# ON CONTINUOUS-TIME MARKOV PROCESSES WITH REWARDS, I 

By Hirohisa Hatori

1. In the previous paper [1] we have discussed Markov chains with rewards. In this paper we shall extend our previous work to continuous-time Markov processes with rewards.
2. As the preparation of the following sections, we shall state some wellknown properties of Markov processes. Let $X_{t}, t \geqq 0$ be a continuous-time Markov process with the state space $\boldsymbol{S}=\{1,2, \cdots, N\}$. The quantity $a_{j k}$ is defined as follows: In a short time interval $d t$, the process that is now in state $j \in S$ will make a transition to state $k \in S$ with probability $a_{j k} d t+o(d t)(j \neq k)$. The probability of two or more state transitions is $o(d t)$. Then, this Markov process is described by the transition-rate matrix $A=\left(a_{j k}\right)$ with elements $a_{j k}$ where the diagonal elements of $A$ are defined by $a_{j j}=-\sum_{k \neq \jmath} a_{j k}(j=1,2, \cdots, N)$. The probability that the system occupies state $j$ at time $t$ after the start of the process is the state probability $\pi_{j}(t) \stackrel{\text { def }}{=} P\left\{X_{t}=j\right\}$ and we have

$$
\begin{equation*}
\frac{d}{d t} \pi_{k}(t)=\sum_{j=1}^{N} \pi_{j}(t) a_{j k} \quad(k=1,2, \cdots, N) \tag{1}
\end{equation*}
$$

In vector-form we may write (1) as

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{\pi}(l)=\boldsymbol{\pi}(l) \cdot \Lambda \tag{2}
\end{equation*}
$$

where $\boldsymbol{\pi}(t) \stackrel{\text { der }}{=}\left[\pi_{1}(t), \cdots, \pi_{N}(t)\right]$ is the vector with the components $\pi_{j}(t)$. Let us designate by $\boldsymbol{\Pi}(s)$ the Laplace transform of the state-probability vector $\boldsymbol{\pi}(t)$. If we take the Laplace transform of (2), we obtain

$$
s \boldsymbol{\Pi}(s)-\boldsymbol{\pi}(0)=\boldsymbol{\Pi}(s) \cdot A
$$

and so

$$
\begin{equation*}
\boldsymbol{\Pi}(s)=\boldsymbol{\pi}(0)[s I-A]^{-1}, \tag{3}
\end{equation*}
$$

where $I$ is the identity matrix. Under a certain weak condition, the equation $\operatorname{det}(s I-A)=0$ has a simple root $s=0$ and, $\alpha_{1}, \cdots, \alpha_{k}$ being its remaining roots, the real parts $\mathfrak{R}\left(\alpha_{l}\right)$ of $\alpha_{l}(l=1,2, \cdots, k)$ are negative. Each element of $[s I-A]^{-1}$ is a function of $s$ with a factorable denominator $s\left(s-\alpha_{1}\right)^{m_{1}} \cdots\left(s-\alpha_{k}\right)^{m_{k}}$, where $m_{1}, \cdots, m_{k}$, are the multiplicities of $\alpha_{1}, \cdots, \alpha_{k}$, respectively. By partial-fraction expansion we can express each element as the sum of the fractions whose forms are const./s and

Received December 16, 1965.
const. $/\left(s-\alpha_{l}\right)^{\nu}\left(\nu=1, \cdots, m_{l} ; l=1,2, \cdots, k\right)$. Expressing this fact in matrix-form, we have

$$
[s I-A]^{-1}=\frac{1}{s} S+\sum_{l=1}^{k} \sum_{\nu=1}^{m_{l}} \frac{1}{\left(s-\alpha_{l}\right)^{\nu}} T_{l \nu}
$$

where $S$ and $T_{l \nu}\left(\nu=1, \cdots, m_{l} ; l=1,2, \cdots, k\right)$ are $N \times N$ matrices independent of $s$, which implies that $[s I-A]^{-1}$ is the Laplace transform of

$$
H(t) \stackrel{\text { def }}{=} S+\sum_{l=1}^{k} \sum_{\nu=1}^{m_{l}} \frac{t^{\nu-1}}{(\nu-1)!} e^{\alpha_{l} t} T_{l_{\nu}}
$$

that is,

$$
[s I-A]^{-1}=\int_{0}^{\infty} H(t) e^{-s t} d t, \quad(s>0)
$$

Therefore, we have

$$
I(t) \rightarrow S \quad(t \rightarrow \infty)
$$

which implies with (3)

$$
\begin{equation*}
\boldsymbol{\pi}(t)=\boldsymbol{\pi}(0) H(t) \rightarrow \boldsymbol{\pi}(0) \mathrm{S} \quad(t \rightarrow \infty) \tag{4}
\end{equation*}
$$

$S$ is a stochastic matrix and its $j$-th row is the limiting-state-probability vector of the process if it starts in the $j$-th state.

Remark 1. If the matrix $A$ is indecomposable, then the equation $\operatorname{det}(s I-A)=0$ has a simple root $s=0$ and $\alpha_{1}, \cdots, \alpha_{k}$ being its remaining roots, the real parts $\mathfrak{R}\left(\alpha_{l}\right)$ of $\alpha_{l}(l=1,2, \cdots, k)$ are strictly negative. In what follows, we shall prove this fact. For a root $\alpha$ of $\operatorname{det}(s I-\Lambda)=0$, there exists a non-zero vector $\left[\begin{array}{c}z_{1} \\ \vdots \\ z_{N}\end{array}\right]$ such that

$$
A\left[\begin{array}{c}
z_{1}  \tag{5}\\
\vdots \\
z_{N}
\end{array}\right]=\alpha\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{N}
\end{array}\right] .
$$

Taking $j_{0} \in S$ such that $\operatorname{Max}_{j=1,2, \cdots, N}\left|z_{j}\right|=\left|z_{j_{0}}\right|>0$, we may assume without loss of generality $z_{J_{0}}=1$ and $\left|z_{j}\right| \leqq 1(j=1,2, \cdots, N)$, because (5) holds again by replacing $z_{j} / z_{j_{0}}$ for $z_{j}(j=1,2, \cdots, N)$. Then, we have from (5)

$$
\alpha=\alpha z_{\jmath_{0}}=\sum_{j \neq y_{0}} a_{\jmath_{0} j} z_{j}+a_{\jmath_{0} \jmath_{0}}
$$

and so

$$
\Re(\alpha)=\sum_{j \neq j_{0}} a_{\jmath_{0} j} \Re\left(z_{j}\right)+a_{\jmath_{0} J_{0}} \leqq \sum_{j \neq j_{0}} a_{\rho_{0} j}+a_{\jmath_{0} J_{0}}=0
$$

because $\mathfrak{R}\left(z_{j}\right) \leqq\left|z_{j}\right| \leqq 1, \quad a_{\jmath_{0} \jmath} \geqq 0\left(j \neq j_{0}\right)$ and $a_{J_{0} J_{0}}=-\sum_{j \neq J_{0}} a_{J_{0} J}$. Therefore we get $\mathfrak{R}\left(\alpha_{l}\right) \leqq 0 \quad(l=1,2, \cdots, k)$. Now, the matrix $A+\lambda I$, where $\lambda=\operatorname{Max}_{\jmath=1, \cdots, N}\left|a_{\jmath j}\right|$, has $\lambda, \lambda+\alpha_{1}, \cdots, \lambda+\alpha_{k}$ as its eigen values. Since $A+\lambda I$ is an indecomposable matrix with non-negative elements, we have by the well-known theorem on matrices with nonnegative elements that $s=\lambda$ is a simple root of $\operatorname{det}(s I-A-\lambda I)=0$ and $\left|\lambda+\alpha_{l}\right| \leqq \lambda$
$(l=1,2, \cdots, k)$. Hence we know that $s=0$ is a simple root of $\operatorname{det}(s I-A)=0$ and $\Re\left(\alpha_{l}\right)<0,(l=1,2, \cdots, k)$.
3. To simplify the explanation of our method in this section, we assume that the equation $\operatorname{det}(s I-A)=0$ has the simple roots $0, \alpha_{1}, \cdots, \alpha_{N-1}$, that is, $k=N-1$ and $m_{1}=m_{2}=\cdots=m_{k}=1$. Let us suppose that the system earns a reward at the rate of $r_{j j}$ dollars per unit time during all the time that it occupies state $j$. Suppose further that when the system makes a transition from state $j$ to state $k(j \neq k)$, it receives a reward of $r_{j k}$ dollars. Then, the characteristic function of the distribution of the total reward $R(t)$ that the system will earn in a time $t$ if it starts in state $j$ is

$$
\begin{equation*}
\varphi_{j t}(\theta) \stackrel{\text { def }}{=} E\left\{e^{i \theta R(t)} \mid X_{0}=j\right\} \tag{6}
\end{equation*}
$$

where $i=\sqrt{-1}$ and $\theta$ is a real variable. Here, $d t$ representing, as before, a very short time interval, we have

$$
\varphi_{j, t+d t}(\theta)=\left(1+a_{j j} d t\right) e^{i \theta r_{j j} d t} \varphi_{j t}(\theta)+\sum_{k \neq j} a_{j k} d t e^{\left.i \theta r_{j k} \varphi_{k t}(\theta)+o(d t)\right)}
$$

and so

Introducing the $N \times N$ matrix

$$
A(\theta) \stackrel{\operatorname{def}}{=}\left(\begin{array}{cccc}
a_{11}+i \theta r_{11} & a_{12} e^{i \theta r_{12}} & \cdots & a_{1 N} e^{i \theta r_{1 N}} \\
a_{21} e^{i \theta r_{21}} & a_{22}+i \theta r_{22} & \cdots & a_{2 N} e^{i \theta r_{2 N}} \\
\cdot & \cdot & \cdots & \cdot \\
a_{N_{1}} i^{i \theta r_{N 1}} & a_{N_{2}} e^{i \theta r_{N 2}} & \cdots & a_{N N}+i \theta r_{N N}
\end{array}\right)
$$

and the vector

$$
\boldsymbol{\varphi}_{t}(\theta) \stackrel{\operatorname{der}}{=}\left[\begin{array}{c}
\varphi_{1 t}(\theta) \\
\vdots \\
\varphi_{N t}(\theta)
\end{array}\right],
$$

we may write (7) as

$$
\begin{equation*}
\frac{\partial}{\partial t} \boldsymbol{\varphi}_{t}(\theta)=A(\theta) \boldsymbol{\varphi}_{t}(\theta) \tag{8}
\end{equation*}
$$

If we take the Laplace transform of (8), we obtain

$$
s \boldsymbol{\Phi}(\theta, s)-\boldsymbol{e}=A(\theta) \boldsymbol{\Phi}(\theta, s)
$$

and so
(9)

$$
\boldsymbol{\Phi}(\theta, s)=[s I-A(\theta)]^{-1} \boldsymbol{e}
$$

for $s>0$ and $\theta$ in a neighborhood of $\theta=0$, where

$$
\boldsymbol{\Phi}(\theta, s) \stackrel{\operatorname{der}}{=} \int_{0}^{\infty} \boldsymbol{\varphi}_{t}(\theta) e^{-s t} d t \quad \text { and } \quad \boldsymbol{e}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

The equation $\operatorname{det}(s I-A(\theta))=0$ in $s$ has the $N$ roots $\zeta_{0}(\theta), \zeta_{1}(\theta), \cdots, \zeta_{N-1}(\theta)$ such that $\mathfrak{R}\left(\zeta_{l}(\theta)\right) \leqq 0(l=0,1, \cdots, N-1)$ and

$$
\zeta_{0}(\theta) \rightarrow 0, \zeta_{1}(\theta) \rightarrow \alpha_{1}, \cdots, \zeta_{N-1}(\theta) \rightarrow \alpha_{N-1}
$$

as $\theta \rightarrow 0$. Then, there exist positive constants $\varepsilon$ and $\theta_{0}$ such that

$$
\begin{equation*}
-\varepsilon<\mathfrak{R}\left(\zeta_{0}(\theta)\right) \leqq 0 \quad \text { and } \quad \Re\left(\zeta_{l}(\theta)\right)<-2 \varepsilon \quad(l=1,2, \cdots, N-1) \tag{10}
\end{equation*}
$$

for $|\theta|<\theta_{0}$, because $\mathfrak{R}\left(\alpha_{l}\right)<0(l=1, \cdots, N-1)$. The consideration similar to the one in the preceeding section give

$$
\begin{align*}
\boldsymbol{\Phi}(\theta, s) & =\frac{1}{s-\zeta_{0}(\theta)} \boldsymbol{\sigma}(\theta)+\sum_{l=1}^{N-1} \frac{1}{s-\zeta_{l}(\theta)} \boldsymbol{\tau}_{l}(\theta) \\
& =\int_{0}^{\infty}\left\{e^{\zeta_{0}(\theta) t} \boldsymbol{\sigma}(\theta)+\sum_{l=1}^{N-1} e^{\zeta_{l}(\theta) t} \boldsymbol{\tau}_{l}(\theta)\right\} e^{-s t} d t \tag{11}
\end{align*}
$$

and so

$$
\boldsymbol{\varphi}_{t}(\boldsymbol{\theta})=e^{\zeta 0(\theta) t} \boldsymbol{\sigma}(\theta)+\sum_{l=1}^{N-1} e^{\zeta_{l}(\theta) t} \boldsymbol{\tau}_{l}(\theta)
$$

$$
\begin{equation*}
=e^{\zeta 0(\theta) t}\left\{\boldsymbol{\sigma}(\theta)+\sum_{l=1}^{N-1} e^{\left(\zeta_{l}(\theta)-\xi_{0}(\theta)\right) t} \boldsymbol{\tau}_{l}(\theta)\right\} \tag{12}
\end{equation*}
$$

where $\boldsymbol{\sigma}(\theta), \boldsymbol{\tau}_{1}(\theta), \cdots, \boldsymbol{\tau}_{N-1}(\theta)$ are $N$-dimensional vectors analytic on $\theta$ for $|\theta|<\theta_{0}$. Since $\boldsymbol{\varphi}_{t}(0)=\boldsymbol{e}$, we have $\boldsymbol{\sigma}(0)=\boldsymbol{e}$. From (12), we have

$$
\frac{\partial}{\partial \theta} \varphi_{t}(\theta)=\zeta_{0}^{\prime}(\theta) t e^{\zeta 0(\theta) t} \boldsymbol{\sigma}(\theta)+e^{\zeta_{0}(\theta) t} \boldsymbol{\sigma}^{\prime}(\theta)
$$

$$
\begin{equation*}
+\sum_{l=1}^{N-1}\left\{\zeta_{l}^{\prime}(\theta) t e^{\zeta_{l}(\theta) t} \boldsymbol{\tau}_{l}(\theta)+e^{\zeta_{l}(\theta) t} \boldsymbol{\tau}_{l}^{\prime}(\theta)\right\} \tag{13}
\end{equation*}
$$

and so

$$
\begin{align*}
\boldsymbol{v}(t) & =\frac{1}{i}\left\{\zeta_{0}^{\prime}(0) t \boldsymbol{e}+\boldsymbol{\sigma}^{\prime}(0)\right\}+\frac{1}{i} \sum_{l=1}^{N-1}\left\{\zeta_{l}^{\prime}(0) t e^{\alpha} t \boldsymbol{\tau}_{l}(0)+e^{\alpha} t t \boldsymbol{\tau}_{l}^{\prime}(0)\right\} \\
& \fallingdotseq-i \zeta_{0}^{\prime}(0) t \boldsymbol{e}-i \boldsymbol{\sigma}^{\prime}(0) \quad \text { as } t \rightarrow \infty \tag{14}
\end{align*}
$$

where $\boldsymbol{v}(t) \stackrel{\operatorname{def}}{=}\left[\begin{array}{c}v_{1}(t) \\ \vdots \\ v_{N}(t)\end{array}\right]$ is the vector with the components

$$
v_{j}(t) \stackrel{\text { def }}{=} E\left\{R(t) \mid X_{0}=j\right\}=\frac{1}{i}\left[\frac{\partial}{\partial \theta} \varphi_{j t}(\theta)\right]_{\theta=0}
$$

which implies that $g=-i \zeta_{0}^{\prime}(0)$ is a real number. In the similar way, we have

$$
E\left\{R(t)^{2} \mid X_{0}=j\right\} \fallingdotseq-\zeta_{0}^{\prime}(0)^{2} t^{2}-\left[\zeta_{0}^{\prime \prime}(0)+2 \zeta_{0}^{\prime}(0) \sigma_{j}^{\prime}\right] l-\sigma_{J}^{\prime \prime} \quad \text { as } t \rightarrow \infty,
$$

where $\sigma_{j}^{\prime}$ and $\sigma_{3}^{\prime \prime}$ are the $j$-th component of $\sigma^{\prime}(0)$ and $\sigma^{\prime \prime}(0)$, and

$$
E\left\{R(t)^{2} \mid X_{0}=j\right\}-\left[E\left\{R(t) \mid X_{0}=j\right\}\right]^{2}=-\zeta_{0}^{\prime \prime}(0) t-\sigma_{j}^{\prime \prime}+\sigma_{j}^{\prime 2} \quad \text { as } \iota \rightarrow \infty,
$$

which implies $-\zeta_{0}^{\prime \prime}(0)$ is positive in general. Now, we shall consider the asymptotic behavior of $R(t)$ as $t \rightarrow \infty$. The characteristic function of the distribution of the random variable $[R(t)-g t] / \sqrt{t}$ under the condition $X_{0}=j$ is

$$
\begin{align*}
\psi_{j l}(\theta) & \stackrel{\operatorname{def}}{=} E\left\{e^{2 \theta[R(t)-g t] / \sqrt{t}} \mid X_{0}=j\right\} \\
& =e^{-\imath g \sqrt{t} \theta} \varphi_{j t}\left(\frac{\theta}{\sqrt{ } \bar{t}}\right)  \tag{15}\\
& =e^{-\imath g \sqrt{\imath} \theta} e^{\xi_{0}(\theta / \sqrt{t}) t}\left\{\sigma_{j}\left(\frac{\theta}{\sqrt{t}}\right)+\sum_{l=1}^{N-1} e^{\left(s_{l}(\theta / \sqrt{l})-\xi_{0}(\theta / \sqrt{ } t)\right) t} \tau_{l j}\left(\frac{\theta}{\sqrt{t}}\right)\right\},
\end{align*}
$$

where $\sigma_{j}(\theta)$ and $\tau_{l j}(\theta)(l=1, \cdots, N-1)$ are the $j$-th components of the vectors $\boldsymbol{\sigma}(\theta)$ and $\boldsymbol{\tau}_{l}(\theta) \quad(l=1, \cdots, N-1)$, respectively. For fixed $\theta$, we have $|\theta| \sqrt{t} \mid<\theta_{0}$ for all sufficiently large $t$ so that by (10)

$$
\Re\left(\zeta_{l}\left(\frac{\theta}{\sqrt{ } t}\right)-\zeta_{0}\left(\frac{\theta}{\sqrt{ } t}\right)\right)<-\varepsilon<0
$$

and

$$
\begin{equation*}
e^{\left(\varsigma_{l}\left(\theta / \sqrt{ }()-\xi_{0}(0 / \sqrt{ }())\right)\right.} \rightarrow 0 \quad \text { as } t \rightarrow \infty . \tag{16}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
& e^{-2 g \sqrt{t} \theta} e^{50(\theta)} \sqrt{\bar{t}) t} \\
& =e^{-\imath g \sqrt{\hat{\epsilon}} \theta+\left\{\xi^{\prime}(0) \sqrt{\hat{\epsilon}} \theta+(1 / 2) \xi_{0}^{\prime \prime}(0) \theta^{2}+\sigma(1 / \sqrt{\bar{l}})\right.} \rightarrow e^{(1 / 2) \xi_{0}^{\prime \prime}(0) \theta^{2}} \quad \text { as } t \rightarrow \infty, \tag{17}
\end{align*}
$$

because $\zeta_{0}(0)=0$ and $g=-i \zeta_{0}^{\prime}(0)$. From (15), (16) and (17), we get

$$
\psi_{j t}(\theta) \rightarrow e^{(1 / 2) \xi_{0}^{\prime}(0) \theta^{2}} \quad \text { as } t \rightarrow \infty
$$

and so

$$
\begin{aligned}
\psi_{t}(\theta) & \stackrel{\operatorname{def}}{=} E\left\{e^{i \theta[R(t)-g t] / \sqrt{ } \bar{c}}\right\} \\
& =\sum_{j=1}^{N} \pi_{\jmath}(0) \psi_{j l}(\theta) \rightarrow e^{(1 / 2) \xi_{0}^{\prime}(0) \theta^{2}} \quad \text { as } t \rightarrow \infty,
\end{aligned}
$$

which implies that $[R(t)-g t] / \sqrt{t}$ converges in distribution to the normal distribution $N\left(0,-\zeta_{0}^{\prime \prime}(0)\right)$.

Remark 2. It follows from (8) that

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t \partial \theta} \boldsymbol{\varphi}_{l}(\theta)=\Lambda^{\prime}(\theta) \boldsymbol{\varphi}_{l}(\theta)+A(\theta) \cdot \frac{\partial}{\partial \theta} \boldsymbol{\varphi}_{l}(\theta) . \tag{18}
\end{equation*}
$$

Since $\left[\frac{\partial}{\partial \theta} \boldsymbol{\varphi}_{t}(\theta)\right]_{\theta=0}=i \boldsymbol{v}(t), A(0)=A$ and

$$
\frac{1}{i} A^{\prime}(0)=Q_{1} \stackrel{\operatorname{dcf}}{=}\left(\begin{array}{cccc}
r_{11} & r_{12} a_{12} & \cdots & r_{1 N} a_{1 N} \\
r_{21} a_{21} & r_{22} & \cdots & r_{2 N} a_{2 N} \\
\cdot & \cdot & \cdots & \cdot \\
r_{N_{1}} a_{N_{1}} & r_{N_{2}} a_{N_{2}} & \cdots & r_{N N}
\end{array}\right)
$$

we have, by setting $\theta=0$ in (18),

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{v}(l)=Q_{1} \boldsymbol{e}+\Lambda \boldsymbol{v}(l), \tag{19}
\end{equation*}
$$

which has been shown by Howard [2]. He has given from (19) the asymptotic form of $\boldsymbol{v}(t)$ as $t \rightarrow \infty$, which is essentially equivalent to (14). By differentiating the both sides of (18) w.r.t. $\theta$ and setting $\theta=0$, we have

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{w}(t)=Q_{2} \boldsymbol{e}+2 Q_{1} \boldsymbol{v}(t)+A \boldsymbol{w}(t) \tag{20}
\end{equation*}
$$

where $\boldsymbol{w}(t) \stackrel{\operatorname{der}}{=}\left[\begin{array}{c}w_{1}(t) \\ \vdots \\ w_{N}(t)\end{array}\right]$ is the vector with components $w_{j}(t) \stackrel{\text { def }}{=} E\left\{R(t)^{2} \mid X_{0}=j\right\}$ and

$$
Q_{2} \stackrel{\operatorname{def}}{=}\left(\begin{array}{cccc}
0 & r_{12}^{2} a_{12} & \cdots & r_{1 N}^{2} a_{1 N} \\
r_{21}^{2} a_{21} & 0 & \cdots & r_{2 N}^{2} a_{2 N} \\
\cdot & \cdot & \cdots & \cdot \\
r_{N_{1}, a_{N_{1}}} & r_{N_{2}}^{2} a_{N_{2}} & \cdots & 0
\end{array}\right) .
$$

By taking Laplace transform of (20) and using the method similar to the one in [1], we can find the asymptotic forms that $w_{j}(t)$ and $\operatorname{Var}(R(t))$ assume for large $t$.

Remark 3. Let $f$ be any real valued function defined on $\boldsymbol{S}$. In the case where $r_{j j}=f(j)$ and $r_{j k}=0(j \neq k)$, we have that

$$
R(t)=\int_{0}^{t} f\left(X_{\tau}\right) d \tau
$$

and the random variable $\left[\int_{0}^{t} f\left(X_{\tau}\right) d \tau-g t\right] / \sqrt{t}$ converges in distribution to a normal distribution as $t \rightarrow \infty$. Therefore we have the central limit theorem for continuoustime Markov processes.

Remark 4. Although $\Re\left(\zeta_{0}(\theta)\right) \leqq 0$ is derived from the analyticity of $\boldsymbol{\Phi}(\theta, s)$, wc shall give a proof similar to the one in Remark 1. Since there exist a non-zero vector $\left[\begin{array}{c}z_{1} \\ \vdots \\ z_{N}\end{array}\right]$ and a state $j_{0}$ such that $A(\theta)\left[\begin{array}{c}c_{1} \\ \vdots \\ z_{N}\end{array}\right]=\zeta_{0}(\theta)\left[\begin{array}{c}z_{1} \\ \vdots \\ z_{N}\end{array}\right],\left|z_{j}\right| \leqq 1 \quad(j=1,2, \cdots, N)$ and $z_{3_{0}}=1$, we have

$$
\zeta_{0}(\theta)=\zeta_{0}(\theta) z_{j_{0}}=\sum_{j \neq \jmath_{0}} a_{j_{0} j} e^{i r_{j 00} z_{j}+\left(a_{j_{0 j 0}}+i \theta r_{j_{00}}\right)}
$$

and so

$$
\begin{aligned}
& \Re\left(\zeta_{0}(\theta)\right)=\sum_{j \neq j_{0}} \Re\left(a_{J_{0} j} e^{i \theta r_{j_{0}} z_{j}}\right)+a_{J_{0_{0}}}
\end{aligned}
$$

Therefore, we have $\mathfrak{R}\left(\zeta_{0}(\theta)\right) \leqq 0$.
4. In this section, we shall outline the case with the discounting. Let us define a discount rate $0<\alpha<\infty$ in such a way that a unit quantity of money received after a very short time interval $d t$ is now worth $1-\alpha d t$. Then, for the characteristic function $\varphi_{j t}(\theta)$ of the present value $R(t)$ of the total reward of the system in time $t$ under the condition $X_{0}=\jmath$, we have

$$
\varphi_{j, t_{+}+d t}(\theta)=\left(1+a_{j j} d t\right) e^{\imath \theta(1-\alpha d t) r_{j j d t} t} \varphi_{j l}((1-\alpha d t) \theta)+\sum_{k \neq \jmath} a_{j k} d t e^{\left.2 \theta(1-\alpha d t) r_{j}{ }^{k} \varphi_{k l}((1-\alpha d t) \theta)\right), ~(1)}
$$

and so

$$
\frac{\partial}{\partial t} \varphi_{j \iota}(\theta)=\left(a_{j j}+i \theta r_{j j}\right) \varphi_{j l}(\theta)-\alpha \theta \cdot \frac{\partial}{\partial \theta} \varphi_{j l}(\theta)+\sum_{k \neq \jmath} a_{j k} e^{i r^{j k} \varphi_{k l}(\theta)}
$$

which is expressed in the vector-form

$$
\begin{equation*}
\frac{\partial}{\partial t} \varphi_{t}(\theta)+\alpha \theta \frac{\partial}{\partial \theta} \varphi_{t}(\theta)=\Lambda(\theta) \varphi_{t}(\theta) \tag{21}
\end{equation*}
$$

By differentiating the both sides of (21) w.r.t. 0 and setting $\theta=0$, we have

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{v}(t)+\alpha \boldsymbol{v}(t)=Q_{1} \boldsymbol{e}+A \boldsymbol{v}(t) \tag{22}
\end{equation*}
$$

which has been shown by Howard [2]. He has shown from (22) $\boldsymbol{v}=\lim _{t \rightarrow \infty} \boldsymbol{v}(t)$ $=[\alpha I-A]^{-1} Q_{1} e$. By differentiating twice the both sides of (21) w.r.t. 0 and setting $\theta=0$, we have

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{w}(t)+2 \alpha \boldsymbol{w}(t)=Q_{2} \boldsymbol{e}+2 Q_{1} \boldsymbol{v}(t)+A \boldsymbol{w}(t) \tag{23}
\end{equation*}
$$

from which we can find without difficulty $\boldsymbol{w}=\lim _{t \rightarrow \infty} \boldsymbol{w}(t)$ in terms of $\alpha, A, Q_{1}$ and $Q_{2}$, where $\boldsymbol{w}(t) \stackrel{\operatorname{def}}{=}\left[\begin{array}{c}w_{1}(t) \\ \vdots \\ w_{N}(t)\end{array}\right]$ is the vector with the components

$$
w_{j}(t) \stackrel{\text { def }}{=} E\left\{R(t)^{2} \mid X_{0}=j\right\}=-\left[\frac{\partial^{2}}{\partial \theta^{2}} \varphi_{j t}(\theta)\right]_{\theta=0} .
$$

The author expresses his sincerest thanks to Prof. Y. Kawahara who has given valuable advices.

## References

[1] Hatori, H., On Markov chains with rewards. Kōdai Math. Sem. Rep. 18 (1966), 184-192.
[2] Howard, R. A., Dynamic Programming and Markov Processes. M. I. T. Press (1960). Tokyo College of Science.

