THE CARTAN-BRAUER-HUA THEOREM FOR ALGEBRAS

By Motoichi Okuzumi

The Cartan-Brauer-Hua theorem is saying: If H is a skew field contained in the skew field K, and if every inner automorphism of K maps H into itself, then H is either K, or H belongs to the center of K.

This theorem has been generalized in various forms by Amitsur [1], Faith [3], Kasch [6] and others. In the present note we shall give a generalization of the theorem for algebras as follows. In the following, we assume that Z is a field containing an infinite number of elements.

Theorem 1. Let A be an algebra over Z with a unit element and of finite rank, and let H be a skew field contained in A possessing an infinite number of elements in Z. If every inner antomorphism of A maps H into itself, then H is either A, or H belongs to the center of A.

We first prove the following lemma:
Lemma 1. Let A be an algebra over Z with a unit element and of finite rank, and let b be an arbitrary element in A. Then, in the set of elements $\left\{b+c_{1}, b+c_{2}\right.$, $\cdots\}$ where c_{i} 's are elements of Z, there exist an infinite number of regular elements.

Proof. In a regular representation of Λ in Z, these elements $b+c_{1}, b+c_{2}, \cdots$ are represented as follows:

$$
\left(b+c_{i}\right)\left[u_{1}, u_{2}, \cdots u_{n}\right]=\left[u_{1}, u_{2}, \cdots u_{n}\right]\left(B+c_{i} E\right)
$$

where b corresponds to B, and $u_{1}, u_{2}, \cdots u_{n}$ are a basis of A over Z. If $B+c_{2} E$ is nonsingular, then $b+c_{2}$ is a regular element. Since the number of roots of the equation $|B+x E|=0$ in Z is at most $[A: Z]=n$, there exist an infinite number of regular elements in them.

Proof of Theorem 1. If H is neither A, nor H belongs to the center of A, then there exists an element d in H not in the center of A. As additive groups, we obtain the next relations of indices:

$$
\left[A^{+}: H^{+}\right]=\infty, \quad\left[A^{+}: V(d)^{\dagger}\right]=\infty,
$$

where $V(d)$ is the commutator of d in A. Then, by Lemma 5 in Okuzumi [8], there exists an element b in A not in $H \smile V(d)$. So, by Lemma 1, we have two regular elements $b+c_{1}, b+c_{2}$ such that

$$
\left(b+c_{1}\right) d=h_{1}\left(b+c_{1}\right), \quad\left(b+c_{2}\right) d=h_{2}\left(b+c_{2}\right),
$$

[^0]where $h_{i} \in H$, and $c_{i} \in H_{\frown} Z$. Then we have:
$$
\left(c_{1}-c_{2}\right) d=\left(h_{1}-h_{2}\right) b+h_{1} c_{1}-h_{2} c_{2} .
$$

Consequently, if $h_{1}=h_{2}$, it contradicts with $b d \neq d b$, and if $h_{1} \neq h_{2}$, it contradicts with $b \notin H$.

Next, we modify Lemma 1 in Nagahara [7] for algebras as follows, and then prove Faith's form of Theorem 1.

Lemma 2. Let A be an algebra with a unit element over Z, and let H be a proper skew subfield of A containing an infinite number of elements of Z. If a and b are two elements of A such that $b a \neq a b$ and $b \notin H$. Then in the set of regular elements $b+c_{1}, b+c_{2}, \cdots, c_{i} \in Z \cap H$, there exist at most two ($b+c_{i}$)'s which transform a into H. If a is in H, then there exists at most one.

Theorem 2. Let A be an algebra with a unit element over Z, and let H be a proper skew subfield containing an infinite number of elements in Z and not contained in the center of A. Then, A contains infinitely many subfields conjugate to H.

Proof. First, we take an element a in H not contained in the center of A. If the number of conjugate subfields is finite, by Lemma 5 in Okuzumi [8], there exists an element b such that $a b \neq b a$ and not contained in these conjugate subfields. Then, in the set of elements $b+c_{1}, b+c_{2}, \cdots$, we have an infinite number of regular elements by Lemma 1. Consequently, by Lemma 2, there exists another subfield conjugate to H. This contradicts with the assumption of finiteness.

References

[1] Amitsur. S. A., Invariant submodules of simple rings. Proc. Amer. Math. Soc. 7 (1956), 987-989.
[2] Brauer, R., On a theorem of H. Cartan. Bull. Amer. Math. Soc. 55 (1949) 619-62.
[3] Faith, C. C., On conjugates in division rings. Canad. J. Math. 10 (1958) 374-380.
[4] Jacobson, N., Structure of rings, Amer. Math. Soc. Colloquium Publications.
[5] Hattori, A., On the multiplicative group of simple algebras and orthogonal groups of three dimensions. J. Math. Soc. Japan 4 (1952), 205-217.
[6] KaSCh, F., Invariante Untermoduln des Endomrphismenrings eines Vektorraums. Arch. Math. 4 (1953), 182-190.
[7] Nagahara, T., On generating elements of Galoss extensions of division rings. Math. J. Okayama Univ. 6 (1957), 181-190.
[8] Okuzumi, M., On Galois conditions in division algebras. Kōdai Math. Sem. Rep. 18 (1966), 16-23.
[9] Rosenberg, A., The Cartan-Brauer-Hua theorem for matrix and local matrix rings. Proc. Amer. Math. 7 (1956), 891-898.
[10] Tominaga, H., A note on conjugates. Math. J. Okayama Univ. 7 (1957), 891-898.
Training Institute for Engineering Teachers, Tokyo Institute of Technology.

[^0]: Received December 16, 1965.

