virtue of the above reasoning, it is sufficient to consider the case $H_{1}(z) \equiv H_{2}(z)$, because two coefficients of $e^{3 H_{1}+H_{2}}$ and $e^{3 H_{1}}$ in (4.16) are not zero. Then, writing the identity (4.16) in the form

$$
\begin{aligned}
& \beta_{1} \beta_{2}\left\{a_{1}\left(a_{1}-a_{2}\right) \beta_{1}{ }^{2}+\left(a_{1}{ }^{2}+a_{1} a_{2}-a_{2}{ }^{2}\right) \beta_{1} \beta_{2}+a_{1} a_{2} \beta_{2}{ }^{2}\right\} e^{4 H_{1}}+a_{1}{ }^{2}\left\{a_{1}\left(a_{1}-a_{2}\right)^{2} \beta_{1}{ }^{3}\right. \\
& \left.+a_{2}\left(2 a_{1}{ }^{2}-2 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{1}{ }^{2} \beta_{2}-\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right) \beta_{1} \beta_{2}{ }^{2}-a_{1} a_{2}{ }^{2} \beta_{2}{ }^{3}\right\} e^{3 H_{1}} \\
& -a_{1}{ }^{5}\left\{\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{2}-3 a_{1} a_{2}+a_{2}{ }^{2}\right) \beta_{1}{ }^{2}+a_{1}\left(a_{1}{ }^{2}-2 a_{1} a_{2}+2 a_{2}{ }^{2}\right) \beta_{1} \beta_{2}\right. \\
& \left.-a_{2}\left(a_{1}{ }^{2}-a_{1} a_{2}-a_{2}{ }^{2}\right) \beta_{2}{ }^{2}\right\} e^{2 H_{1}}-a_{1}{ }^{2} a_{2}\left(a_{1}-a_{2}\right)\left\{\left(a_{1}-a_{2}\right) \beta_{1}-a_{2} \beta_{2}\right\} e^{H_{1}}=0,
\end{aligned}
$$

we obtain, by means of lemma B,

$$
\left(a_{1}-a_{2}\right) \beta_{1}-a_{2} \beta_{2}=0
$$

and

$$
D^{\prime} \equiv\left(a_{1}-a_{2}\right)^{2} \beta_{1}^{2}+a_{1}\left(a_{1}{ }^{2}-2 a_{1} a_{2}+2 a_{2}{ }^{2}\right) \beta_{1} \beta_{2}-a_{2}\left(a_{1}{ }^{2}-a_{1} a_{2}-a_{2}{ }^{2}\right) \beta_{2}{ }^{2}=0 .
$$

By substituting $\beta_{2}=\left(a_{1}-a_{2}\right) \beta_{1} / a_{2}$ into D^{\prime}, however, we have $D^{\prime}=a_{1}\left(a_{1}-a_{2}\right)^{2} \beta_{1}{ }^{2} \neq 0$. This is a contradiction.

Finally let us suppose that in (4.5)

$$
m\left(r, e^{H_{1}}\right)=o\left(m\left(r, e^{H^{2}}\right)\right) \quad \text { and } \quad m\left(r, e^{H_{3}}\right)=o\left(m\left(r, e^{I I}\right)\right)
$$

outside a set of finite measure. Then the case is analogous to the last case. Hence we have similarly a contradiction.

Therefore the case (v) does not occur under a condition that one of the growth of $e^{H_{1}}, e^{H_{2}}$ and $e^{H_{3}}$ is more rapid than the others.

By virtue of the above discussion in the cases (i), (ii), (iii), (iv) and (v), we conclude

Theorem 1. Let R be a regularly branched three-sheeted covering Riemann surface defined by the equation (1.1). If $P(R)=4$, then there exist an entire function $f_{2}(z)$ and an analytic function $f_{3}(z)$ single-valued and regular with the exception of all the double zeros of $g(z)$ at which $f_{3}(z)$ has simple poles, such that $f_{2}(z)^{3} g(z)$ and $f_{3}(z)^{3} g(z)^{2}$ are two roots of one among the five quadratic equations (2.6) with the coefficients (4.1), (4.2), (4.3), (4.4) and (4.5), respectively.

Further in the cases (i) and (ii) we have

$$
\begin{equation*}
f^{*}(z)^{3} g(z)=e^{I I(z)}-\gamma \tag{4.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{f}^{*}(z)^{3} g(z)=\left(e^{I I(z)}-\gamma\right)^{2}, \tag{4.9}
\end{equation*}
$$

where $f^{*}(z)$ and $\tilde{f}^{*}(z)$ are two entire functions and γ is a non-zero constant. Conversely if $g(z)$ satisfies the equation (4.8) or (4.9), then we have $P(R)=4$.

And the cases (iii), (iv) and (v) do not occur under a condition that one of the growth of $e^{H_{1}}, e^{H_{2}}$ and $e^{H_{3}}$ in (4.3), (4.4) and (4.5) is more rapid than the others.
§5. Now we shall give a criterion for $P(R) \leqq 4$, that is,
Theorem 2. Let R be a regularly branched three-sheeted covering Riemann surface defined by the equation (1.1) with an entire function $g(z)$ satisfying

$$
\tilde{f}(z)^{3} g(z)=e^{3 H(z)}+\varphi_{1}(z) e^{2 H(z)}+\varphi_{2}(z) e^{H(z)}+\varphi_{3}(z), \quad H(z) \not \equiv \text { const., } H(0)=0,
$$

where $\tilde{f}(z), H(z), \varphi_{1}(z), \varphi_{2}(z)$ and $\varphi_{3}(z)$ are entire functions satisfying

$$
m\left(r, \varphi_{j}\right)=o\left(m\left(r, e^{I I}\right)\right) \quad(j=1,2,3)
$$

outside a set of finite measure, and $\varphi_{3}(z)$ has at least one zero. Then we have $P(R) \leqq 4$.

Proof. In order to prove $P(R) \leqq 4$, from theorem 1 and theorem 2 in [1], it is sufficient to show the impossibility of an identity of the form

$$
\begin{equation*}
f^{3}\left(e^{3 H}+\varphi_{1} e^{2 H}+\varphi_{2} e^{H}+\varphi_{3}\right)=\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}, \quad \alpha \beta(\alpha-\beta) \neq 0 \tag{5.1}
\end{equation*}
$$

where $L(z)$ is a non-constant entire function with $L(0)=0, \alpha$ and β are two constants and $f(z)$ is a meromorphic function which has zeros and poles possibly at the zeros of order at least 3 of $\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}$ and $e^{3 H}+\varphi_{1} e^{2 I I}+\varphi_{2} e^{H}+\varphi_{3}$, respectively. If the equation

$$
Q_{3}(h) \equiv h^{3}+\varphi_{1}(z) h^{2}+\varphi_{2}(z) h+\varphi_{3}(z)=0
$$

is irreducible, then, from lemma 4, we have

$$
\begin{equation*}
N_{2}\left(r, 0, f^{3} Q_{3}\left(e^{H}\right)\right) \sim 3 m\left(r, e^{H}\right) \quad \text { and } \quad N_{3}\left(r, 0, f^{3} Q_{3}\left(e^{H}\right)\right)=o\left(m\left(r, e^{H}\right)\right) \tag{5.2}
\end{equation*}
$$

outside a set of finite measure. On the other hand we have
(5.3) $\quad N_{2}\left(r, 0,\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}\right) \sim m\left(r, e^{L}\right)$ and $N_{3}\left(r, 0,\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}\right) \sim 2 m\left(r, e^{L}\right)$
outside a set of finite measure. By virtue of the identity (5.1), the comparison of (5.2) and (5.3) yields two contradictory facts each other, that is,

$$
m\left(r, e^{L}\right) \sim 3 m\left(r, e^{H}\right) \quad \text { and } \quad m\left(r, e^{L}\right)=o\left(m\left(r, e^{I I}\right)\right)
$$

outside a set of finite measure. Hence the equation $Q_{3}(h)=0$ is not irreducible. By the similar discussion as above using lemma 4 and lemma 5 , the identity (5.1) must reduce to an identity

$$
f^{3}\left(e^{H}-\varphi_{1}^{*}\right)\left(e^{H}-\varphi_{2}^{*}\right)^{2}=\left(e^{L}-\alpha\right)\left(e^{L}-\beta\right)^{2}
$$

where $\varphi_{1}^{*}(z)$ and $\varphi_{2}^{*}(z)$ are two entire functions satisfying $m\left(r, \varphi_{1}^{*}\right)=o\left(m\left(r, e^{I I}\right)\right)$ $(j=1,2)$ outside a set of finite measure. Hence by means of lemma C we have

$$
\begin{equation*}
m\left(r, e^{H}\right) \sim m\left(r, e^{L}\right) \tag{5.4}
\end{equation*}
$$

outside a set of finite measure. Further we have

$$
T(r, f)=O\left(T\left(r, e^{H}\right)+T\left(r, e^{L}\right)\right)
$$

and

$$
\begin{aligned}
& N\left(r, \infty, f^{\prime} \mid f\right) \leqq N(r, 0, f)+N(r, \infty, f) \\
\leqq & N_{1}\left(r, 0, e^{L}-\alpha\right)+N_{1}\left(r, 0, e^{L}-\beta\right)+N_{1}\left(r, 0, e^{I}-\varphi_{1}^{*}\right)+N_{1}\left(r, 0, e^{I}-\varphi_{2}^{*}\right) \\
= & o\left(m\left(r, e^{H}\right)+m\left(r, e^{L}\right)\right)
\end{aligned}
$$

outside a set of finite measure. Thus we obtain

$$
\begin{aligned}
T\left(r, f^{\prime} \mid f\right) & =m\left(r, f^{\prime} \mid f\right)+N\left(r, \infty, f^{\prime} / f\right) \leqq O(\log r T(r, f))+N\left(r, \infty, f^{\prime} / f\right) \\
& =o\left(m\left(r, e^{H}\right)+m\left(r, e^{L}\right)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
T\left(r, f^{\prime} / f\right)=o\left(m\left(r, e^{H}\right)+m\left(r, e^{L}\right)\right) \tag{5.5}
\end{equation*}
$$

outside a set of finite measure.
Now we shall prove the impossibility of the identity (5.1) under (5.4) and (5.5). By differentiating both sides of (5.1) and setting $\eta_{1}=-(\alpha+2 \beta), \eta_{2}=2 \alpha \beta+\beta^{2}$ and $\eta_{3}=-\alpha \beta^{2}$, we obtain

$$
\begin{aligned}
f^{3}\left[3\left(f^{\prime} / f+H^{\prime}\right) e^{3 H}\right. & \left.+\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}{ }^{\prime}\right) e^{2 H}+\left(3 \varphi_{2} f^{\prime} / f+\varphi_{2} H^{\prime}+\varphi_{2}{ }^{\prime}\right) e^{H}+3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}{ }^{\prime}\right] \\
= & L^{\prime}\left(3 e^{3 L}+2 \eta_{1} e^{2 L}+\eta_{2} e^{L}\right)
\end{aligned}
$$

and again by using the identity (5.1), we get

$$
\begin{aligned}
& 3\left(f^{\prime} \mid f+H^{\prime}-L^{\prime}\right) e^{3 H+3 L}+\eta_{1}\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}-2 \varphi_{1} L^{\prime}\right) e^{2 I I+2 L} \\
& +\eta_{2}\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}-\varphi_{2} L^{\prime}\right) e^{H+L}+\eta_{1}\left(3 f^{\prime} \mid f+3 H^{\prime}-2 L^{\prime}\right) e^{3 H+2 L} \\
& +\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}-3 \varphi_{1} L^{\prime}\right) e^{2 I I+3 L}+\eta_{2}\left(3 f^{\prime} \mid f+3 H^{\prime}-L^{\prime}\right) e^{3 H+L} \\
& +\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}-3 \varphi_{2} L^{\prime}\right) e^{I+3 L}+\eta_{2}\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}-\varphi_{1} L^{\prime}\right) e^{2 I++L} \\
& +\eta_{1}\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}-2 \varphi_{2} L^{\prime}\right) e^{H i 2 L}+3 \eta_{3}\left(f^{\prime} \mid f+H^{\prime}\right) e^{3 I I} \\
& +\eta_{3}\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}\right) e^{2 I I}+\eta_{3}\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} I^{\prime}+\varphi_{2}^{\prime}\right) e^{I I} \\
& +\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}-3 \varphi_{3} L^{\prime}\right) e^{3 L}+\eta_{1}\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}-2 \varphi_{3} L^{\prime}\right) e^{2 L} \\
& +\eta_{2}\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}-\varphi_{3} L^{\prime}\right) e^{L}+\eta_{3}\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}\right)=0 .
\end{aligned}
$$

Here we note from (5.4) that all the functions $\nu H(z)+\mu L(z),|\nu| \neq|\mu| ; \nu, \mu$ $= \pm 1, \pm 2, \pm 3$, are not constants and further satisfy

$$
\begin{equation*}
T(r, a)=o\left(m\left(r, e^{\nu H \vdash \mu L}\right)\right) \tag{5.7}
\end{equation*}
$$

outside a set of finite measure, where $\alpha(z)$ is a meromorphic function satisfying $T(r, a)=o\left(m\left(r, e^{I I}\right)\right)$ outside a set of finite measure.

In the first place assume that $a_{1}(z) \equiv 3\left(f^{\prime}(z) / f(z)+H^{\prime}(z)-L^{\prime}(z)\right) \not \equiv 0$. From (5.4), (5.5) and (5.7) we can apply lemma 1 to the identity (5.6). Therefore lemma 1 gives

$$
a_{1}(z) e^{3 H(z)+3 L(z)}+c_{2} a_{2}(z) e^{2 I(z)+2 L(z)}+c_{3} a_{3}(z) e^{H(z)+L(z)}+c_{0} a_{0}(z)=0,
$$

where c_{2}, c_{3}, c_{0} are constants and $a_{2}(z) \equiv \eta_{1}\left(3 \varphi_{1}(z) f^{\prime}(z) / f(z)+2 \varphi_{1}(z) H^{\prime}(z)+\varphi_{1}{ }^{\prime}(z)\right.$ $\left.-2 \varphi_{1}(z) L^{\prime}(z)\right), a_{3}(z) \equiv \eta_{2}\left(3 \varphi_{2}(z) f^{\prime}(z) / f(z)+\varphi_{2}(z) H^{\prime}(z)+\varphi_{2}{ }^{\prime}(z)-\varphi_{2}(z) L^{\prime}(z)\right), a_{0}(z) \equiv \eta_{3}\left(3 \varphi_{3}(z)\right.$ $\left.\cdot f^{\prime}(z) / f(z)+\varphi_{3}{ }^{\prime}(z)\right)$. Since $T\left(r, a_{j}\right)=o\left(m\left(r, e^{H}\right)\right)(j=0,1,2,3)$ outside a set of finite measure, we have

$$
m\left(r, e^{I I+L}\right)=o\left(m\left(r, e^{I}\right)\right)
$$

outside a set of finite measure. Since $\eta_{3} \neq 0$, writing the identity (5.6) in the form

$$
\begin{aligned}
& 3 \eta_{3}\left(f^{\prime} \mid f+H^{\prime}\right) e^{3 H}+\left[\eta_{2}\left(3 f^{\prime} \mid f+3 H^{\prime}-L^{\prime}\right) e^{H+L}+\eta_{3}\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}\right)\right] e^{2 I I} \\
& +\left[\eta_{1}\left(3 f^{\prime} \mid f+3 H^{\prime}-2 L^{\prime}\right) e^{2 H+2 L}+\eta_{2}\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}-\varphi_{1} L^{\prime}\right) e^{H+L}\right. \\
& \left.+\eta_{3}\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}\right)\right] e^{H}+\left[3\left(f^{\prime} \mid f+H^{\prime}-L^{\prime}\right) e^{3 H+3 L}+\eta_{1}\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}\right.\right. \\
& \left.\left.+\varphi_{1}^{\prime}-2 \varphi_{1} L^{\prime}\right) e^{2 H+2 L}+\eta_{2}\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}-\varphi_{2} L^{\prime}\right) e^{H+L}+\eta_{3}\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}\right)\right] \\
& +\left[\left(3 \varphi_{1} f^{\prime} \mid f+2 \varphi_{1} H^{\prime}+\varphi_{1}^{\prime}-3 \varphi_{1} L^{\prime}\right) e^{3 H+3 L}+\eta_{1}\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}-2 \varphi_{2} L^{\prime}\right) e^{2 I I+2 L}\right. \\
& \left.+\eta_{2}\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}-\varphi_{3} L^{\prime}\right) e^{H+L}\right] e^{-I I}+\left[\left(3 \varphi_{2} f^{\prime} \mid f+\varphi_{2} H^{\prime}+\varphi_{2}^{\prime}-3 \varphi_{2} L^{\prime}\right) e^{H+3 L}\right. \\
& \left.+\eta_{1}\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}-2 \varphi_{3} L^{\prime}\right) e^{2 H+2 L}\right] e^{-2 H}+\left[\left(3 \varphi_{3} f^{\prime} \mid f+\varphi_{3}^{\prime}-3 \varphi_{3} L^{\prime}\right) e^{3 H+3 L}\right] e^{-3 H}=0,
\end{aligned}
$$

lemma B gives

$$
f^{\prime}(z) / f(z)+H^{\prime}(z)=0, \quad \text { that is, } \quad f(z)=d e^{-H(z)}
$$

where d is a non-zero constant. Then the identity (5.1) reduces to

$$
\left(d^{3}-\eta_{3}\right) e^{3 H}+\left(d^{3} \varphi_{1}-\eta_{2} e^{H+L}\right) e^{2 H}+\left(d^{3} \varphi_{2}-\eta_{1} e^{2 I I+2 L}\right) e^{I I}+d^{3} \varphi_{3}-e^{3 H \mid 3 L}=0 .
$$

Hence lemma B gives

$$
d^{3}=\eta_{3} \quad \text { and } \quad d^{3} \varphi_{3}(z)=e^{3 H(z)+3 L(z)} .
$$

Since $\varphi_{3}(z)$ has at least one zero, this is impossible.
Next assume that $a_{1}(z) \equiv 0$. Then we get $f(z)=d e^{L(z)-H(z)}$, where d is a nonzero constant. Here the identity (5.1) reduces to

$$
\begin{equation*}
\left(1-d^{3}\right) e^{3 H+3 L}+\eta_{1} e^{3 H+2 L}+\eta_{2} e^{3 I+L}+\eta_{3} e^{3 H}-d^{3} \varphi_{1} e^{2 I I+3 L}-d^{3} \varphi_{2} e^{I I+3 L}-d^{3} \varphi_{3} e^{3 I},=0 . \tag{5.8}
\end{equation*}
$$

Since $\eta_{3} \neq 0$, lemma 1 gives

$$
\begin{equation*}
\eta_{3} e^{3 H(z)}-c_{2} d^{3} \varphi_{3}(z) e^{3 L(z)}+c_{3}\left(1-d^{3}\right) e^{3 H(z)+3 L(z)}=0, \tag{5.9}
\end{equation*}
$$

where c_{2} and c_{3} are constants. If $c_{2} c_{3}\left(1-d^{3}\right) \neq 0$, then writing the identity (5.9) in the form

$$
\eta_{3} e^{3 H-3 L}+c_{3}\left(1-d^{3}\right) e^{3 H}=c_{2} d^{3} \varphi_{3},
$$

and using lemma A , we have

$$
c^{\prime} \eta_{3} e^{3 I I-3 L}+c_{3}^{\prime} c_{3}\left(1-d^{3}\right) e^{3 I I}=0, \quad \text { that is, } \quad c_{1}^{\prime} \eta_{3} e^{-3 L}+c_{3}^{\prime} c_{3}\left(1-d^{3}\right)=0,
$$

where $c_{1}{ }^{\prime}$ and $c_{3}{ }^{\prime}$ are constants which are not all zero. This contradicts $L(z)$ $\not \equiv$ const.. If $c_{2}=c_{3}=0$, then the identity (5.9) is clearly impossible because of $\eta_{3} \neq 0$. If $c_{2}=0$ and $c_{3}\left(1-d^{3}\right) \neq 0$, then the identity (5.9) reduces to $\eta_{3}+c_{3}\left(1-d^{3}\right) e^{3 L}=0$, which is impossible. If $c_{2} \neq 0$ and $c_{3}\left(1-d^{3}\right)=0$, then we have

$$
m\left(r, e^{H-L}\right)=o\left(m\left(r, e^{H}\right)\right)
$$

outside a set of finite measure. The identity (5.8) reduces to

$$
\begin{aligned}
e^{3 L-3 H}\left(1-d^{3}\right) e^{6 H} & +e^{2 L-2 H}\left(\eta_{1}-d^{3} \varphi_{1} e^{L-H}\right) e^{5 H}+e^{L-H}\left(\eta_{2}-d^{3} \varphi_{2} e^{2 L-2 H}\right) e^{4 H} \\
& +\left(\eta_{3}-d^{3} \varphi_{3} e^{3 L-3 H}\right) e^{3 H}=0 .
\end{aligned}
$$

Hence lemma B gives

$$
d^{3}=1 \quad \text { and } \quad \varphi_{3}(z)=\eta_{3} e^{3 I I(z)-3 I(z)}
$$

Since $\varphi_{3}(z)$ has at least one zero, this is impossible.
Thus we have proved the impossibility of the identity (5.1), that is, the validity of theorem 2 .
§6. Let R and S be two regularly branched three-sheeted covering Riemann surfaces defined by two equations $y^{3}=G(z)$ and $u^{3}=g(w)$, respectively, where $G(z)$ and $g(w)$ are two entire functions having no zero other than an infinite number of simple or double zeros. Then Mutō [3] has established the following perfect condition for the existence of analytic mappings from R into S :

Theorem A. If there exists an analytic mapping φ from R into S, then there exists an entive function $h(z)$ satisfying $f_{2}(z)^{3} G(z)=g \circ h(z)$ or $f_{3}(z)^{3} G(z)^{2}=g \circ h(z)$, where $f_{2}(z)$ is an entire function and $f_{3}(z)$ is a single-valued regular function
excepting at most all the double zeros of $G(z)$ at which $f_{3}(z)$ has simple poles. The converse holds also good.

Suppose that $P(R)=P(S)=6$. Then by a characterization, which has been given by Hiromi and the author [1], of R with $P(R)=6$, we can put

$$
\begin{gather*}
F(z)^{3} G(z)=\left(e^{H(z)}-\alpha\right)\left(e^{I I(z)}-\beta\right)^{2}, \quad H(z) \not \equiv \text { const., } \tag{6.1}\\
H(0)=0, \quad \alpha \beta(\alpha-\beta) \neq 0,
\end{gather*}
$$

with two entire functions $F(z)$ and $H(z)$ and two constants α and β, and

$$
\begin{gather*}
f(w)^{3} g(w)=\left(e^{L(w)}-\gamma\right)\left(e^{L(w)}-\delta\right)^{2}, \quad L(w) \not \equiv \text { const., } \\
L(0)=0, \quad \gamma \delta(\gamma-\delta) \neq 0, \tag{6.2}
\end{gather*}
$$

with two entire functions $f(w)$ and $L(w)$ and two constants γ and δ.
Now we shall prove the following theorem and its corollary:
Theorem 3. Let R and S be two regularly branched three-sheeted covering. Riemann surfaces with $P(R)=P(S)=6$. Then there exists an analytic mapping φ from R into S if and only if there exists an entire function $h(z)$ satisfying one of the conditions
(a)

$$
H(z)=L \circ h(z)-L \circ h(0)
$$

$$
\gamma=e^{L \circ h(0)} \alpha, \quad \delta=e^{L \circ h(0)} \beta,
$$

(a^{\prime})

$$
\gamma=e^{L^{\circ \hbar(0)} \beta} \beta, \quad \delta=e^{L^{\circ h}(0)} \alpha,
$$

$$
H(z)=-L \circ h(z)+L \circ h(0)
$$

$$
\begin{equation*}
\alpha \gamma=e^{L^{\circ h(0)}}, \quad \beta \bar{\delta}=e^{L^{\circ} h(0)}, \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
H(z)=-L \circ h(z)+L \circ h(0) \tag{b}
\end{equation*}
$$

$$
\alpha \delta=e^{L \circ h(0)}, \quad \beta \gamma=e^{L^{\circ h}(0)},
$$

where R and S are defined by $y^{3}=G(z)$ and $u^{3}=g(w)$ with $G(z)$ and $g(w)$ satisfying: (6.1) and (6.2), respectively.

Corollary. Let R be a regularly branched three-sheeted covering Riemann surface with $P(R)=6$ defined by

$$
y^{3}=f(z)^{3}\left(e^{H(z)}-\gamma\right)\left(e^{H(z)}-\delta\right)^{2}, \quad \gamma \delta(\gamma-\delta) \neq 0, \quad H(0)=0,
$$

with a non-constant entire function $H(z)$ and a meromorphic function $f(z)$. Let φ be an analytic mapping from R into itself. Then φ is a univalent conformal mapping from R onto itself and the corresponding entire function $h(z)$ is a linear function of the form

$$
e^{2 \pi i p / a} z+b
$$

with a suitable rational number p / q.
Proof of Theorem 3. First suppose that there exists an analytic mapping φ from R into S. Then from theorem A there exists an entire function $h(z)$ satisfying either $f_{2}(z)^{3} G(z)=g \circ h(z)$ or $f_{3}(z)^{3} G(z)^{2}=g \circ h(z)$, where $f_{2}(z)$ and $f_{3}(z)$ are two functions having the properties described in theorem A, respectively.

Case I. $f_{2}(z)^{3} G(z)=g \circ h(z)$. In the case from (6.1) and (6.2) we get an equation

$$
\begin{equation*}
f^{*}(z)^{3}\left(e^{H(z)}-\alpha\right)\left(e^{H(z)}-\beta\right)^{2}=\left(e^{L \circ h(z)}-\gamma\right)\left(e^{L^{\circ h(z)}}-\delta\right)^{2}, \tag{6.3}
\end{equation*}
$$

where $f^{*}(z)=f_{2}(z) f \circ h(z) / F(z)$ is a meromorphic function having zeros and poles possibly at the zeros of order at least 3 of $\left(e^{L^{\circ h}}-\gamma\right)\left(e^{L \circ h}-\delta\right)^{2}$ and $\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{2}$, respectively. Evaluating similarly as in $\S 5$, we have

$$
\begin{equation*}
m\left(r, e^{H}\right) \sim m\left(r, e^{L \circ h}\right) \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(r, f^{*} / \mid f^{*}\right)=o\left(m\left(r, e^{I I}\right)+m\left(r, e^{L^{\circ} h}\right)\right) \tag{6.5}
\end{equation*}
$$

outside a set of finite measure. Hence this case is similarly treated as in the process of proof of theorem 2. Therefore from the reasoning of $\S 5$ it is sufficient to consider the following two cases:
(I. I) $m\left(r, e^{H+L^{\circ} h}\right)=o\left(m\left(r, e^{I I}\right)\right)$ outside a set of finite measure, and $f *(z)=d e^{-I L(z)}$, where d is a non-zero constant. Then the identity (6.3) reduces to

$$
\left(d^{3}-\eta_{3}\right) e^{3 H}+\left(d^{3} \zeta_{1}-\eta_{2} e^{H+L O h}\right) e^{2 H}+\left(d^{3} \zeta_{2}-\eta_{1} e^{2 H+2 L O h}\right) e^{I I}+d^{3} \zeta_{3}-e^{3 H 13 L^{\circ} h}=0,
$$

where $\zeta_{1}=-(\alpha+2 \beta), \zeta_{2}=2 \alpha \beta+\beta^{2}, \zeta_{3}=-\alpha \beta^{2}, \eta_{1}=-(\gamma+2 \delta), \eta_{2}=2 \gamma \delta \partial+\delta^{2}$ and $\eta_{3}=-\gamma \hat{o}^{2}$. Hence lemma B gives

$$
d^{3}=\eta_{3}, d^{3} \zeta_{1}=\eta_{2} e^{H(z)+L^{\circ} h(z)}, d^{3} \zeta_{2}=\eta_{1} e^{2 I I(z)+2 L O h(z)} \quad \text { and } d^{3} \zeta_{3}=e^{3 I I(z) \mid 3 L \circ h(z)} .
$$

Therefore the function $H(z)+L_{\circ} h(z)$ must be the constant $L \circ h(0)$. Then we have

$$
\gamma \delta^{2}(\alpha+2 \beta)=\left(2 \gamma \delta+\delta^{2}\right) e^{L^{\circ h}(0)}, \gamma \delta^{2}\left(2 \alpha \beta+\beta^{2}\right)=(\gamma+2 \delta) e^{2 L^{\circ h(0)}} \text { and } \gamma \delta^{2} \alpha \beta^{2}=e^{3 L^{\circ h(0)}} .
$$

These relations yield $\alpha \gamma=e^{L^{\circ h(0)}}$ and $\beta \delta=e^{L^{\circ h}(0)}$. Thus we attain to the case (b) in our theorem.
(I. II) $f^{*}(z)=d e^{L^{\circ h}(z)-I I(z)}$, where d is a non-zero constant, and $m\left(r, e^{I I-L^{\circ} h}\right)$ $=o\left(m\left(r, e^{H}\right)\right)$ outside a set of finite measure. Then the identity (6.3) reduces to

$$
\begin{aligned}
& e^{3 L^{\circ} h-3 H}\left(1-d^{3}\right) e^{6 H}+e^{2 L^{\circ} h-2 I I}\left(\eta_{1}-d^{3} \zeta_{1} e^{L \circ h-I I}\right) e^{5 H} \\
& +e^{L \circ h-I I}\left(\eta_{2}-d^{3} \zeta_{2} e^{2 L^{\circ} h-2 H}\right) e^{4 I I}+\left(\eta_{3}-d^{3} \zeta_{3} e^{3 L^{\circ} h-3 H}\right) e^{3 I I}=0 .
\end{aligned}
$$

We deduce from lemma B that the function $L \circ h(z)-H(z)$ is the constant $L \circ h(0)$ and the following relations hold:

$$
\gamma+2 \delta=(\alpha+2 \beta) e^{L \circ h(0)}, \quad 2 \gamma \delta+\delta^{2}=\left(2 \alpha \beta+\beta^{2}\right) e^{2 L^{\circ h(0)}} \quad \text { and } \quad \gamma \delta^{2}=\alpha \beta^{2} e^{3 L \circ h(0)} \text {. }
$$

 our theorem.

Case II. $f_{3}(z)^{3} G(z)^{2}=g \circ h(z)$. In the case from (6.1) and (6.2) we get an equation

$$
\begin{equation*}
f^{*}(z)^{3}\left(e^{H(z)}-\alpha\right)^{2}\left(e^{H(z)}-\beta\right)=\left(e^{L \circ h(z)}-\gamma\right)\left(e^{L O h(z)}-\delta\right)^{2}, \tag{6.6}
\end{equation*}
$$

where $f^{*}(z)=f_{3}(z)\left(e^{H(z)}-\beta\right) f_{\circ} h(z) / F(z)^{2}$. Here $f_{3}(z)$ has simple poles at most at the double zeros of $G(z)$, that is, at the simple zeros of $e^{H(z)}-\beta$ or at the double zeros of $e^{H(z)}-\alpha$. However from the equation (6.6) and lemma C we see that $f_{3}(z)$ has simple poles at almost all simple zeros of $e^{H(z)}-\beta$. Hence $f^{*}(z)$ satisfies the
condition (6.5). And in this case the relation (6.4) holds also true. Therefore by virtue of the case I, we attain to the cases (a^{\prime}) and (b^{\prime}) in our theorem.

Conversely, suppose that there exists an entire function $h(z)$ satisfying (a) or (b) or (a^{\prime}) or (b^{\prime}). Then we have

$$
\left(\frac{e^{L \circ h(0)} F(z)}{f \circ h(z)}\right)^{3} G(z)=g \circ h(z)
$$

if (a) is the case, or

$$
\left(\frac{-e^{L \circ h(z)} F(z)}{\sqrt[3]{\alpha \beta^{2}} e^{H(z)} f \circ h(z)}\right)^{3} G(z)=g_{\circ} / h(z)
$$

if (b) is the case, or

$$
\left(\frac{e^{L^{\text {Oh }(0)}} F(z)^{2}}{\left(e^{H(z)}-\beta\right) f_{\circ} h(z)}\right)^{3} G(z)^{2}=g^{\circ} h(z)
$$

if $\left(a^{\prime}\right)$ is the case, or

$$
\left(\frac{-e^{L \circ h(0)} F(z)^{2}}{\sqrt[3]{\alpha^{2} \beta} e^{H(z)}\left(e^{H(z)}-\beta\right) f \circ h(z)}\right)^{3} G(z)^{2}=g \circ h(z)
$$

if (b^{\prime}) is the case. Since zeros of $G(z)$ are all simple or double, $e^{L \circ h(0)} F(z) / f \circ h(z)$ and $-e^{L^{\circ} h(0)} F(z) /\left(\sqrt[3]{\alpha \beta^{2}} e^{I(z)} f_{0} h(z)\right)$ are two entire functions and $e^{L^{\circ h(0)}} F(z)^{2} /\left(\left(e^{H(z)}-\beta\right)\right.$ $f \circ h(z))$ and $-e^{L^{\circ h(0)}} F(z)^{2} /\left(\sqrt[3]{\alpha^{2} \beta} e^{H(z)}\left(e^{H(z)}-\beta\right) f \circ h(z)\right)$ are two single-valued functions having the properties of $f_{3}(z)$ in theorem A. Therefore from theorem A there exists an analytic mapping φ from R into S. Thus we have just proved theorem 3 .

Proof of Corollary. By virtue of theorem 3 there exists an entire function $h(z)$ satisfying either $H(z)=H \circ h(z)-H \circ h(0)$ or $H(z)=-H \circ h(z)+H \circ h(0)$. Then we have $h(z)=a z+b$ by using lemma D if $H(z)$ is a transcendental entire function or directly if $H(z)$ is a polynomial. This implies the first part of corollary, that is, φ is a univalent conformal mapping from R onto itself.

By considering its iteration $\varphi_{n}=\varphi \circ \varphi_{n-1}$ as in the proof of theorem 2 in Ozawa [7], we can say that

$$
h(z)=e^{2 \pi v p / q} z+b
$$

with a suitable rational number p / q. Q.E.D.

References

[1] Hiromi, G., and K. Niino, On a characterization of regularly branched thrcesheeted covering Riemann surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 250-260.
[2] Hiromi, G., and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptıc surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 281-306.
[3] Mutō, H., On the existence of analytıc mappings. Kōdai Math. Sem. Rep. 18 (1966), 24-35.
[4] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin, 2nd ed., (1953), p. 379.
[5] Ozawa, M., On complex analytıc mappıngs. Kōdaı Math. Sem. Rep. 17 (1965), 93-102.
[6] Ozawa, M., On ultrahyperelliptıc surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 103-108.
[7] Ozawa, M., On the existence of analytıc mappings II. Kōdaı Math. Sem. Rcp. 18 (1966), 1-7.
[8] Rémoundos, G., Extension aux fonctions algébroïdes multiformes du théorème de M. Picard et de ses généralisations. Mém. Scı. Math. Parıs (1927), p. 66.
[9] Selberg, H. L., Algebrorde Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo 8 (1934), 1-72.
[10] UllRich, E., Über den Einfluss der Verzweigtheit eıner Algebroide auf ihre Wertverteilung. J. Reine Ang. Math. 167 (1931), 198-220.

Department of Mathematics, Tokyo Institute of Technology.

