ON A SIMPLIFIED METHOD OF THE ESTIMATION OF THE CORRELOGRAM FOR A STATIONARY GAUSSIAN PROCESS, III

By MITUAKI HUZH

§ 1. Introduction.

In this paper we shall deal with a simplified method for the estimation of the correlogram for a stationary process.

Let X(n) be a real-valued stationary process with discrete time parameter n. We assume EX(n)=0. We put

$$EX(n)^2 = \sigma^2, \qquad EX(n)X(n+h) = \sigma^2\rho_h,$$

and we consider to estimate the correlogram ρ_h .

In the previous papers [4], [5], we discussed a simplified method for the estimation of the correlogram when σ^2 is known. But in the present paper, we discuss the case when σ^2 is unknown. For simplicity, let us assume the process X(n) to be observed at $n=1, 2, \dots, N, \dots, N+h$.

Usually, in order to estimate the correlogram ρ_h , we use the estimate

$$\widetilde{\Gamma}_h = \frac{\sum\limits_{n=1}^N X(n)X(n+h)}{\sum\limits_{n=1}^N X(n)^2}.$$

Now we shall modify the estimate $\tilde{\Gamma}_h$. The essential part of our modification is to replace X(n)X(n+h) by $X(n) \operatorname{sgn} (X(n+h))$, where $\operatorname{sgn} (y)$ means 1, 0, -1 correspondingly as y > 0, y = 0, y < 0. The new estimate is

$$\Gamma_{h} = \frac{\sum\limits_{n=1}^{N} X(n) \operatorname{sgn} (X(n+h))}{\sum\limits_{n=1}^{N} |X(n)|}.$$

This new estimate Γ_h may be considered as follows. We make a nonlinear operation on the input X(n) and assume that the output is Y(n) = sgn(X(n)). Then, the estimate Γ_h consists of the cross-correlation of the input X(n) and the output Y(n).

We shall show below that when X(n) is a Gaussian process satisfying some conditions, the estimate Γ_h is an asymptotically unbiased estimate of the correlogram

Received December 13, 1965.

MITUAKI HUZII

 ρ_h as $N \rightarrow \infty$. We evaluate the asymptotic variance of Γ_h . The estimate $\tilde{\Gamma}_h$ is also an asymptotically unbiased estimate of ρ_h . Further, Γ_h and $\tilde{\Gamma}_h$ are both consistent estimates of ρ_h . We compare, for the typical cases, the asymptotic variance of Γ_h with that of $\tilde{\Gamma}_h$.

§ 2. The estimate Γ_h .

Let X(n) be a stationary Gaussian process having a finite moving average representation

(1)
$$X(n) = G_0 \xi(n) + G_1 \xi(n-1) + \dots + G_M \xi(n-M),$$

where $\xi(n)$ is the white noise with

$$E\xi(n)=0, \quad E\xi(n)^2=1,$$
$$E\xi(n_1)\xi(n_2)=0 \quad \text{when } n_1 \neq n_2$$

M is some positive number and $\{G_k\}$ are constants.

Let $L_2(X; n)$ denote the closed linear manifold generated by $\{X(j); j \leq n\}$ and $L_2(\xi; n)$ denote the closed linear manifold generated by $\{\xi(j); j \leq n\}$.

LEMMA 1. If X(n) is a stationary Gaussian process which has the moving average representation (1) and if the condition

(2)
$$L_2(X; n) = L_2(\xi; n)$$

holds for an arbitrary integer n, $\xi(n)$ is a stationary Gaussion process.

In fact, we consider the joint distribution of $\xi(n_1), \dots, \xi(n_k)$. As $\xi(n_\nu) \in L_2(X; n_\nu)$, there are constants $\{a_l; l=0, 1, 2, \dots\}$ such that

$$\xi(n_{\nu})=1: \lim_{N\to\infty}\sum_{l=0}^{N}a_{l}X(n_{\nu}-l).$$

Therefore for any real numbers A_1, A_2, \dots, A_k ,

$$A_{1}\xi(n_{1}) + A_{2}\xi(n_{2}) + \dots + A_{k}\xi(n_{k})$$

= l.i.m $\left\{ A_{1}\left(\sum_{l=0}^{N} a_{l}X(n_{1}-l)\right) + A_{2}\left(\sum_{l=0}^{N} a_{l}X(n_{2}-l)\right) + \dots + A_{k}\left(\sum_{l=0}^{N} a_{l}X(n_{k}-l)\right) \right\}.$

The distribution of

$$A_{1}\left(\sum_{l=0}^{N}a_{l}X(n_{1}-l)\right) + A_{2}\left(\sum_{l=0}^{N}a_{l}X(n_{2}-l)\right) + \dots + A_{k}\left(\sum_{l=0}^{N}a_{l}X(n_{k}-l)\right)$$

is Guassian, so the distribution function of

$$A_1\xi(n_1) + A_2\xi(n_2) + \cdots + A_k\xi(n_k)$$

is Gaussian. This shows $\xi(n)$ is a Gaussian process.

As $\xi(n)$ is a white noise, $\xi(n_1)$ and $\xi(n_2)$ are orthogonal, for any $n_1 \neq n_2$, so that,

by the above lemma, $\xi(n_1)$ and $\xi(n_2)$ are mutually independent.

Now we determine the asymptotic distribution of the estimate Γ_h . Without loss of generality, we can assume that h>0. We have

$$\begin{split} \sqrt{N}(\Gamma_{h}-\rho_{h}) &= \sqrt{N} \left(\frac{\sum\limits_{n=1}^{N} X(n) \operatorname{sgn} (X(n+h))}{\sum\limits_{n=1}^{N} |X(n)|} - \rho_{h} \right) \\ &= \sqrt{N} \left(\frac{\frac{1}{N} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum\limits_{n=1}^{N} X(n) \operatorname{sgn} (X(n+h))}{\frac{1}{N} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum\limits_{n=1}^{N} |X(n)|} - \rho_{h} \right) \\ &= \frac{\frac{1}{\sqrt{N}} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum\limits_{n=1}^{N} \{X(n) \operatorname{sgn} (X(n+h)) - \rho_{h} |X(n)|\}}{\frac{1}{N} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum\limits_{n=1}^{N} |X(n)|} . \end{split}$$

In the first place, we consider the statistic

$$\gamma_0 = \frac{1}{N} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{n=1}^N |X(n)|.$$

Using the results in Huzii [4], we have

$$E(\gamma_0)=1$$

and

•

 $V(\gamma_0)$ = the variance of γ_0

$$= \frac{2}{N^2} \sum_{k=1}^{N-1} (N-k) (1-\rho_k^2)^{3/2} \left(\sum_{m=0}^{\infty} \frac{(2\rho_k)^{2m}}{(2m)!} \Gamma(m+1)^2 \right) + \frac{\pi}{2} \frac{1}{N} - 1.$$

LEMMA 2. If X(n) is a process having the representation (1), then $V(\gamma_0) \rightarrow 0$ as $N \rightarrow \infty$.

Proof. For our process X(n), $\rho_k=0$ when |k| > M. So we have

$$V(\gamma_0) = \frac{2}{N^2} \sum_{k=1}^{M} (N-k) (1-\rho_k^2)^{3/2} \left(\sum_{m=0}^{\infty} \frac{(2\rho_k)^{2m}}{(2m)!} \Gamma(m+1)^2 \right)$$
$$+ \frac{2}{N^2} \sum_{k=M+1}^{N} (N-k) + \frac{\pi}{2} \frac{1}{N} - 1.$$

Now,

$$\frac{2}{N^2}\sum_{k=M+1}^{N} (N-k) = \frac{2}{N^2} \cdot \frac{(N-M-1)(N-M)}{2} = 1 - \frac{(2M+1)}{N} + \frac{M(M+1)}{N^2}.$$

Therefore we get

MITUAKI HUZII

$$\begin{split} V(\gamma_0) &= \frac{2}{N} \sum_{k=1}^{M} \left(1 - \frac{k}{N} \right) (1 - \rho_k^2)^{3/2} \left(\sum_{m=0}^{\infty} \frac{(2\rho_k)^{2m}}{(2m)!} \, \Gamma(m+1)^2 \right) \\ &- \frac{(2M+1)}{N} + \frac{M(M+1)}{N^2} + \frac{\pi}{2} \, \frac{1}{N}. \end{split}$$

This shows $V(\gamma_0) \rightarrow 0$ as $N \rightarrow \infty$.

From this Lemma 2, we can find the following result:

THEOREM 1. γ_0 converges in probability to 1 as $N \rightarrow \infty$.

In the next place, we consider the numerator of $\sqrt{N}(\Gamma_h - \rho_h)$, that is,

$$\frac{1}{\sqrt{N}}\sqrt{\frac{\pi}{2}}\frac{1}{\sigma}\sum_{n=1}^{N}\left\{X(n)\operatorname{sgn}\left(X(n+h)\right)-\rho_{h}|X(n)|\right\}.$$

Let us denote

$$Y(n) = \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \{X(n) \operatorname{sgn} (X(n+h)) - \rho_h | X(n)| \}.$$

Since the process X(n) has the representation (1) and the $\xi(n)$'s are mutually independent, $Y(n_1)$ and $Y(n_2)$ are mutually independent if $|n_1-n_2| > M+h$.

Here, we quote the result in Diananda [2].

DEFINITION 1 (Diananda). Let d_n be a function of n. Suppose $\{X_i\}$ (i=1, 2, ...) is a sequence of random variables such that the two sets of variables $(X_1, X_2, ..., X_r)$ and $(X_s, X_{s+1}, ..., X_n)$ are independent whenever $s-r > d_n$. Then we say that $\{X_i\}$ (i=1, 2, ...) is a sequence of d_n -dependent variables or is a d_n -dependent process.

LEMMA 3 (Diananda). Let $\{X_i\}$ $(i=1,2,\cdots)$ be a sequence of stationary mdependent scalar variables with the mean zero and $E(X_iX_j)=C_{i-j}$. Then the distribution function of the random variable $(X_1+X_2+\cdots+X_n)/\sqrt{n} \rightarrow$ the normal distribution function with the mean zero and the variance $\sum_{m=1}^{m} C_p$ as $n \rightarrow \infty$.

In our case, Y(n) is a sequence of (M+h)-dependent variables and since X(n) is a stationary Gaussian process, Y(n) is a stationary process. It is clear that EY(n)=0. Let us denote EY(n)Y(m)=C(n-m). From the above Lemma 3, the distribution function of the random variable

$$\frac{1}{\sqrt{N}} \sum_{n=1}^{N} Y(n) = \frac{1}{\sqrt{N}} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{n=1}^{N} \{X(n) \operatorname{sgn} (X(n+h)) - \rho_h | X(n) | \}$$

tends to the normal distribution function with the mean zero and the variance $\sum_{k=-(M+h)}^{M+h} C(k)$ as $N \rightarrow \infty$.

Now, we shall evaluate the value of C(k) = EY(n)Y(n+k).

$$\begin{split} C(k) &= EY(n) Y(n+k) \\ &= \frac{\pi}{2} \frac{1}{\sigma^2} E\{(X(n) \operatorname{sgn} (X(n+h)) - \rho_h | X(n)|) \\ &\cdot (X(n+k) \operatorname{sgn} (X(n+k+h)) - \rho_h | X(n+k)|)\} \\ &= \frac{\pi}{2} \frac{1}{\sigma^2} EX(n) \operatorname{sgn} (X(n+h)) X(n+k) \operatorname{sgn} (X(n+k+h)) \\ &- \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h EX(n) \operatorname{sgn} (X(n+h)) | X(n+k)| \\ &- \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h E | X(n) | X(n+k) \operatorname{sgn} (X(n+k+h)) + \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h^2 E | X(n) | | X(n+k)|. \end{split}$$

(i) When k is neither zero nor $\pm h$, we have, by using the results in the previous paper [5],

$$\frac{\pi}{2} \frac{1}{\sigma^2} EX(n) \operatorname{sgn} (X(n+h))X(n+k) \operatorname{sgn} (X(n+k+h))$$
$$= \frac{1}{2} \left\{ (AF^2 + BF)D^{3/2}S_1(\rho_k) + (2AFG + BG + CF)D^{3/2}S_2(\rho_k) + (AG^2 + CG)D^{3/2}S_1(\rho_k) + A \cdot \frac{A}{2\sqrt{D}}S_3(\rho_k) \right\}$$

and

$$\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h^2 E|X(n)| |X(n+k)| = \frac{1}{2} \rho_h^2 D^{3/2} S_2(\rho_k),$$

where

$$\begin{split} \mathcal{A} &= \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_{k-h} & 1 & \rho_k \\ \rho_h & \rho_k & 1 \end{vmatrix}, \qquad \mathcal{A} &= \frac{1}{\mathcal{A}} \begin{vmatrix} \rho_k & \rho_{k-h} & \rho_h \\ \rho_h & 1 & \rho_k \\ \rho_{k-h} & \rho_k & \rho_h \end{vmatrix}, \qquad \mathcal{A} &= \frac{1}{\mathcal{A}} \begin{vmatrix} \rho_k & \rho_{k-h} & \rho_k \\ \rho_{k-h} & \rho_k & \rho_h \\ \rho_h & \rho_{k+h} & 1 \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_k \\ \rho_{k-h} & 1 & \rho_h \\ \rho_h & \rho_k & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_k \\ \rho_{k-h} & 1 & \rho_h \\ \rho_h & \rho_k & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_k \\ \rho_h & \rho_k & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A}} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_{k-h} & \rho_h \\ \rho_k & \rho_h & \rho_h \end{vmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_h & \rho_h \\ \rho_h & \rho_h & \rho_h \end{pmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_h & \rho_h \\ \rho_h & \rho_h & \rho_h \end{pmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_h & \rho_h \\ \rho_h & \rho_h & \rho_h \end{pmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_h & \rho_h \\ \rho_h & \rho_h & \rho_h \end{pmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \begin{vmatrix} 1 & \rho_h & \rho_h \\ \rho_h & \rho_h & \rho_h \end{pmatrix}, \qquad \mathcal{C} &= \frac{1}{\mathcal{A} \mid} \begin{pmatrix} 1 & \rho_h & \rho_h \\ \rho_h & \rho_h & \rho$$

Now, the value of

$$\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h EX(n) \operatorname{sgn} \left(X(n+h) \right) |X(n+k)|$$

is as follows. Suppose that

$$X(n) = U_1 X(n+k) + V_1 X(n+h) + \nu_1(n),$$

where $\nu_1(n)$ is a Gaussian process with the mean zero and satisfies

$$E\nu_1(n)X(n+k)=0, \quad E\nu_1(n)X(n+h)=0.$$

Then, U_1 and V_1 are determined by the following conditions:

$$E(X(n) - U_1X(n+k) - V_1X(n+h))X(n+k) = 0,$$

$$E(X(n) - U_1X(n+k) - V_1X(n+h))X(n+h) = 0.$$

From these, we get

$$U_1 = \frac{1}{D_1} \begin{vmatrix} \rho_k & \rho_{h-k} \\ \rho_h & 1 \end{vmatrix} \quad \text{and} \quad V_1 = \frac{1}{D_1} \begin{vmatrix} 1 & \rho_k \\ \rho_{h-k} & \rho_h \end{vmatrix},$$

where

$$D_1 = \begin{vmatrix} 1 & \rho_{h-k} \\ \rho_{h-k} & 1 \end{vmatrix}.$$

The new random variable $\nu_1(n)$, determined in the above, is independent of X(n+k), X(n+h) and (X(n+k), X(n+h)). Using these results, we have

$$\begin{split} EX(n) & \operatorname{sgn} \left(X(n+h) \right) |X(n+k)| \\ = & E(U_1 X(n+k) + V_1 X(n+h) + \nu_1(n)) \operatorname{sgn} \left(X(n+h) \right) |X(n+k)| \\ = & U_1 EX(n+k) \operatorname{sgn} \left(X(n+h) \right) |X(n+k)| + V_1 E |X(n+h)| |X(n+k)| \\ = & U_1 \frac{\sigma^2}{\pi} D_1^{3/2} S_1(\rho_{h-k}) + V_1 \frac{\sigma^2}{\pi} D_1^{3/2} S_2(\rho_{h-k}). \end{split}$$

So we have

$$\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h EX(n) \operatorname{sgn} \left(X(n+h) \right) |X(n+k)| = \frac{\rho_h}{2} \left\{ U_1 D_1^{3/2} S_1(\rho_{h-k}) + V_1 D_1^{3/2} S_2(\rho_{h-k}) \right\}.$$

Similarly, we get

$$\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h E|X(n)|X(n+k) \operatorname{sgn} (X(n+k+h)) = \frac{\rho_h}{2} \{ U_2 D_2^{3/2} S_1(\rho_{k+h}) + V_2 D_2^{3/2} S_2(\rho_{k+h}) \},$$

where

$$D_2 = \left| \begin{array}{cc} 1 & \rho_{h+k} \\ \rho_{h+k} & 1 \end{array} \right|, \qquad U_2 = \frac{1}{D_2} \left| \begin{array}{c} \rho_k & \rho_{k+h} \\ \rho_h & 1 \end{array} \right| \quad \text{and} \quad V_2 = \frac{1}{D_2} \left| \begin{array}{c} 1 & \rho_k \\ \rho_{k+h} & \rho_h \end{array} \right|.$$

Consequently, using the above results, we obtain

$$C(k) = EY(n)Y(n+k)$$

$$= \frac{1}{2} \bigg[\bigg\{ (AF^{2}+BF)D^{3/2}S_{1}(\rho_{k}) + (2AFG+BG+CF)D^{3/2}S_{2}(\rho_{k}) + (AG^{2}+CG)D^{3/2}S_{1}(\rho_{k}) + A \cdot \frac{A}{2\sqrt{D}}S_{3}(\rho_{k}) \bigg\}$$

$$-\rho_{h}D_{1}^{3/2} \{ U_{1}S_{1}(\rho_{h-k}) + V_{1}S_{2}(\rho_{h-k}) \}$$

$$-\rho_{h}D_{2}^{3/2} \{ U_{2}S_{1}(\rho_{h+k}) + V_{2}S_{2}(\rho_{h+k}) \} + \rho_{h}^{2}D^{3/2}S_{2}(\rho_{k}) \bigg].$$

(ii) Here we shall treat the case |k|=h. In the first place, let us consider the case k=h.

$$C(h) = \frac{\pi}{2} \frac{1}{\sigma^2} EX(n) |X(n+h)| \operatorname{sgn} (X(n+2h)) - \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h EX(n) X(n+h) - \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h E |X(n)| X(n+h) \operatorname{sgn} (X(n+2h)) + \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h^2 E |X(n)| |X(n+h)|.$$

In this expression,

$$\frac{\pi}{2} \frac{1}{\sigma^2} EX(n) |X(n+h)| \operatorname{sgn} (X(n+2h)) = \frac{1}{2} D_h^{3/2} (II_1 S_1(\rho_h) + K_1 S_2(\rho_h)),$$

where

$$D_{h} = \begin{vmatrix} 1 & \rho_{h} \\ \rho_{h} & 1 \end{vmatrix}, \qquad H_{1} = \frac{1}{D_{h}} \begin{vmatrix} \rho_{h} & \rho_{h} \\ \rho_{2h} & 1 \end{vmatrix} \quad \text{and} \quad K_{1} = \frac{1}{D_{h}} \begin{vmatrix} 1 & \rho_{h} \\ \rho_{h} & \rho_{2h} \end{vmatrix}.$$

And

$$\frac{\pi}{2}\frac{1}{\sigma^2}\rho_h EX(n)X(n+h) = \frac{\pi}{2}\rho_h^2.$$

We treat the term

$$\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h E |X(n)| X(n+h) \operatorname{sgn} (X(n+2h))$$

as the following. Let us put

$$X(n+h) = H_2X(n) + K_2X(n+2h) + \delta_2(n),$$

where $\delta_2(n)$ is independent of X(n), X(n+2h) and (X(n), X(n+2h)). The above condition is satisfied by determining the constants H_2 and K_2 from the following relations:

$$E\delta_2(n)X(n)=0$$
 and $E\delta_2(n)X(n+2h)=0.$

MITUAKI HUZII

Then H_2 and K_2 are

$$H_{2} = \frac{1}{D_{2h}} \begin{vmatrix} \rho_{h} & \rho_{2h} \\ \rho_{h} & 1 \end{vmatrix} \quad \text{and} \quad K_{2} = \frac{1}{D_{2h}} \begin{vmatrix} 1 & \rho_{h} \\ \rho_{2h} & \rho_{h} \end{vmatrix},$$

where

$$D_{2h} = egin{pmatrix} 1 &
ho_{2h} \
ho_{2h} & 1 \
ho_{2h} & 1 \ \end{pmatrix}.$$

Hence we have

$$\begin{aligned} &\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h E |X(n)| X(n+h) \operatorname{sgn} (X(n+2h)) \\ &= \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h H_2 E X(n)^2 \operatorname{sgn} (X(n)) \operatorname{sgn} (X(n+2h)) \\ &+ \frac{\pi}{2} \frac{1}{\sigma^2} \rho_h K_2 E |X(n)| |X(n+2h)| \\ &= \frac{1}{2} \rho_h D_{2h}^{3/2} (H_2 S_1(\rho_{2h}) + K_2 S_2(\rho_{2h})). \end{aligned}$$

Lastly, it is shown

$$\frac{\pi}{2} \frac{1}{\sigma^2} \rho_h^2 E|X(n)||X(n+h)| = \frac{1}{2} \rho_h^2 D_h^{3/2} S_2(\rho_h).$$

Consequently, we obtain

$$C(h) = \frac{1}{2} \left[D_h^{3/2} (H_1 S_1(\rho_h) + K_1 S_2(\rho_h)) - \pi \rho_h^2 - \rho_h D_{2h}^{3/2} (H_2 S_1(\rho_{2h}) + K_2 S_2(\rho_{2h})) + \rho_h^2 D_h^{3/2} S_2(\rho_h) \right].$$

In the next place, when k = -h, we can consider

$$C(-h)=C(h)$$
.

(iii) When k=0,

$$C(0) = \frac{\pi}{2} \frac{1}{\sigma^2} E(X(n) \operatorname{sgn} (X(n+h)) - \rho_h | X(n)|)^2$$

= $\frac{\pi}{2} \frac{1}{\sigma^2} (EX(n)^2 - 2\rho_h EX(n)^2 \operatorname{sgn} (X(n)) \operatorname{sgn} (X(n+h)) + \rho_h^2 EX(n)^2)$
= $\frac{\pi}{2} \frac{1}{\sigma^2} \left(\sigma^2 - 2\rho_h \frac{\sigma^2}{\pi} D_h^{3/2} S_1(\rho_h) + \rho_h^2 \sigma^2 \right)$
= $\frac{\pi}{2} - \rho_h D_h^{3/2} S_1(\rho_h) + \frac{\pi}{2} \rho_h^2.$

From the above results, we have

$$C_{h} = \sum_{k=-(M+h)}^{M+h} C(k) = C(0) + 2 \sum_{k=1}^{M+h} C(k)$$

$$= \frac{\pi}{2} - \rho_{h} D_{h}^{3/2} S_{1}(\rho_{h}) - \frac{\pi}{2} \rho_{h}^{2} + D_{h}^{3/2} (H_{1}S_{1}(\rho_{h}) + K_{1}S_{2}(\rho_{h}))$$

$$- \rho_{h} D_{2h}^{3/2} (H_{2}S_{1}(\rho_{2h}) + K_{2}S_{2}(\rho_{2h})) + \rho_{h}^{2} D_{h}^{3/2} S_{2}(\rho_{h})$$

$$(3) \qquad + \sum_{\substack{k=1\\ k\neq h}}^{M+h} \left[(AF^{2} + BF) D^{3/2} S_{1}(\rho_{k}) + (2AFG + BG + CF) D^{3/2} S_{2}(\rho_{k}) + (AG^{2} + CG) D^{3/2} S_{1}(\rho_{k}) + A \cdot \frac{A}{2\sqrt{D}} S_{3}(\rho_{k}) - \rho_{h} D_{1}^{3/2} (U_{1}S_{1}(\rho_{h-k}) + V_{1}S_{2}(\rho_{h-k}))) - \rho_{h} D_{2}^{3/2} (U_{2}S_{1}(\rho_{h+k}) + V_{2}S_{2}(\rho_{h+k})) + \rho_{h}^{2} D^{3/2} S_{2}(\rho_{k}) \right].$$

Now we shall make the following assumptions:

(A, 1) The determinants Δ , D, D_1 and D_2 are not zero when $k \ge 1$ and $k \ne h$. (A, 2) $D_h \ne 0$ and $D_{2h} \ne 0$.

Here we rearrange the above results.

THEOREM 2. If X(n) is a stationary Gaussian process having a finite moving average representation (1) which satisfies the condition (2) and if the correlogram has the properties (A, 1) and (A, 2), the distribution function of $\sum_{n=1}^{N} Y(n) / \sqrt{N}$ tends to the normal distribution function with the mean zero and the variance C_h as $N \rightarrow \infty$.

Now, we shall consider the distribution function of $\sqrt{N} (\Gamma_h - \rho_h)$. By Theorem 1,

$$\gamma_0 = \frac{1}{N} \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{n=1}^N |X(n)|$$

converges in probability to 1 as $N \rightarrow \infty$. And by Theorem 2, the distribution function of

$$\frac{1}{\sqrt{N}}\sqrt{\frac{\pi}{2}}\frac{1}{\sigma}\sum_{n=1}^{N}\left\{X(n)\operatorname{sgn}\left(X(n+h)\right)-\rho_{h}|X(n)|\right\}$$

tends to the normal distribution function with the mean zero and the variance C_h as $N \rightarrow \infty$. Therefore we have the following theorem.

THEOREM 3. If X(n) is a stationary Gaussian process having a finite moving average representation (1) which satisfies the condition (2) and if the correlogram has the properties (A, 1) and (A, 2), the distribution function of $\sqrt{N}(\Gamma_h - \rho_h)$ tends to the normal distribution function with the mean zero and the variance C_h as $N \rightarrow \infty$.

§ 3. The estimate $\tilde{\Gamma}_h$.

In this section, we shall consider, with respect to the estimate $\tilde{\Gamma}_h$, the same as we did in §2. Let the process X(n) have the same properties as §2.

Now we have

$$\begin{split} \sqrt{N} \left(\tilde{\Gamma}_{h} - \rho_{h} \right) &= \sqrt{N} \Biggl(\frac{\sum\limits_{n=1}^{N} X(n) X(n+h)}{\sum\limits_{n=1}^{N} X(n)^{2}} - \rho_{h} \Biggr) = \sqrt{N} \Biggl(\frac{\frac{1}{N} \frac{1}{\sigma^{2}} \sum\limits_{n=1}^{N} X(n) X(n+h)}{\frac{1}{N} \frac{1}{\sigma^{2}} \sum\limits_{n=1}^{N} X(n)^{2}} - \rho_{h} \Biggr) \\ &= \frac{\frac{1}{\sqrt{N}} \frac{1}{\sigma^{2}} \sum\limits_{n=1}^{N} (X(n) X(n+h) - \rho_{h} X(n)^{2})}{\frac{1}{N} \frac{1}{\sigma^{2}} \sum\limits_{n=1}^{N} X(n)^{2}} . \end{split}$$

We shall denote

$$\tilde{\gamma}_0 = \frac{1}{N} \frac{1}{\sigma^2} \sum_{n=1}^N X(n)^2.$$

Then from the results in Huzii [4],

$$E(\tilde{\gamma}_0)=1$$

and

$$\begin{split} V(\tilde{r}_0) &= \frac{2}{N^2} \sum_{k=1}^{N-1} (N-k) (1+2\rho_k^2) + \frac{3}{N} - 1 \\ &= \frac{1}{N} \bigg\{ 2 + 4 \sum_{k=1}^{M} \bigg(1 - \frac{k}{N} \bigg) \rho_k^2 \bigg\}. \end{split}$$

Hence, we have following lemma and theorem.

LEMMA 4. If X(n) is a stationary Gaussian process which has a finite moving average representation (1), $V(\tilde{\gamma}_0)$ tends to zero as $N \rightarrow \infty$.

THEOREM 4. If X(n) is a stationary Gaussian process having a finite moving average representation (1), $\tilde{\gamma}_0$ converges in probability to 1.

Now, we shall consider the statistic

$$\frac{1}{\sqrt{N}}\frac{1}{\sigma^2}\sum_{n=1}^N (X(n)X(n+h)-\rho_hX(n)^2).$$

Let us put

$$\widetilde{Y}(n) = \frac{1}{\sigma^2} (X(n)X(n+h) - \rho_h X(n)^2).$$

As X(n) is a stationary Gaussian process having a finite moving average representation (1) which satisfies the condition (2), $\tilde{Y}(n)$ is a (M+h)-dependent variable and $E\tilde{Y}(n)=0$. Clearly, $\tilde{Y}(n)$ is a stationary process. We shall denote

$$E\widetilde{Y}(n)\widetilde{Y}(m) = \widetilde{C}(n-m).$$

.... ...

By using the result of Lemma 3, the distribution function of the random variable

$$\frac{1}{\sqrt{N}}\sum_{n=1}^{N}\tilde{Y}(n) = \frac{1}{\sqrt{N}}\frac{1}{\sigma^{2}}\sum_{n=1}^{N}(X(n)X(n+h) - \rho_{h}X(n)^{2})$$

tends to the normal distribution function with the mean zero and the variance $\sum_{k=-(M+h)}^{M+h} \widetilde{C}(k)$ as $N \to \infty$.

Combining the above result with Theorem 4, we can say that the distribution function of $\sqrt{N}(\tilde{\Gamma}_{h}-\rho_{h})$ tends to the normal distribution function with the mean zero and the variance $\sum_{k=-(M+h)}^{M+h} \tilde{C}(k)$ as $N \rightarrow \infty$.

Let us now compute the value of $\sum_{k=-(M+h)}^{M+h} \widetilde{C}(k)$.

$$\begin{split} \widetilde{C}(k) &= E\widetilde{Y}(n)\widetilde{Y}(n+k) \\ &= \frac{1}{\sigma^4} E(X(n)X(n+h) - \rho_h X(n)^2)(X(n+k)X(n+k+h) - \rho_h X(n+k)^2) \\ &= \frac{1}{\sigma^4} \{ EX(n)X(n+k)X(n+h)X(n+k+h) - \rho_h EX(n)^2 X(n+k)X(n+k+h) \\ &- \rho_h EX(n)X(n+k)^2 X(n+h) + \rho_h^2 EX(n)^2 X(n+k)^2 \}. \end{split}$$

(i) When k is neither zero nor $\pm h$,

$$\widetilde{C}(k) = (\rho_k^2 + \rho_h^2 + \rho_{h-k}\rho_{k+h}) - \rho_h(\rho_h + 2\rho_k\rho_{k+h}) - \rho_h(\rho_h + 2\rho_k\rho_{h-k}) + \rho_h^2(1+2\rho_k^2)$$
$$= \rho_k^2 + \rho_{h-k}\rho_{h+k} - 2\rho_h\rho_k\rho_{k+h} - 2\rho_h\rho_k\rho_{h-k} + 2\rho_h^2\rho_k^2.$$

(ii) When k=h,

$$\widetilde{C}(h) = \rho_{2h} + 2\rho_h^4 - \rho_h^2 - 2\rho_h^2\rho_{2h}$$

and when k = -h,

$$\widetilde{C}(-h) = \widetilde{C}(h)$$

- (iii) When k=0,
- $\tilde{C}(0) = 1 \rho_h^2$.

Putting

$$\widetilde{C}_{h} = \sum_{k=-(M+h)}^{M+h} \widetilde{C}(k),$$

we obtain, from the above results,

$$\widetilde{C}_{h} = 1 - \rho_{h}^{2} + 2(\rho_{2h} + 2\rho_{h}^{4} - \rho_{h}^{2} - 2\rho_{h}^{2}\rho_{2h}) \\ + 2\sum_{\substack{k=1\\(k \neq h)}}^{M+h} (\rho_{k}^{2} + \rho_{h-k}\rho_{h+k} - 2\rho_{h}\rho_{k}\rho_{h+k} - 2\rho_{h}\rho_{k}\rho_{h-k} + 2\rho_{h}^{2}\rho_{k}^{2}).$$

Hence we have the following theorems:

THEOREM 5. If X(n) is a stationary Gaussian process having a finite moving average representation (1) which satisfies the condition (2), the distribution function

MITUAKI HUZH

of $\sum_{n=1}^{N} \tilde{Y}(n) / \sqrt{N}$ tends to the normal distribution function with the mean zero and the variance \tilde{C}_h as $N \to \infty$.

THEOREM 6. If X(n) is a stationary Gaussian process having a finite moving average representation (1) which satisfies the condition (2), the distribution function of $\sqrt{N}(\tilde{\Gamma}_{h}-\rho_{h})$ tends to the normal distribution function with the mean zero and the variance \tilde{C}_{h} as $N \rightarrow \infty$.

§4. Comparison of the estimate Γ_h with the estimate $\tilde{\Gamma}_h$.

We shall compare the estimate Γ_h with the estimate $\tilde{\Gamma}_h$ on the viewpoint of the variance. Without loss of generality, we can assume h>0.

a) When X(n) is a white noise, we have $\rho_k=0$ for any $k \neq 0$. So we have

$$C_h = \frac{\pi}{2}$$
 and $\widetilde{C}_h = 1$

for any $h \ge 1$.

b) Let us assume

(4)
$$\rho_{k} = \begin{cases} \frac{1 - \rho^{2(M-|k|+1)}}{1 - \rho^{2(M+1)}} \cdot \rho^{|k|} \cos k\theta; & 0 \leq |k| \leq M, \\ 0; & |k| \geq M+1, \end{cases}$$

where ρ and θ are constants and $0 \leq \rho < 1$. For simplicity, we write

$$\alpha_k = \frac{1 - \rho^{2(M-|k|+1)}}{1 - \rho^{2(M+1)}} \cos k\theta.$$

Then we have $|\alpha_k| < 1$ and $\rho_k = \alpha_k \rho^{|k|}$.

In this case, we can say as follows:

THEOREM 7. If $|\rho_{h_0}| < \rho^{h_0} < \varepsilon$ holds for sufficiently small positive number ε , C_h and \tilde{C}_h are given approximately for any $h \ge h_0$ as follows;

$$C_{h} \sim \frac{\pi}{2} + 2 \sum_{k \ge 1} \rho_{k}^{2} \sqrt{1 - \rho_{k}^{2}} \left(\sum_{m=0}^{\infty} \frac{(2\rho_{k})^{2m}}{(2m+1)!} (m!)^{2} \right)$$

and

$$\widetilde{C}_{\hbar} \sim 1 + 2 \sum_{k \geq 1} \rho_k^2,$$

where the sign \sim is used to indicate that the left side and the right side are coinside by ignoring the magnitude of the order ε .

Proof. Here, we shall prove this theorem only when $M \ge h$. The stituation is the same when $h \ge M+1$.

As $\rho_k = \alpha_k \rho^{|k|}$, we have for h > k > 0, in the expression (3),

$$\begin{split} & \varDelta = 1 - \alpha_{k}^{2} \rho^{2k} - \alpha_{h-k}^{2} \rho^{2(h-k)} + O(\varepsilon), \qquad D = 1 - \alpha_{k}^{2} \rho^{2k}, \\ & D_{1} = 1 - \alpha_{h-k}^{2} \rho^{2(h-k)}, \qquad D_{2} = 1 + O(\varepsilon^{2}), \\ & D_{h} = 1 + O(\varepsilon^{2}), \qquad D_{2h} = 1 + O(\varepsilon^{4}), \\ & A = \alpha_{k} \rho^{k} + O(\varepsilon), \qquad F = \alpha_{h-k} \rho^{h-k} / (1 - \alpha_{k}^{2} \rho^{2k}) + O(\varepsilon). \end{split}$$

And each of B, C, G, H_1 , K_1 is $O(\varepsilon)$. Further $AF^2D^{3/2}S_1(\rho_k)$ is $O(\varepsilon^2)$. Now we have

$$A \cdot \frac{\Delta}{2\sqrt{D}} \cdot S_{3}(\rho_{k})$$

$$= (\alpha_{k}\rho^{k} + O(\varepsilon)) \cdot \frac{(1 - \alpha_{k}^{2}\rho^{2k} - \alpha_{h-k}^{2}\rho^{2(h-k)} + O(\varepsilon))}{2\sqrt{1 - \alpha_{k}^{2}\rho^{2k}}} \cdot 2\left(\sum_{m=0}^{\infty} \frac{(2\alpha_{k}\rho^{k})^{2m+1}}{(2m+1)!} (m!)^{2}\right)$$

$$= 2\alpha_{k}^{2}\rho^{2k}\sqrt{1 - \alpha_{k}^{2}\rho^{2k}} \left(\sum_{m=0}^{\infty} \frac{(2\alpha_{k}\rho^{k})^{2m}}{(2m+1)!} (m!)^{2}\right) + O(\varepsilon).$$

Using the above results, we obtain

$$C_{k} = \frac{\pi}{2} + \sum_{k \ge 1} A \cdot \frac{\Delta}{2\sqrt{D}} S_{3}(\rho_{k}) + O(\varepsilon)$$

= $\frac{\pi}{2} + 2 \sum_{k \ge 1} \alpha_{k}^{2} \rho^{2k} \sqrt{1 - \alpha_{k}^{2} \rho^{2k}} \left(\sum_{m=0}^{\infty} \frac{(2\alpha_{k}\rho^{k})^{2m}}{(2m+1)!} (m!)^{2} \right) + O(\varepsilon)$
= $\frac{\pi}{2} + 2 \sum_{k \ge 1} \rho_{k}^{2} \sqrt{1 - \rho_{k}^{2}} \left(\sum_{m=0}^{\infty} \frac{(2\rho_{k})^{2m}}{(2m+1)!} (m!)^{2} \right) + O(\varepsilon).$

Similarly we have

$$\widetilde{C}_{\hbar} = 1 + 2 \sum_{k \ge 1} \rho_k^2 + O(\varepsilon).$$

Concerning the relation between C_h and \hat{C}_h , we can obtain the following theorem:

THEOREM 8. If the value of $|\rho_{h_0}|$ is sufficiently small, that is, $|\rho_{h_0}| < \rho^{h_0} < \varepsilon$ holds for sufficiently small positive number ε , it holds

$$\frac{\pi}{2}\widetilde{C}_h \ge C_h > \widetilde{C}_h$$

for any $h \ge h_0$.

Proof. In the first place, we shall prove that $C_h > \widetilde{C}_h$. By Theorem 7,

$$C_{h} \sim \frac{\pi}{2} + 2 \sum_{k \ge 1} \rho_{k}^{2} \sqrt{1 - \rho_{k}^{2}} \left(\sum_{m=0}^{\infty} \frac{(2\rho_{k})^{2m}}{(2m+1)!} (m!)^{2} \right)$$

and

$$\widetilde{C}_h \sim 1 + 2 \sum_{k \geq 1} \rho_k^2$$
.

We shall show

$$\sqrt{1-\rho_k^2} \left(\sum_{m=0}^{\infty} \frac{(2\rho_k)^{2m}}{(2m+1)!} (m!)^2 \right) \ge 1$$

for each k. For simplicity we put $\rho_k^2 = X$, then the above relation is

$$\sqrt{1-X}\left(\sum_{m=0}^{\infty}\frac{2^{2m}(m!)^2}{(2m+1)!}X^m\right)\geq 1.$$

We consider the function

$$f(X) = \left(\sum_{m=0}^{\infty} \frac{2^{2m} (m!)^2}{(2m+1)!} X^m\right) - \frac{1}{\sqrt{1-X}}$$

for $0 \leq X < 1$. We have f(0) = 0. Further

$$f'(X) = \sum_{m=1}^{\infty} \frac{2^{2m}(m!)^2 m}{(2m+1)!} X^{m-1} - \frac{1}{2} (1-X)^{-3/2}$$

=
$$\sum_{m=0}^{\infty} \frac{2^{2(m+1)}((m+1)!)^2(m+1)}{(2m+3)!} X^m - \sum_{m=0}^{\infty} \frac{(2m+1)(2m-1)\cdots 5\cdot 3\cdot 1}{m! \ 2^{m+1}} X^m$$

=
$$\sum_{m=0}^{\infty} \left(\frac{2^{2(m+1)}((m+1)!)^2(m+1)}{(2m+3)!} - \frac{(2m+1)!!}{m! \ 2^{m+1}} \right) X^m.$$

Now we write

$$b_m = \frac{2^{2(m+1)}((m+1)!)^2(m+1)}{(2m+3)!}, \qquad c_m = \frac{(2m+1)!!}{m! \, 2^{m+1}}$$

and

$$a_m = b_m - c_m$$
.

Then

$$f'(X) = \sum_{m=1}^{\infty} a_m X^m.$$

We have

$$b_0 = \frac{2}{3} > c_0 = \frac{1}{2}$$
 and $a_0 = \frac{2}{3} - \frac{1}{2} > 0.$

If $b_m > c_m$ holds, we find

$$b_{m+1} = b_m \cdot \frac{2^2(m+2)^3}{(2m+4)(2m+5)(m+1)} > c_{m+1} = c_m \cdot \frac{(2m+3)}{2(m+1)},$$

because

(5)
$$\frac{2^{2}(m+2)^{3}}{(2m+4)(2m+5)(m+1)} > \frac{(2m+3)}{2(m+1)}.$$

1) $(2m+1)!!=1\cdot 3\cdot 5\cdots (2m-1)\cdot (2m+1).$

So we have $a_m > 0$ for any positive integer *m* and this shows f'(X) > 0 for $X \ge 0$. This result shows $f(X) \ge 0$ for $0 \le X < 1$ and we obtain

$$\sqrt{1-X}\left(\sum_{m=0}^{\infty}\frac{2^{2m}(m!)^2}{(2m+1)!}X^m\right)\geq 1.$$

Consequently we have $C_h > \widetilde{C}_h$.

In the next place we shall prove that $(\pi/2)\widetilde{C}_h \ge C_h$. For this purpose, we show

$$\frac{\pi}{2} > \sqrt{1-X} \left(\sum_{m=0}^{\infty} \frac{2^{2m} (m!)^2}{(2m+1)!} X^m \right),$$

by writing $\rho^{2k} = X$ as the above. Let us consider the function

$$g(X) = \frac{\pi}{2} \frac{1}{\sqrt{1-X}} - \sum_{m=0}^{\infty} \frac{2^{2m}(m!)^2}{(2m+1)!} X^m$$

for $0 \le X < 1$. We have $g(0) = \pi/2 - 1 > 0$ and

$$g'(X) = \frac{\pi}{4} (1-X)^{-3/2} - \sum_{m=1}^{\infty} \frac{2^{2m} (m!)^2 m}{(2m+1)!} X^{m-1}$$
$$= \sum_{m=0}^{\infty} \left(\frac{\pi}{4} \frac{(2m+1)!!}{m! 2^m} - \frac{2^{2(m+1)} ((m+1)!)^2 (m+1)}{(2m+3)!} \right) X^m.$$

We shall write

$$e_m = \frac{\pi}{4} \frac{(2m+1)!!}{m! \, 2^m}, \qquad f_m = \frac{2^{2(m+1)}((m+1)!)^2(m+1)}{(2m+3)!}$$

and

$$g_m = e_m - f_m$$

Then we have

$$e_0 = \frac{\pi}{4} > f_0 = \frac{2}{3}$$
 and $g_0 > 0.$

We show $g_m \ge 0$ for any positive integer *m*. Let us assume that, for a certain integer *m*, $g_m < 0$, that is, $e_m < f_m$. Then we find

$$e_{m+1} = e_m \cdot \frac{(2m+3)}{2(m+1)} < f_{m+1} = f_m \cdot \frac{2^2(m+2)^3}{(2m+4)(2m+5)(m+1)},$$

by using the relation (5). This shows $g_{m'} < 0$ for any $m' \ge m$ and we have

$$1 > \frac{e_m}{f_m} > \frac{e_{m+1}}{f_{m+1}} > \frac{e_{m+2}}{f_{m+2}} > \cdots$$

On the other hand,

$$\lim_{m \to \infty} \frac{e_m}{f_m} = \lim_{m \to \infty} \frac{\pi}{4} \frac{(2m+1)!!}{m! \, 2^m} \cdot \frac{(2m+3)!}{2^{2(m+1)}((m+1)!)^2(m+1)}$$
$$= \lim_{m \to \infty} \frac{\pi}{4} \frac{(2m+1)!}{2^{2m}(m!)^2} \frac{(2m+3)!}{2^{2(m+1)}((m+1)!)^2(m+1)}.$$

Using Stirling's formula

$$n! \sim (2\pi)^{1/2} n^{n+1/2} e^{-n},$$

we have

$$\lim_{m \to \infty} \frac{e_m}{f_m} = \lim_{m \to \infty} \frac{\pi}{4} \cdot \frac{(2\pi)^{1/2} (2m+1)^{2m+3/2} e^{-(2m+1)}}{2^{2m} (2\pi) m^{2m+1} e^{-2m}} \cdot \frac{(2\pi)^{1/2} (2m+3)^{2m+7/2} e^{-(2m+3)}}{2^{2(m+1)} (m+1) (2\pi) (m+1)^{2m+3} e^{-2(m+1)}} = \frac{1}{e^2} \lim_{m \to \infty} \left(1 + \frac{1}{2m}\right)^{2m} \left(1 + \frac{1}{2m+2}\right)^{2m+2} \left(1 + \frac{1}{2m}\right)^{3/2} \left(1 + \frac{3}{2m}\right)^{3/2} \cdot \frac{1}{\left(1 + \frac{1}{m}\right)^2} = 1.$$

This is a contradiction. Consequently we have $g_m \ge 0$ for all positive integer *m*.

From this result, we obtain g'(X) > 0 for $0 \le X < 1$ and g(X) > 0 for $0 \le X < 1$. This implies

h	ph	C_h	\widetilde{C}_h
1	0.4322	0.484	0.279
2	-0.2663	1.244	0.829
3	-0.5069	2.000	1.423
4	-0.2677	2.630	1.948
5	0.0929	3.101	2.360
6	0.2517	3.430	2.661
7	0.1581	3.650	2.870
8	-0.0244	3.793	3.010
9	-0.1223	3.887	3.103
10	-0.0901	3.950	3.165
11	0.0004	3,992	3.207
12	0.0580	4.022	3.236
13	0.0499	4.044	3.256
14	0.0060	4.060	3.271
15	-0.0267	4.073	3.284
16	-0.0269	4.084	3.293
17	-0.0062	4.091	3.300
18	0.0119	4.096	3.305
19	0.0142	4.098	3.307
20	0.0047	4.098	3.307
21	-0.0050	4.099	3.308
22	-0.0072	4.099	3.308
23	-0.0031	4.099	3.308
24	0.0019	4.099	3.308
25	0.0035	4.099	3.308
30	0.0001	4.100	3.309

Table 1.

$$\frac{\pi}{2} > \sqrt{1 - X} \left(\sum_{m=0}^{\infty} \frac{2^{2m} (m!)^2}{(2m+1)!} X^m \right)$$

and we obtain $(\pi/2)\widetilde{C}_{\hbar} \ge C_{\hbar}$.

c) As it is difficult to compare C_h with \tilde{C}_h generally, we make a comparison numerically.

For this purpose, we treat the case when the correlogram ρ_k is defined by (4).

Considering the case

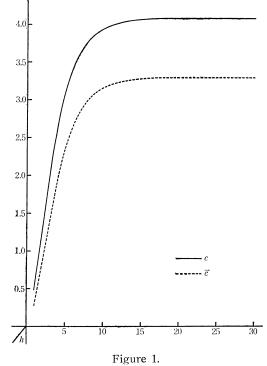
 $\rho = 0.8$, $\theta = 0.25$ and M = 30,

we obtain the result of numerical comparison as Table 1. This result is also shown as Figure 1.

The situation of the other cases, assuming each of the parameters ρ , θ and M to have various values, will be similar to that of the above case. Generally, C_h will be greater than \tilde{C}_h .

Acknowledgement

The author wishes to express his heartfelt thanks to Dr. H. Akaike, the Institute of Statistical Mathematics, for his useful comments and advices.



References

- [1] CRAMÉR, H., Mathematical methods of statistics. Princeton (1946).
- [2] DIANANDA, P. H., Some probability limit theorems with statistical applications. Proc. Camb. Phil. Soc. 49 (1953), 239-246.
- [3] GRENANDER, U., AND M. ROSENBLATT, Statistical analysis of stationary time series. New York (1957).
- [4] HUZII, M., On a simplified method of the estimation of the correlogram for a stationary Gaussian process. Ann. Inst. Stat. Math. 14 (1962), 259-268.
- [5] HUZII, M., On a simplified method of the estimation of the correlogram for a stationary Gaussian process, II. Ködai Math. Sem. Rep. 16 (1964), 199-212.
- [6] RUCHKIN, D. S., Error of correlation coefficient estimates from polarity coincidences. IEEE Trans. Information Theory. IT-11 (1965), 296-297.
- [7] TAKAHASI, K., AND K. HUSIMI, Vibrating systems exposed to irregular forces. Geophysical Magazine 9 (1935), 29-48.

DEPARTMENT OF MATMEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.