
THE CARTAN-BRAUER-HUA THEOREM FOR ALGEBRAS

BY MOTOICHI OKUZUMI

The Cartan-Brauer-Hua theorem is saying: If H is a skew field contained in
the skew field K, and if every inner automorphism of K maps H into itself, then
H is either K, or H belongs to the center of K.

This theorem has been generalized in various forms by Amitsur [1], Faith [3],
Kasch [6] and others. In the present note we shall give a generalization of the
theorem for algebras as follows. In the following, we assume that Z is a field
containing an infinite number of elements.

THEOREM 1. Lei A be an algebra over Z with a unit element and of finite
rank, and let H be a skew field contained in A possessing an infinite number of
elements in Z. If every inner automorphism of A maps H into itself, then H is
either A, or H belongs to the center of A.

We first prove the following lemma:

LEMMA 1. Let A be an algebra over Z with a unit element and of finite rank,
and let b be an arbitrary element in A. Then, in the set of elements {b+ci, b-\-c2,
"-} where CiS are elements of Z, there exist an infinite number of regular elements.

Proof. In a regular representation of A in Z, these elements b+clt b+c2, •••
are represented as follows:

(b + Ci) [Ult U2, ••• Un] = [Uι, U2, • • • Un] (B+dE)

where b corresponds to B, and HI, u2, ••• un are a basis of A over Z. If B+cίE is
nonsingular, then b+cτ is a regular element. Since the number of roots of the
equation \B+xE\=Q in Z is at most [A: Z]=n, there exist an infinite number of
regular elements in them.

Proof of Theorem 1. If H is neither A, nor H belongs to the center of A,
then there exists an element d in H not in the center of A. As additive groups,
we obtain the next relations of indices:

where V(d) is the commutator of d in A. Then, by Lemma 5 in Okuzumi [8],
there exists an element b in A not in H^V(d). So, by Lemma 1, we have two
regular elements b+Cι,b+c2 such that
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where h&ll, and c&H^Z. Then we have:

Consequently, if hι=hz, it contradicts with bd^db, and if hi^hz, it contradicts
with b$H.

Next, we modify Lemma 1 in Nagahara [7] for algebras as follows, and then
prove Faith's form of Theorem 1.

LEMMA 2. Let A be an algebra with a unit element over Z, and let H be a
proper skew sub field of A containing an infinite number of elements of Z. If a
and b are two elements of A such that ba^ab and b$H. Then in the set of regular
elements b+Ci, b+cz, •••, dsZ^H, there exist at most two (b+cifs which transform
a into H. If a is in H, then there exists at most one.

THEOREM 2. Let A be an algebra with a unit element over Z, and lei H be a
proper skew subfield containing an infinite number of elements in Z and not con-
tained in the center of A. Then, A contains infinitely many sub fields conjugate
to H.

Proof. First, we take an element a in H not contained in the center of A.
If the number of conjugate subfields is finite, by Lemma 5 in Okuzumi [8], there
exists an element b such that ab^ba and not contained in these conjugate subfields.
Then, in the set of elements b+Ci, b+c2, •••, we have an infinite number of regular
elements by Lemma 1. Consequently, by Lemma 2, there exists another subfield
conjugate to H. This contradicts with the assumption of finiteness.
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