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Let there be given, in a differentiable manifold V, a tensor field / of type
(1, 1), a vector field U and a 1-form ω such that

f2X+X=ω(X)U,

for an arbitrary vector field X. The structure defined by /, U and ω is called an
almost contact structure (Cf. [4], [6], [7], [8], [9], [10], [11], [12], [21]).

It is easily seen that when the manifold V admits an almost contact structure,
the product space Vx R admits an almost complex structure, R being the real line.
When this almost complex structure is integrable, the original almost contact struc-
ture is said to be normal. The notion of the normality introduced by Sasaki and
Hatakeyama [9] plays an important role in the study of differentiable manifolds
with almost contact structure.

For example, a hypersurface in an almost complex space admits an almost
contact structure and hypersurfaces in an even-dimensional Euclidean space are
found to form a very interesting and important class of hypersurfaces (Cf. [4], [6],
[7], [10], [11], [12], [21]).

When /, U and ω define an almost contact structure, we can easily obtain
/3+/=0 from the first and the second equations above. Conversely, if a tensor field
/ of type (1, 1) and of rank n—l everywhere in an ^-dimensional orientable manifold
satisfies /3+/=0, then it defines an almost contact structure in the manifold.

A tensor field of type (1, 1) satisfying /3+/=0 and of rank r everywhere is
called an /-structure of rank r. The normality of /-structure has been defined and
studied by one of the present authors [2].

The main purpose of the present paper is to show first of all that a general
submanifold in an almost complex space admits what we call an /-structure under
certain conditions and then to study the properties of /-structures on submanif olds
in complex and almost complex spaces, that is, those of /-structures on submanifolds
in a locally flat complex space, in an almost Hermitian space, in a Kahlerian space
and in a Fubini space.
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§ 1. /"-structure and its integrability conditions.

Let there be given, in an ^-dimensional differentiable manifold V of class C°°,
a non-null tensor field / of type (1, 1) and of class C°° satisfying the equation

(1. 1) /3+/-0.

We call such a structure / an f -structure of rank r, when the rank of / is con-
stant everywhere in the manifold and is equal to r, r being necessarily even (Cf.
[17], [18]).

If we put

/=-/*, m-/2+l,

then we find immediately

l, lm=ml=Q,

where 1 denotes the Kronecker's unit tensor. These equations show that the
operators / and m applied to the tangent space at each point of the manifold are
complementary projection operators. Thus there exist in the manifold comple-
mentary distributions L and M corresponding to the projection operators / and m
respectively. When the rank of / is r, the distribution L is r-dimensional and M
is (n— r)-dimensional.

The Nijenhuis tensor Ncύ

a of the /-structure / is by definitionυ

(1. 2) Nc^ = (fc*Vefb

a-fb

eVefC

a}-(Vcfb

e-Vl>fC

e)fea,

fι>a being the components of / and P& denoting covariant differentiation with respect
to a symmetric linear connection. It is easily seen that Nct>

a does not depend on
the symmetric linear connection Γ6 involved. Denote by 4α and mb

a the com-
ponents of / and m respectively. We have proved in [3] the following theorems.

1) The indices a, b, c, d, e,f run over the range {1, 2, ••-, n}.
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THEOREM A. A necessary and sufficient condition for the distribution M to be
integrable is that

or equivalently

mc
emb

dNedff/a=0.

THEOREM B. A necessary and sufficient condition for the distribution L to be
integrable is that

Ncb
eme

a=Q,

or equivalently

THEOREM C. A necessary and sufficient condition for both of two distributions
L and M to be integrable is that Ncb

a has the form

Suppose that the distribution L is integrable. Then, since //=// and f2l=— I, f
acts as an almost complex structure on each integrable manifold of L. If L is
integrable and this almost complex structure is also integrable in each integral
manifold of L, we say that the /-structure is partially integrable.

THEOREM D. A necessary and sufficient condition for an f -structure f to be
partially integrable is that

Suppose that for any point of the manifold there exists a coordinate neighbor-
hood of the manifold with respect to which / has the numerical components

0 E 0

- £ 0 0

0 0 0

E being an mxm unit matrix, where r—2m is the rank of /. In this case, we say
that the /-structure / is integrable.

THEOREM E. A necessary and sufficient condition for an f-structure f to be
integrable is that
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Let there be given a positive definite Riemannian metric acb in a differentiate
manifold admitting an /-structure /6

α. Putting

6— mc

e) (lbd—mbd)cted],

we easily see that

(1. 3) gcb= — [άCb+fcefbdάed+mc

embdάed]

is also a positive definite Riemannian metric. It is easily verified that

(1.4)

where, by definition,

fcb—fceQeb, lcb = lc

We call a pair of such an /-structure />α and a Riemannian metric gcb an (/, g)-
structure. Thus we have

THEOREM 1. 1. There always exists in a differentiate manifold admitting an
f -structure fb

a a positive definite Riemannian metric gCb such that fb

a and gcb form
an (/, g)-structure.

§2. Normal f-structure.

Let U be a coordinate neighborhood of an n-dimensional differentiate manifold
V admitting an /-structure fba of rank r and (ηa) local coordinates defined in U.
There exist, in U, r (contravariant) vector fields fq

a spanning the distribution L
and n— r vector fields fy

a spanning the distribution M2)

If we denote by (fpb,fxb) the inverse of the matrix (/Λ/Λ we have

lba =fpbfpa, mba =f*bfxa,

from which

f.c.f a _ _ nd\-fr. f a
J b J c — <>l> ΓJ bj .r

by virtue of m=f2-{-l. We also have

fp fc _ A -fx fa _ Π fx f a — %zJ cjy — vJ, / ajq — U, / afy —Oy,

2) The indices p, q run over the range {1, 2, •••, r} and the indices u, v, w, x, y, z the
range {r-fl, r-f-2, •••, n}.
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from which

by virtue of lba=fpbfp

a and //=/.
Summing up, we have

(2. 1)

The ordered set { f x

a } is called an (n—r)-frame in U and the ordered set { f y

b } the
(n—r)- co frame dual to { f x

a } .
Let va be a vector field belonging to the distribution M at each point. Then,

va is expressed in U uniquely as

va=vxfx

a,

which is a linear combination of fx

a, and vx is called the components of va with
respect to the (n— r)-frame { f x

a } . Consider a covector field φb such that

or equivalently

We say that φb is transversal to the distribution L. If we transvect the first equa-
tion of (2. 1) with φb, we see that φb is expressed uniquely as

where

We call 0y the components of 0& with respect to the (n— r)-frame { f x

a } .
Denoting by M(F) the vector bundle consisting of all vectors which belong to

the distribution M, we see that M(V) is a subbundle of the tangent bundle Γ(F)
of the manifold V. Let M *( V) be the vector bundle over V which is dual to
M( V). Then, it is easily seen that M*( F) can be identified, in a natural way, with
the covector bundle consisting of all covectors which are transversal to the dis-
tribution L. In this sense, M*(F) is regarded as a subbundle of the cotangent
bundle Γ*(F) of F.

Let there be given a tensor field TCb
a such that it is expressed in each co-

ordinate neighborhood by

T1 ,α — 'T1 #/"?/, /* αJ r& — -L cy J bj .r ,
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Then, transvecting Tcb

a with an arbitrary vector field vc

y we have

which is a cross-section of the tensor bundle M*( F)®M( F). We call such a tensor
field Tcba an M*(V)®M(V)-valued tensor field of type (0,1) and Tcy

x its com-
ponents with respect to 0?α,/*α). An M*( F)®M( F)-valued tensor field of type
(1, 1) has components of the form Td

c

y

x and is given by

T.c.a, — 7\c xfyt f a,± d b — J d y J bj x

Similarly, we can define tensor fields of any such mixed type (Cf. Ishihara [2]).
Let there be given a connection ω* in the vector bundle M(V) and denote by

Γc

x

y the components of ω* with respect to (>?α,/*α) in each coordinate neighbor-
hood of the manifold F. Let va be a vector field belonging to the distribution M.
Then, va is regarded as a cross-section of the vector bundle M(F) and is ex-
pressed as

in each coordinate neighborhood. If we put

(2. 2) Pcv
x=dev

x+Γc*yvv,

it is easily verified that

is an M(F)-valued tensor field of type (0, 1), which is globally defined in F (Cf.
Ishihara [2]). We call the tensor field (Pev

x)fxa or, simply, Vcv
x the covarianί

derivative of vx with respect to the connection ω*.
Let there be given a linear connection ω in the manifold F and Γc

ab its com-
ponents in local coordinates (γα). If, taking an M*(F)(x)M(F)-valued tensor field
Taxy of type (1, 0), we put

then we can easily verify that (PcT
axy)fybfχd or, simply, 7cT

ax

y is an M*(F)(x)M(F)-
valued tensor field of type (1,1), which is globally defined in F (Cf. Ishihara [2]).
We call the tensor field VcT

ax

y the convariant derivative of Tax

y with respect to
both of the connections ω and ω*.

We assume hereafter that the connection Γc

a

b is symmetnic. On putting

(2. 4) Lcb
x=fce(Fef*b-FbfXe),

we call LCb
x Levi tensor, which is an M(F)-valued tensor field of type (0, 2). We

have introduced in [2] the following five tensor fields:
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(2. 5)

where Ncb

a is the Nijenhuis tensor of the given /-structure fb

a. These five tensors
S's do not depend on the symmetric connection Γc

a

b in F, but they are determined
by giving the connection Γc

x

y in the vector bundle M(V).
We shall now find out identities involving these tensors L and S's. Taking

account of (2. 4) and (2. 5), we find

(2.6)

L ^xf e-FΛ—7", #4-9 xfv /Ί e

ed Jcjb —J-^bc r^e?/ J cj b

From the first equation of (2. 5), we obtain

ft) O\ C af b—Q e f a Q x f a
\ώ. O^ ^cb J y —^cy J e ^cy J x ,

from which we have, transvecting (2. 8) with fz

a,

/O (Y\ C x— C .afx f b
{£ι, Ό) ^cy — *Jcb J dj y

Substituting into (2. 7) equations

obtained respectively from the third and the fourth equations of (2. 6), we find

(2. 10) SCb
afxa=-fceLeb

x-LceXfbe+fcySby*.

If we transvect (2. 10) with // and make use of the second and the fifth equations
of (2. 6), we find

(2. 11)
_ C afefx O xf efy,
•—OceJbJ a — ̂ eyjcjjb l
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from which we have

(2.12) Sey =SΛΛ*fc'fy

d+S,v<f'ef*e

as a consequence of the fourth and the fifth equations of (2. 5).
Transvecting the first equation of (2. 5) with ////, we get

(2.13) Srf^-ScffffJ*.

By means of the third, the fourth and the fifth equations of (2. 5), we obtain

Q efa\fdV, α _ Q xf a\fz C αOcy J e TV c ^dy —^cy Jx TV c^yz

and, substituting (2. 8) in this equation,

(2.14) fcdSdy*= -Sce«//+/vS,,Λ

Transvecting (2.14) with /6

C, we obtain

/O 1Γ\ θ α _ Q 7αf,ef c Z _ C e fz.fa\6. LΌ) O&7/ —Ogrf Jbjy ^zy J bj e

by virtue of

f eO α_ C βf α
J z ^Jey — O z y J e

obtained from the third and the fifth equations of (2. 5).
Furthermore, we find

(2.16) Scv*=Sev

Λfc*f*d+Sty

Λf*cf
x

Λ

by making use of the third, the fourth and the fifth equations of (2. 5).
From (2. 9), (2.11), (2.13) and (2.15), we have

PROPOSITION 2.1. If Scδ

α vanishes, then all the other S's, i.e. SCb
x, Scy

a, Scy

x,
Szy

a vanish (Cf. Ishihara [2]).

From (2.16), we have

PROPOSITION 2. 2. // Scy

a and Szy

a vanish, then Scy

x vanishes (Cf. Ishihara [2]).

From (2.12), we have

PROPOSITION 2. 3. If Scί)

x and Szy

a vanish, then Scy

x vanishes (Cf. Ishihara [2]).

When there is given a connection Γc

x

y in the vector bundle M(V), there
exists an almost complex structure F in the bundle space of M(V) (Cf. Ishihara
[2]). If the almost complex structure F is complex analytic, then we say that the
given /-structure is normal with respect to the connection Γc

x

y in M(V). We
have proved in [2].

THEOREM F. A necessary and sufficient condition for an f-structure f to be
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normal with respect to a connection Γc

x

y in M(V) is that

Scba=Q

be satisfied and the given connection Γc

x

y be of zero curvature.

In a manifold with an /-structure /δ

α, a tensor field, say, Tcb

a (or Tcb

x) is said
to be congruent to zero with respect to fx

c, if it has components of the form

(2. 17) Tcb

a=fycPyb
a+fy

bQyC

a (or Tcb

x=fycPyb

x+fybQyc

x),

Pyb

a and Qyc

a (or Pvb

x and Qye

x) being certain local tensor fields. In such a case, the
relation (2. 17) will be expressed in a simplified form as

(2. 18) Γcδ

αΞΞθ (or 2VΞ=0).

The relation Ucb

a— VCb
a=Q (or Ucb

x—Vcb

x=Q) is expressed as

Ucb

a==Vcb

a (or Z7C6*Ξ= Fc&*).

It is easily seen that (2. 18) is valid if and only if we have

Tcb

awcvb=0 (or Tcb

xwcvb=Q)

for any vector fields va and wa such that fx

av
a=Q, fx

aιv
a=Q, i.e. for any vector

fields va and wα belonging to the distribution L. We have from (2. 11)

PROPOSITION 2. 4. // Scb

a==Q, fAew Sc&*=0, that is

Lcύ

x=Lbc

x.

It is easily seen from (2. 5) that each of the three conditions

Scb

α=0, Scδ*=0 and Lcb

x=Lbc*

does not depend on both of the connections Γc

a

b and Γe

x

y involved.
The distribution L is integrable, if and only if

Consequently, taking account of (2. 6), we have from the definition (2. 4) of Lcb

x

and the definition (2. 5) of Scb

a

PROPOSITION 2. 5. A necessary and sufficient condition for the distribution L
to be integrable is that one of the following three conditions is satisfied:

Scδ

α -Ncb

a= 0, (Scb

a - Ncb

a)f*a = 0,

It is easily seen from (2. 5) that the three equivalent conditions stated in
Proposition 2, 5 are independent of the connections ΛΛ and Γc

x

v involved.
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If we take account of the definition (2. 5) of Sc6

α, we see from Theorem A
given in § 1 that the distribution M is integrable if and only if

C ^ e f c f bf a — 0^>cb J z J y J e — \J

is satisfied. Thus we have

PROPOSITION 2. 6. If an f -structure is normal, or if SCb
a=Q, then the distribu-

tion M is integrable.

Let there be given an (/, 0)-structure (/Λ 0c&) in a differentiable manifold. Let
{fxa} be an (n— r)-frame and { f y

b } the (n— r)-coframe dual to {fx

a}. On putting

n f a, — f nabfy^ — fya

ybaj x — J xbj y J b — J * )

Qyx=fyCfxbQcb,

we have

by means of (1. 4), where gba and gyx are defined by

toδβ)=(ί/6α)-1 and (ςf^)=(flfy,)-1

respectively.
Let there be given a connection Γc

x

y in the vector bundle M(V) and suppose
that

is satisfied. We call such a connection Γc

x

y a metric connection in the bundle
M(V). Denoting by {c

αδ} the Riemannian connection determined by gcύ, we see that

define a metric connection in the vector bundle M(V).
If we assume that

(2. 19) Pcf*t,-Pbf
xc=2A*fcb

is valid with a certain vector field Ax, fcb=—fbc being defined by

Jcb—fc gabi

then we find

(2. 20) LCb
x=2Ax(-gcb+mCb\

In such a case, we have



130 KENTARO YANO AND SHIGERU ISHIHARA

i.e.

d(vbdη^ = afcbdrf Λ dif, a = Λxvx

for any vector field vb=fb

xvx belonging to the distribution M and satisfying ί7

bvx=Q.

§ 3. Surfaces in an almost complex space.

Let W be an Λf-dimensional differentiate manifold of class C°° with an almost
complex structure F=(Fi

hy:> of class C°°, i.e.

(3.1) FiW=-δ},

N being necessarily even.
Let there be given an ^-dimensional submanifold V diίferentiably immersed in

W, and denote by TP( V) the tangent space of V at a point P belonging to V. We
suppose that

and that r=dim HP(V) is constant everywhere in F, r being necessarily even,
where we have put

F(TP(V))={FX\XeTP(V)}.

If this is the case, we call the submanifold Fan f -submanifold in the almost com-
plex space W. The vector space ffP(V) is called the holomorphic tangent space of
F at P. On putting

(3. 2) T*(V)=Tp(V)+F(Tp(Vy),

we call this subspace Γf(F) the holomorphic extension of tangent space 7p(F).
It is easily seen that, if dim ffP(V)=r, we have dim TP

r(V)=2n— r.
If 2n>N, we have r>0 because of AfedimΓf(F). Thus we know that, in an

almost complex space W of N dimensions, a submanifold of n dimensions is always
an /-submanifold if 2n>N and dim^/p(F) is constant.

Let there be given an /-submanifold F in an almost complex space W. Then,
there exists a subspace NP of the holomorphic extension T?(V) of the tangent
space TP( F) at each point P belonging to F such that

(3. 3) FOVp) c ΓP( F), Γf ( F) = ΓP( V)+N* (direct sum),

where F(NP)={F^|Jr€M»}. If TP(W)*HP(V), in the tangent space TP(W) of the
enveloping space W at P, there exists a subspace TVp such that

(3. 4) F(NP)=Np, TP( W)= T7f( V)+NP (direct sum),

3) The indices h, i, jt k, s, t run over the range {1, 2, • • • , Λf}.
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where F(NP) = {FX\XeNP}. The subspaces NP and NP are respectively (n—r)
dimensional and (N— 2^+r)-dimensional. Therefore, there exist along V two dif-
ferentiable fields of such subspaces NP and NP. If we put

N(V) = UN*, N(V)= Ufa,
P€F P6F

then N(V) and N(V) are vector bundles over F. Letting N(V) and N(V) be
fixed, we call the set {V, N(V), N(V)} an f-surface and Fits base submanifold.
For the sake of simplicity, we denote sometimes an/-surface {F, N(V), N(V)}
simply by F.

Let there be given an /-surface {F, N(V), N(V)} in an almost complex space
W and its base submanifold F be expressed by equations

in local coordinate (ξh) in PF, where (ηa) is a system of local coordinates in F.
If we put

then Ba

h are n local tangent vector fields in F and span the tangent space TP( F)
of F at each point P of F. There exist locally along F n—r vector fields Cy

h

and N—2n+r vector fields Cβ

h which span respectively NP and NP at each point

P of F4). Denoting by (B\, Cxz, Cai) the inverse of the matrix (C/), we have
\Cβ

hJ

V=0,

(3.6)

and

(3.7)

Taking account of (3. 3) and (3. 4), we can put

(3.8)

and, taking account of (3.1), we find

Λc/cα=-5f-

(3.9)

4) The indices M, v, x, y, z hereafter run over the range {«+!, n-{-2t •••, 2w— r> and the
indices α, jS, γ, δ, ε run over the range {2n—r+1, 2w—r+2, •••, AΓ>.
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which implies

(3. 10) /3+/=0,

/ being the tensor field of type (1, 1) defined in V by components fb

a. Thus, tak-
ing account of (2. 1), we see from (3. 9) and (3. 10) that fb

a is an /-structure, { f y

a }
is an (n— r)-frame and {fxι>} the (n— r)-coframe dual to {fy

a}, all in the sense of
§2. The tensor field fb

a is called the induced f -structure of the given /-surface F.
By means of the second equation of (3. 8), we find that F(N( F)) coincides

with the vector bundle M(V) consisting of all vectors which belong to the dis-
tribution M determined by the projection operator mb

a~fb

cfc

a-}-δξ. Thus, if we
define a bundle isomorphism F*: N(V)-*M(V) by

(3.11) F*(X) = -F(X),

X being an arbitrary vector belonging to N(V), then for any vector X having
components vxCx

h the transformed vector F*(X) has components (vxfx

a)Ba

h as a
consequence of the second equation of (3. 8).

Let there be given a symmetric linear connection Γjhι in the enveloping space
W. If we put

(3. 12) ΓΛ - (dcB^+Bc'BsrMB**,,

then Γc

a

b define a symmetric linear connection in the base submanifold F, which
is called the induced connection of F.

If we put

(3. 13) ΓSy^W+BcWW*,

then Γc

xy define a connection in the vector bundle N(V) which is called the in-
duced connection in the vector bundle N(V). Since, as is seen from (3. 11), there
exists a bundle isomorphism F* : N( V)->M( F), there exists in M( F) a connection
ω* induced from Γc

x

y by F* and the connection ω* induced in M(V) is expressed
by the same components Γc

x

y with respect to the (n— r)-frame {fy

a}. We call
briefly the connection ω* the induced connection of the vector bundle M(V).

If we put

(3. 14) Γe fi=(d£f+BjCfΓ,\)C*h,

the Γc

aβ define a connection in the vector bundle N(V). We call the connection
Γc«β the induced connection in N(V).

We define the van der Wearden-Bortolotti covariant derivatives of Bb

h, C/
and Cβh along F by

(3. 15)
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respectively. Then PcB»h, PcCy

h and PcCβ

h belong respectively to Nf+NP, TP(V)
+Np and Tf(V)+Np at each point P of V. Thus we can put

(3.16)

where h's are the so-called second fundamental tensors of the given /-surface V.
It is easily seen that

If we differentiate covariantly each member of (3. 8) along V and take account
of (3. 8) and (3. 16), we obtain

+ (hcb

a —hcbrfra

(3. 17)

where we have put

(3. 18) refβ* = dc

The Nijenhuis tensor Nμh of the almost complex structure Fιh is by definition

(3. 19) Njih=FjtPtFih-FitPtFf--(PjFi°-PiFj')F,h.

Taking account of (3. 8), (3. 17) and (3. 19), we find

(3. 20) +[$cbx-(fychb*y-fybhc*y)f*e]Cx

h
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(3.21)

*afβr+hedβfcefA*-he\ftf^^

(3.22)

(3. 23)

where S's are tensor fields given in (2. 5), connections involved in S's being the
induced connections Γc

a

b and /V> We have immediately from (3. 20)

THEOREM 3. 1. For an f -surf ace V in an almost complex space W, the vector
field (Nj^B^Bb^w^ belongs to the holomorphic extension T? ( V) of tangent space
TP(V) at each point P of F, va and wa being arbitrary vector fields in V satisfying
the conditions fx

av
a=Q, /*αw

α=0.

THEOREM 3. 2. For an f -surf ace V in an almost complex space W, the vector
field (NjihBcjBbi)wcvb is tangent to V at each point of V, va and tva being arbitrary
vector fields satisfying the conditions fx

av
a=Q, fx

aw
a=Q, if and only if SU^O,

that is, if and only if L^X^L^C

X. (The condition Sc6*=0 does not depend on the
induced connections Γc

ab and Γc

x

y involved).

THEOREM 3. 3. For an f -surf ace V in an almost complex space W, we have
(NjihBcjBtS)wcvb=Q, va and wa being arbitrary vector fields satisfying the conditions
f*av

a=Q, fxaiva=Q, if and only if Scδ

α=0. (The condition SCb
a=Q does not depend

on the induced connections Γc

ab and Γc

x

y involved).

§ 4. /"-surfaces in a complex space.

Let "FT be a complex space with a complex structure Fth. Then, the Nijenhuis
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tensor Njih of Fih vanishes identically. As is well known, there exists a sym-
metric linear connection Γj\ such that (Cf. Yano [20])

(4.1) F,F,»=0.

In the present paper, by a complex space we mean a space admitting a complex
structure Fιh and a symmetric connection Γj\ satisfying (4.1).

Let there be given an /-surface F in a complex space W. Then, taking
account of (4.1), we have from (3.17)

(4.2)

and

(4. 3)

On the other hand, since Njth=Q, we find from (3. 20), (3. 21), (3. 22) and (3. 23)

(4. 4) Scy

β=-(Acβ»+AΛ/cβΛβ)+A(AβαrΛβ),

S x f eVΓ x
cy — J c Π.ey ,

respectively, where, taking account of the first equation of (4. 3), we have put

ZX x _ /,, x f e _ Ij^e fxtlby — tϊbe J y — rib yj e

From the first equation of (4. 4), we have

PROPOSITION 4. 1. For any f -surf ace in a complex space, we have

From the expression (2. 4) for Lcb

x and the second equation of (4. 2), we find
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Thus we have

PROPOSITION 4. 2. For any f-surface in a complex space, we have the expres-
sion (4. 5) for Lcb

x and Lcb

x==Lbc

x (Cf. Hermann [1]).

We have from the second and the third equations of (4. 2)

(4.7)

respectively. If we take account of hcb

x=hbc

x, we have directly from the first
equation of (4. 7)

(4. 8) (Pcf

Substituting (4. 7) into the first equation of (4. 2), we obtain

(4. 9) rcf*a + (

We have moreover from (4. 2)

(4. 10)

Taking account of (4. 10), we see from (4. 7) and (4. 9) that the following three
conditions are equivalent to each other:

(a') Fc/6

α-0.

(b') Fc/*&=0 and FcΛ
α=0.

(cx) hcb

x=fίcy
xfyb and hc"y=Hcy

xfx

a'.

When the condition (c') is satisfied, we find, taking account of hcb

x=hbc

x,

TT χ_fz 3 x
fJ cy — J cΛzy t

where

3 x — 3 a;Λ0?/ - Λ7/2

Thus we have

THEOREM 4. 1. For an f -surf ace in a complex space, the following three condi-
tions are equivalent to each other:

(a) Fc/6*-0.

(b) Fc/*6-0 and Pcfy

a=U.

(c) hcb

x=fzcfyt>*zyx and hc

Λ

y^fzcfxaλzy^
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λzy

x being a certain tensor field such that λzy

x=^λyz

x. When one of these conditions
is satisfied, the induced f-structure fb

a is integrable and SCδα=0 is satisfied.

If we take account of (4. 2), we have from the definition (1. 2) of Ncb

a

(4. 11) Λrcδ

α=/Mfe%Λα-/b^

Therefore, if Ncb

a=Q, then we have from (4. 11)

(4. 12)

Conversely, if (4. 12) are satisfied, we have Ncb

a=Q. If we take account of the ex-
pression (4. 4) for Scb

a, we see that the second equation of (4.12) is equivalent to

Thus, taking account of the expression (4. 5) for Lcb

x, we have

PROPOSITION 4. 3. For an f -surface in a complex space, the induced f -structure
is integrable, if and only if one of the following conditions (a) and (b) is satisfied '

(a)
f a f eL a _ f z (I* d f e\ /\α _ f e f j xf ayj e Jc We y — J c\fίe zj y )J d J c Π-ey J x

(Lcb

x=0,
(b)

If we take account of (4. 5) and (4. 11), we see that the following four condi-
tions are equivalent to each other:

Thus, by virtue of Theorems B and D stated in § 1, we have

PROPOSITION 4. 4. For an f -surface in a complex space, the following four
conditions are equivalent to each other:

(a) The distribution L is integrable (Ncb

afx

a=ty.

(b) The induced f -structure is partially integrable (Ncb

a = 0).

(c) Lcb*=Q.

(d) hcb

x+he<ιxfc

fifb

d=0

We now suppose that the distribution M is integrable. Then, by means of
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Theorem A stated in § 1, we have

(4.13) ΛcΛWC6β/βα=0,

which implies

(A. Λ Aϊ\ ( f ^// ® f ^// & ^ ( ~f £~f-T % /* βf-Γ £\ "f ct — o\ * J ^/ \y J? "β T/ y ^/ /* e j?/ \y 2 Hey Jy J J-βz )J x —v/

Conversely, if (4.14) is satisfied, we have (4. 13) and consequently we see that the
distribution M is integrable. Thus we have

PROPOSITION 4. 5. For an f-surface in a complex space, the distribution M is
integrable, if and only if

\Jz fie y J y fie z) \Jz H-ey J y t±ez ) J x =U.

We suppose next that 5Uα^O is satisfied. Then, we have by means of Pro-
position 2.1

which is equivalent to the condition

(4.15) ffey*=f'eλ,y*,

where

3 x— 3 x—f cf blj ,xΛzy — Λ y z —J z J y rich

Taking account of (4. 4), we see that SUα=0 is equivalent to the conditions

e fa f elf a — f z f l j d f e \ f , a: yj e J c fie y —J c\fle z j y )J d >
(4.16)

which are equivalent to

(4.17) Aβ

αy+Aβ

d

v/cβ/dα=/ β(Ae

β.Λβ)

Taking account of (4.15) and substituting (4. 7) in the first equation of (4.16),
we find

Conversely, if we substitute the third equation of (4. 2) in (4. 18), we obtain the
first equation of (4. 16). Transvecting (4.18) with //, we find

which implies together with (4. 2) the second equation of (4. 16). Thus we have
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PROPOSITION 4. 6. For an f-surface in a complex space, the following four
conditions are equivalent to each other:

(a) Sβt«=0.

eyfea -fceheay=--fzc(heazfy

e)fda,

(b)
lCW »β-AΛΛ )/*β=0.

(C) he

ay+fcefίahedy=f\>

(d)
j TT x -fz 1 X (1 X 3 X\
\ilcy ~~~J c^ zy \**zy ~~~^yz /•

We have also from Propositions 4. 3, 4. 4 and 4. 6

THEOREM 4. 2. //", /6>r an f-surface in a complex space, the condion S,t>a=Q is
satisfied, then the following three conditions are equivalent to each other:

(a) The induced f-structure is integrable (NCb
a=ty.

(b) The induced f-structure is partially integrable (7Vc6

α=0).

(c) The distribution L is integrable (NCb
afxa=Q)

% 5. Normal Λsurfaces in a complex space.

Let there be given an /-surface F in a complex space W. We suppose now
that the induced /-structure />α is normal with respect to the connection Γc

x

y

induced on the vector bundle M(V). Such an /-surface is said to be normal.
Thus, from Theorem F stated in § 2, we see that an /-surface is normal if and
only if we have

(5. 1) Scδ

α=0 and RΛcv*=Q,

where SCb
a is the tensor field defined by (2. 5) and

/C ON ~D X __ ίί "Γ1 X ^ T~* X I T"7 x 7"* z T"7 X f Z
\<J <ώ/ J\dcy —Odί c y Oc *- d y ~ \ * d z* c y~~~^ c z*- d y

is the curvature tensor of the induced connection Γc

x

y.
On the other hand, as was seen in § 3, there exists a bundle isomorphism F*:

N(V)—>M(V), which is defined by (3. 11), and the connection induced in N(V) has
the same components Γc

x

y as that induced in M( F). Therefore, if the /-surface
F is normal, the connection induced in N(V) has vanishing curvature tensor
because of (5.1). Thus, if the /-surface is normal, the structure group of the
vector bundle N(V) is reducible to a discrete group.
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When the vector bundle N(V) admits a locally flat connection Γc

x

y, there
exists in each coordinate neighborhood U of the /-surface V an ordered set {Cx

h}
of normal vector fields Cx

h spanning the fibre NP of N(V) at each point P of U,
such that all of components Γc

x

y of the induced connection vanish with respect to
{Cx

h}. Such an ordered set of local normal vector fields Cx

h is called an adapted
normal frame in N(V). In each coordinate neighborhood £/, an adapted normal
frame is determined up to transformations with constant coefficients, that is, for
an adapted normal frame {Cx

h}

determine another adapted frame Cx,
h if and only if (A%,) is a non-singular, con-

stant matrix in U. Summing up, if we take account of Theorem F, we have

THEOREM 5. 1. In a complex space, a necessary and sufficient condition for
an f -surf ace to be normal is that it satisfy the conditions

Rdcyχ=Q and Scb

a=0.

When an f -surf ace V is normal, the following facts (a) and (b) are valid:

(a) The structure group of the vector bundle N(V) is reduced to a discrete
group. If the f -surf ace is simply connected, the vector bundle N(V) is a product
bundle.

(b) All of the five tensor fields S's vanish identically, i.e.

e - dc/*e) = 0,

ye = 0,

Szy

a =fzede

with respect to an adapted normal frame {Cx

h} in each coordinate neighborhood
U of the f -surf ace.

Theorem 4. 2 and Proposition 2. 6 imply immediately

THEOREM 5. 2. For a normal f -surf ace in a complex space, the following three
conditions are equivalent to each other:

(a) The induced f -structure is integrable.

(b) The induced f -structure is partially integrable.

(c) The distribution L is integrable.
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If an f -surf ace is normal in a complex space, then the distribution M is integrable.

§ 6. /-surfaces in a locally flat complex space.

We consider in this section /-surfaces in a complex space W which is locally
flat, i.e. whose curvature tensor vanishes identically. If we suppose that the holo-
morphic extension T?( V) of tangent space ΓP( F) coincides with the tangent space
Ty(W) of the enveloping space W at each point P of V, i.e. if

(6.1)

we obtain

(6. 2) PdPeBb

h-PcPdBb

h=Rdcb

aBah,

(6. 3) PdP,jCy*-PePdCyh=Rdey*Cx

k

as a consequence of locally flatness of the enveloping space W, where

are curvature tensors of the induced connections Γc

a

b and Γc

x

y respectively. Sub-
stituting the first and the second equations of (3. 16) with vanishing hcb

a and hcy

a

into (6. 2) and (6. 3), we find

(6.4)
V«hΛ

x-VJι,lι>*=§,

We suppose that the /-surface satisfies the condition (6. 1) and has the follow-
ing properties

/£ C\ Ij .x — fz fy.l x I, a _ f z f a) x(Ό O) rlcb — J cj abΛzy , H,c y — J cj x *zy ,

where

x _ x
Λ zy — Λyz .

Substituting (6. 5) in (6. 4), we obtain

> a _ fu, f z fy f a( 1 x 2 v 3 a?J v\
dcb — / dj cjybjx \*uv λzy — ΛZV *uy ),

(6. 6)
"?.» x — - f u > , f z ( l x) v 1 x} υ\\-dcy —J dj c\Λuυ Λzy ΛZV Λuy J

and
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{ /" e/7 2 x f eΓ7 3 x. Πfu^e^zy — J z V e Λ u y —U,

χ_

The both equations of (6. 6) imply

(6 8) R a—R z f y f a

Thus we have

PROPOSITION 6.1. //, in a locally flat complex space, an f-surface satisfies the
conditions (6.1) and one of three conditions (a), (b) and (c) mentioned in Theorem
4. 1, then it has the properties (6. 6), (6. 7) and (6. 8).

We suppose next that a normal /-surface F of a locally flat complex space W
satisfies the conditions (6.1) and (6. 5). Then, we have from Theorem 5. 1

which implies together with (6. 8)

i.e. that the induced connection Γc

a

b of F is locally flat. Thus we have

THEOREM 6.1. If, in a locally flat complex space W, a normal f-surface V
satisfies one of three conditions (a), (b) and (c) mentioned in Theorem 4. 1, and, if
the holomorphic extension T?(V) of tangent space of V coincides with the tangent
space TP( W) of the enveloping space W at each point of V, then the induced connection
Γc

a

b of V is locally flat and the equations

(6.9)

lj x _ fz fy,ϊ x lj a — ft f a l x

fϊcb — / cJybΛzy > flc y — J cj x *zy ,

3 a?; v _ 2 x) υ _ AΛuv Λ2y Λzv Λuy — v/,

are valid, where λzy

x=λyz

x.

If an /-surface in a locally flat complex space satisfies the condition (6. 5),
then by virtue of Proposition 4. 6 we have

since the condition (c) of Proposition 4. 6 is valid as a consequence of (6. 5). We
suppose that the /-surface satisfies the condition (6. 1) and is locally flat. Then,
taking account of (6. 8), we have
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because of Rdcb

a=Q. Thus we have

THEOREM 6. 2. //, in a locally flat complex space, W an f -surf ace V satisfies one
of three conditions (a), (b) and (c) mentioned in Theorem 4. 1, and, if the surface
V is locally flat and the holomorphic extension Tξ( V) of tangent space of V coincides
with the tangent space TP(W) of the enveloping space W at each point of V, then
the surface V is normal.

Coming back to the general case, in a complex space W of N=2n dimensions,
we take a submanifold V of n dimensions and suppose that TP(V)Γ(F(TP(V))={Q}
at each point P of V. We call such a submanifold V an antiholomorphic surface
of W. Denoting by Ba

h n local tangent vector fields defined by (3. 5), we see that
n vector fields

(6. 10) Cb

h = FihBb*

span the space F(T7(V)). If we put

(6. 11) VcBb

h=hcSCeh,

then we have

(6.12) VcCb

h=-hcb

eBeh

by means of (6. 10). Then, hCb
a is called the second fundamental tensor of the

antiholomorphic surface V.
We now consider a normal /-surface V in an TV-dimensional space CAS of 5

complex numbers (z1, z2, •••, zs), 2s being equal to N. If we put

then (xλ, yλ) are cartesian coordinates in CAS. Then, taking account of Theorem
5. 1, we see that the connection Γc

x

y induced in the vector bundle N( F) is of zero
curvature, i.e. that there exists in each coordinate neighborhood of F an adapted
normal frame {Cx

h} with respect to which the components Γc

x

y of the induced
connection vanish identically. If we assume moreover that the /-surface F satis-
fies the condition (6. 1) and one of three conditions mentioned in Theorem 4. 1, we
see from Theorem 6. 1 that the connection Γc

a

b induced in the /-surface F is
locally flat, i.e. that there exist in each coordinate neighborhood of F local coordi-
nates with respect to which the components Γc

a

b of the induced connection of F
vanishes identically. Thus we have

ϋ f^a — d f.a ϋ f a — 3 f a U /*.»__ 3 for
V cj b — OcJ b ) v cj y — OCJ y , v cj h — OCJ b

with respect to such local coordinates and such an adapted normal frame,
We have from Theorem 4. 1
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(6.13)

where λzy

x=λyz

x satisfy (6. 9). Taking account of (6. 13), we see that each integral
manifold of the distribution L, which is spanned locally in the enveloping space

CAS by vector fields fb

aBa

h, is a complex plane CA~* , r being the rank of the
induced /-structure. Thus we may assume that each integral manifold of L is
expressed in CAS by linear equations

z '2~+1— const., •••, zs— const.

Next, taking account of (6. 13), we see that the holomorphic extension MH

=M+F(M) of the distribution M is parallel along the /-surface F, since M11 is
spanned locally in the space CAS by vector fields fy

aBa

h and CΛ Thus we may
assume that the distribution MH is, along the /-surface F, parallel to the complex
plane denned by linear equations

Therefore, each integral manifold of the distribution M is an antiholomorphic sub-
manifold in a complex plane defined by linear equations

r

£*= const., z2— const., ••-, z^ — const.

Summing up, we find that the base submanifold of the given /-surface F is con-

jugate to a portion of a submanifold F under the group of all affine transforma-
tions operating on CAS and preserving the complex structure of CAS, where the

/-submanifold F is defined by equations of the form

(6. 14) x»=x«(ζ*\ yu=yu(ζ*)

where ζx are parameters of F and r is the rank of the induced /-structure. The
__ r^

equations (6.14) determine, in the subspace CAS~^ defined in CAS by zl=z2 = ~
r

=z * =0, an antiholomorphic surface whose second fundamental tensor coincides
with λzy

x, where λzy

x are constant along the distribution L and satisfy the second
and the third equations of (6. 9). Thus, the induced connection of the antiholo-

morphic surface defined in CAS~^ by (6. 14) should be locally flat. Thus we have

THEOREM 6. 3. If, in the N- dimensional space CAS of s complex numbers zλ

=xλ-}-\/—lyλ(λ=l,2,- ,s',N=2s), there exists a normal f- surf ace V satisfying
one of the conditions (a), (b) and (c) mentioned in Theorem 4. 1, and, if the holo-
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morphic extension T?( V) of tangent space of V coincides with tangent space of the
enveloping space CAS, then the base submanifold of the given f-surface V is con-

r^,

jugate to an f-submanifold V defined by (6. 14) under the group of all affine
transformations operating on CAS and preserving the complex structure of CAS,

s- Z_
where the antiholomorphic surface defined in CA 2 by (6. 14) is locally flat.

§7. Λsurfaces in an almost Hermitian space.

We consider an almost Hermitian space W of differentiability class C°° with
an almost Hermitian structure (Fih, G#) of class C°°, where Fih is an almost com-
plex structure and Gji a positive definite Riemannian metric such that

(7. 1) Fj'Fi'Gi^Gji.

The tensor field

(7.2) Fji=FfGto

is skew symmetric. If the Riemannian connection {/J determined by Gji satisfies

(7.3) FjFίft+FtF^+F^ ί-O,

then the space is called an almost Kάhlerian space. If, moreover, the Nijenhuis
tensor Njih defined by (3. 19) vanishes identically, the almost Hermitian space is
called a Kάhlerian space. A necessary and sufficient condition for an almost
Hermitian space to be Kahlerian is given by

(7.4) F^FίΛ=0

(Cf. Yano [20]).
We now consider an /-submanifold V in an almost Hermitian space W. Then,

there exists uniquely a subspace NP in the holomorphic extension T?( V) of tangent
space Γp(F) at each point P of V such that N¥ is orthogonal to TΓ(F) and
F(NP)c.TF(V), and 7VP is (n—r)-dimensional if dim HF=r. Furthermore, there
exists uniquely a subspace NP of N—2n-}-r dimensions in each tangent space
TP(W) such that F(NP)=NP and NP is orthogonal to T?(V) at each point P of V.
Thus we have an/-surface {F N(V), N(V)} corresponding uniquely to the given
/-submanifold F and denote it simply by F.

We follow notations introduced in § 3. Then, local vector fields Cy

h are ortho-
gonal to Bb

h and Cβ

h, and Cβ

h are orthogonal to Bb

h and C?/. Therefore we find

(7.5)

If we put

(7.6)
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then c/cb is a Riemannian metric in F, which is called the induced Riemannian
metric of F, and gzy and grβ are metric tensors in the vector bundles N(V) and
N( F) respectively. The metrics gzy and grβ are called the induced metrics of N( F)
and 7V(F) respectively.

Taking account of (3. 6), (7. 5) and (7. 6), we obtain

where gab, gxy and gaβ are respectively defined by

gaegeb=δb, gxuguy=δy,

It is well known that the induced connection

defined by (3. 12) coincides with the Riemannian connection {<Λ} determined by
the induced metric gcb of F. Thus we have

Similarly, the induced connections

defined by (3. 13) and (3. 14) respectively have the following properties

VcQzy = dcQzy — Γc

x

zgxy — Γc

x

ygzx = 0,

Vcgγβ = dcgrβ — Γc

δ

γgdβ— Γc

δ

βgΐδ =0.

Transvecting the second equation of (7. 1) with Bc'Bbl and taking account of
(3. 8) and (7. 5), we find

(7. 7) fc

efb

dged+fycfx

bgyj=gcb.

Transvecting the second equations of (7. 1) with Bc

JCy

l and taking account of (3. 8)
and (7. 5), we find

(7.8) /ce//flred = 0.

Finally, if we transvect (7. 1) with Cy

3Cx

l and take account of (3. 8), we find

(7. 9) fυ

efx*gct=gy,.

The equation (7. 7) shows that fb

a and gcb form an (/, ί/)-structure in F, which is
called the induced (/, g)-strucfure of F. An /-surface with such an induced (/, </)-
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structure is called a metric f -surf ace.
In our metric case, the second fundamental tensors h's appearing in equations

(3. 16) have the following properties

hc

ay=hCb
xgbagχy, hc

aβ=hCb
agbagaβ,

(7. 10)
hc

xβ=hcy

agyxgaβ.

Transvecting the first equation of (3. 17) with Bah, we obtain

or equivalently

because of (7. 10), where we have put

fyb=fxb0xy=fyagab

Then we have

(7.12) Pcfba+PbfaC+PσfCb=(PjFih+PiFhJ+

by virtue of hct>
x=hbcx Thus we have

PROPOSITION 7. 1. For a metric f-surface in an almost Kάhlerian space, the
form fCbdηc/\dηb is closed (Cf. Nakagawa [5]).

§ 8. Metric /"-surfaces in a Kahlerian space.

We assume that the enveloping space is Kahlerian. Then, by virtue of V jF f-
=0, we find from (4. 2)

(8. 1)

the second equation of which is equivalent to

U f a _ /, β -f a — 0v cj y rlc yj e — V.

If we take account of the definition (1. 2) of the Njienhuis tensor NCb
a, we

have by means of Proposition 7. 1

^
which implies together with (4. 9)
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Thus, taking account of theorem A stated in §1, we have

THEOREM 8.1. For a metric f-surface in a Kahlerian space, the distribution
M is integrable (Cf. Nakagawa [5]).

Let there be given a metric /-surface in a Kahlerian space. Then, as a con-
sequence of the condition (a) mentioned in Proposition 4. 3 and hcb

x=hbcx, the induced
/-structure is integrable if and only if

(8.2) hcbx=mc

ehebx+mbdhCd
x—mc

or equivalently

where mba^fxbfχ(L On the other hand, the first equation of (4. 3) implies

Taking account of this equation, we see that (8. 2) is equivalent to the condition

(8.3) Pcfxb = -mc

efb

dhe(ι
x

as a consequence of (4. 2) and (4. 7) and we have

(8. 4) Pcfb
a=mc

e(heayfyb-hebyfya)

by means of the first equation of (4. 2). Summing up, we have

PROPOSITION 8. 1. For a metric f -surf ace in a Kahlerian space, a necessary
and sufficient condition for the induced f -structure to be integrable is that one of
the conditions (8. 2) and (8. 3) is satisfied. When the induced f -structure is in-
tegrable, the equation (8. 4) is satisfied.

It follows from the second equation of (4. 4) that

TT x _ Λ xf e _ f z } x
Π cy — f l e e Jy — J cΛzy

is satisfied if and only if SCb
x=Q. Since the third expression of (4. 4) for Scy

a can
be written as

we have the equation Hcy

x=fz

c^zyx above if and only if

Thus, taking account of the fourth expression of (4. 4) for Scy

x, we have

PROPOSITION 8. 2. For a metric f -surf ace in a Kahlerian space, the condition

LT x _ I, xf e _ fz 2 x
Π-cy — rice, J y — J c^zy
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with λzy

x=λyz

x is equivalent to one of the following three conditions:

Scb
X = Q, SCy

eQeb=SbyeQec, SCy
X = Q.

Differentiating mba=fxbfxa covariantly, then we find

Pcmba= -hce

x(fbefxaJrfaefXb)

by means of (8. 1), where fae=gadfde, fXb=Qbefxe. We thus find

mc

dFdmba= -mc

dhdex(fbefx

a+faef*b),

which implies that the condition

mc

dPdmba = Q

is equivalent to the condition

ττ x — fz 3 x
fJ cy — J cAzy

On the other hand, the condition mc

d^dmba=Q is equivalent to the condition
that the distribution M is flat, i.e. that, if we translate any vector belonging to M
parallelly along M, the translated vector belongs always to M (Cf. Walker [14], [15]
and Yano [16]). Thus we have

THEOREM 8. 2. For a metric f -surf ace in a Kάhlerian space, the distribution
M is flat if and only if one of the three conditions mentioned in Proposition 8. 2
is satisfied (Cf. Nakagawa [5]).

We shall now study metric /-surfaces satisfying SCδα=0. We know that all
of other S's vanish if Scδ

α=0. Thus, if Scδ

α=0, we have from (4. 4)

from which we obtain

Conversely, if the equation above is satisfied, we have Hcy

x=fz

c^zyx and hc

eyfea

—fceheay=Q, which implies Scb

a=Q. Thus we have

PROPOSITION 8. 3. A necessary and sufficient condition for a metric f -surf ace
in a Kάhlerian space to have vanishing SCb

a is that

(8. 5) h*>x-
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or equivalently

If (8. 5) is satisfied, we have Hcy

x=fz

cλzy

x and consequently the expression
(4. 5) for Lcb

x reduces to

(8. 6) Lcb

x= -(hCb
x+

Taking account of (8. 5), we have from (8. 6)

(8.7) Lcb*

Consequently, if Lcb

x has this form, then Scb

x=Lcb

x—Lbc

x=Q and consequently we
have

ττ x— fz x
Π cy — J cΛzy

by means of Proposition 8. 2. Therefore, taking account of (4. 5) and (8. 7), we
obtain

which implies Scδ

α=0 by virtue of Proposition 8. 3. Thus we have

PROPOSITION 8. 4. In a Kάhlerian space, a necessary and sufficient condition
for a metric f -surf ace to have vanishing Scb

a is that

Lcb

x=-2fc

efb

dhedx.

The condition SC2/

α=0 is equivalent to (4. 17) because of (4. 4). Thus we have

PROPOSITION 8. 5. For a metric f -surf ace in a Kάhlerian space, the two condi-
tions

C a — Π 9 « _ ΠOcδ — v, OCy — V

are equivalent to each other.

The equation (8. 5) is equivalent to

which is, by virtue of the second equation of (8. 1), equivalent to

(8. 8) Fc/*6+F6/*c=0.

On putting mba^mb

egea, we have

mba=fybfxagyx

and hence
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Therefore, the condition

(8. 9) FcW

is equivalent to (8. 8). Thus we have

PROPOSITION 8. 6. For a metric f -surf ace in a Kάhlerian space, the condition
SCb

a= 0 is valid if and only if one of the two conditions (8. 8) and (8. 9) is satisfied.

From Propositions 8. 3, 8. 4, 8. 5 and 8. 6, we have

THEOREM 8. 3. For a metric f -surf ace in a Kάhlerian space, the following six
conditions are equivalent to each other:

(a) Scδ«=0.

(b) Sey«=0.

(c ) hCb
x-fcefbdhedx=mc

embdhedx.

(d) Lcb

x=-2fc%
(1he(ι

x.

(e) Fc/*6+P6/*c=0.

( f ) FcW&α + F6Wttc4-FαWcδ = 0.

We now assume that the condition (e) given in Theorem 8. 3 is satisfied.
Then vector field vb=vxf

x

b satisfies

if Fc^=0 is valid.
Next, if we take an arbitrary geodesic ηa=ηa(s) in a metric /-surface of a

Kahlerian space, s being the arc-length of the geodesic, then the condition (f)
given in Theorem 8. 3 is equivalent to the condition

d ( dηc dηb\ n— (mcb—^ -j- 1=0,
ds \ ds ds /

that is, that the function mCb(dηc/ds)(dηb/ds) is constant along any geodesic. In
such a^case, we say that mcb(dηc/ds)(dηb/ds) is a first quadratic integral of the
system of geodesies (T. Y. Thomas [13]). Thus we have from Theorem 8. 3

THEOREM 8. 4. For a metric f-surface in a Kahlerian space, a necessary and
sufficient condition for SCb

a to vanish is that the system of geodesies of the metric
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f -surf ace has a first quadratic integral mcb(dηclds)(drflds). When Scb

a=Q is satis-
fied, vector field vb=vxf

x

b satisfies

i.e. va=gabvb is a Killing vector field if Vcvx =§.

We assume now that the tensor field fc

a is a Killing tensor, i.e. that it satisfies
the condition (Yano [19])

Then, substituting the first equation of (8. 1) in the equation above, we have

2hcbyfya - hcayfyb - hc

ayfyc = 0,

from which it follows

I, , #. _ .fz fy, 2 x
Mob — J cj Jb*zy

and consequently

FcΛα=0, Fc/*6=0.

The converse being evident, if wτe take account of Theorem 4. 1, we have

PROPOSITION 8. 7. For a metric f -surf ace in a Kάhlerian space, a necessary
and sufficient condition for fb

a to be a Killing tensor is that one of the following
four conditions is satisfied:

( a ) hcb

x ==/*c/ Vz.Λ hca

y =fzcfx

aλzy

x.

( b ) hcb* =fZcfyb*zyX, *2y
Ugux = λZχ

UQuy.

(C) Fe/V^O.

(d) Fc/*δ=0 (or equivalently Fcfy«=ty,

where λzy

x=λyz

x.

We next assume that the tensor field fCb=fc

βQeb is harmonic. Since we had in
Proposition 7. 1

ΓcΛα + Γ6/αc + Γα/c6 = 0,

the condition for fcb to be harmonic is equivalent to the condition

g*Wcf^=-gc\hcb

xfx

a-hc

a'yfyb)=Q1

from which we have
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The converse being evident, we have

PROPOSITION 8. 8. For a metric f -surf ace in a Kάhlerian space, a necessary
and sufficient condition for /c& to be harmonic is that

I, xf b _ fy _ ncblj ^xπflcb J x — J c^y ) Λy — y flcb yxy

We now suppose

(8. 10) LC6*=0

in a metric /-surface in a Kahlerian space. Then, from the definition (2. 4) of L^x

and (4. 10), we find

fc

eLebX - ~ (FC/Λ - P6/*c) +fycfye?ef*l> = 0,

from which we have

Λ6F6/*C=0

and consequently

(8. 11) Γβ/*6-Γ6/'c=0.

Therefore, the two conditions (8. 10) and (8. 11) are equivalent to each other. Con-
sequently, it follows from Proposition 8. 2 that the condition (8. 10) is equivalent
to one of three conditions:

S x _ π 9 x _ Π £7 x _ f z 1 x

cb — \Jf ^cy — Uf ίJ-cy — J cΛzy

By means of (4. 2), the condition (8. 11) is equivalent to

hceXfbe-hbeXfce=Q,

from which we find

λz

x

y being defined by λz

x

y=λzv

ugvxguyι and consequently Sc&
α and Scy

a take respec-
tively the form

(8. 12)
' / " J α / 7 d JL.fz f anχ ϊx \d fίe y\J cj x \A yz Λ zy)

because of (4. 4), λx

zy being defined by λ3}

zy=λυz

ugXΌguy. Thus we have

PROPOSITION 8, 9. For a metric f -surf ace in a Kahlerian space, a necessary
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and sufficient condition for Lcb

x to vanish is that

Fcfx

b-Pbf
xc=Q.

If this condition is satisfied, the tensors Scb

a and Scy

a are given by (8. 12) and

Let va=vxfx

a be a vector field belonging to the distribution M and satisfying
FC0*=0. Then we find

by means of (8. 1), because fdehe

dx=fedhed
yQyx=0. On putting Vt>=gbav

a, we obtain

vx being defined by v.τ=gxyv
y. Thus we have from Proposition 8. 9

PROPOSITION 8. 10. //, in a metric } -surf ace of a Kάhlerian space, Lcb

x =Q is
valid, then any vector field va=vxfx

a belonging to the distribution M and satisfying
Pcv

x=Q is harmonic.

We assume now that Ncb

a=Q and Scb

a=Q are satisfied in a metric /-surface of
a Kahlerian space. Then, Scb

a=0 implies Scy

x=Q, from which we find

I, xf b—fz 3 X
'Icb J y — J cΛzu

Therefore, taking account of Theorem 4. 1 and Proposition 8. 1, we have

( *\ h ,x _ f* fy^JI x 3 Un _ ) v>n\<Λ.) fι>cb — J cj υΛzy > Λzy \iux~ — Λzx \]n,y

(8. 13) (b) ΓeΛa-0.

(c) Fe/*6=0.

respectively from (8. 2), (8. 4) and (8. 3). Thus we have

THEOREM 8. 5. A necessary and sufficient condition that the induced f -structure
of a metric f -surf ace in a Kahlerian space is integrable and Scba=Q is satisfied is
that one of the three conditions (a), (b) and (c) stated in (8. 13) is satisfied.

We next assume that the second fundamental tensor hCb
x of a metric /-surface

in a Kahlerian space has the form

(8.14) hcb

x = Axθcb

and satisfies the condition

(8. 15) hcb

xfy

b=Q,
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where fx

aAx is a certain vector field belonging to the distribution M. If this is
the case, we say that the metric /-surface is f-umbiίic. Then the tensor hcb

x has
the form

(8. 16) hcb

x=Axgc^fz

cfybBZy
x

y

Bzy

x being a tensor field satisfying the condition

Conversely, if the condition (8. 16) is satisfied, then the metric /-surface is /-
umbilic.

Taking account of (4. 2) and (4. 5), we have from (8. 16)

(8. 17) Lcb

x=2Ax(-gcb-i-mcb)

and

(8. 18) Pβ/*6=A*/cδ.

Next, substituting (8. 16) in the first equation of (4. 4), we find

Scb

a=0.

Thus we have

PROPOSITION 8. 11. When a metric f -surf ace in a Kάhlerian space is f -umbilic,
the conditions

are satisfied and moreover SCb
a=0 is valid.

If we assume that a metric /-surface in a Kahlerian space satisfies the condi-
tion

Γc/*6-Γ6/'β = 2Λ'/c6,

or equivalently

(Cf. equation (2. 20)), then we have

(8. 19) hCb
x+fcefb

dhe<Lx==2Axgcb-2Axmcb+mc

e'heb

x

by virtue of (4. 5). Transvecting (8. 19) with //, we find

TT x _ /, xf b _ fz 2 x
ficy —neb Jy ~JzcΛZy ,
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which implies together with (8. 19)

(8.20) hcb*+fc%dhedx=2A*gcb+fzcfy

b(tzy*-2gzyA^

If we assume moreover that Scb

a=Q is satisfied in the metric /-surface, then we
have from Proposition 8. 3

(8. 21) hcb

x-

Adding two equations (8. 20) and (8. 21), we obtain

hd>*=Axgcb+f*cfvbBzy*,

where

Έ> x _ •) X n Ax
-Dzy —Λzy —QzyΛ .

Thus, taking account of Proposition 8. 11, we have

THEOREM 8. 6. A necessary and sufficient condition for a metric f -surf ace in
a Kάhlerian space to be f-umbilic is that two conditions

Scb

a=Q and Pcf
x

b-Pbf
x

c=Axfcb

are satisfied.

§ 9. Metric /"-surfaces in a Fubini space.

We suppose that the enveloping space W is a Fubini space. Then the curva-
ture tensor of W is given by

(9.1) Kkjih=k(GkhGji-GJhGM+FkhFji-'FjhFki--2FkJFih)

with a constant k (Cf. Yano [20]). If, taking a metric /-surface F in a Fubini
space W, we assume that the holomorphic extension Tψ(V) of tangent space
of F coincides with the tangent space TP(W) of if at each point P belonging to
F, we obtain the following equations of Gauss and Codazzi

(9. 2)

where
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Kdcba and Kdcyx being the curvature tensors of the induced connections Γc

a

b and
Γc

x

y respectively.
Substituting (9. 1) in (9. 2), we find

k(QdaQcb — 9caQdb-\-fdafcb—fcafdb — 2fdcfba)

= Kdcba — (hdayhCb
X —hcayhdbX}Qxy,

(9.3)
k(fx

dfcb -fx

cfdb-2fdcfxb) =Pdhcb

x - Pchdb*,

fyb being defined by fyb=fxbQxy.
If we now assume that for the metric /-surface SCb

a=Q is valid and the
induced /-structure /δ

α is integrable (Λr

c6

α=0), then we have from Theorem 8. 5

(9.4) Pc/*δ=0, hcbx=fzcfyb*zy

x.

Thus, taking account of the well known formula

then we have

(9. 5) KdcbafXa = KdcyXfyb

by means of the first equation of (9. 4). Transvecting (9. 5) with fe

b, we find

which implies together with the first equation of (9. 3) and the second equation of
(9.4)

k=Q

and consequently Kkjih=Q. Therefore, the enveloping space W should be locally
flat. Thus we have

THEOREM 9. 1. In a Fubini space, which is not locally flat, there exists no
metric f- surf ace such that SCb

a= 0, the induced f- structure fba is integrable and the
holomorphic extension of tangent space of the f -surface coincides with the tangent
space of the enveloping Fubini space at each point of the f -surf ace.

Taking account of (9. 4), we have from Theorems 6. 2 and 6. 3

THEOREM 9. 2. If, in a Euclidean space EN of even dimensions with the
natural Kάhlerian structure, there is given a normal metric f -surf ace V such that
the induced f -structure fba is integrable and the holomorphic extension of tangent
space of the surface coincides with the tangent space of the enveloping Euclidean

r^>
space EN, then the surface is conjugate to a portion of a submanifold V appearing
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in Theorem 6. 3 under the group of all motions operating on EN and preserving the
complex structure of EN and the induced connection {c

ab} is locally flat.

We next suppose that a metric /-surface V in a Fubini space W is /-umbilic
and the holomorphic extension T?(V) of tangent space of V coincides with the
tangent space TP( W)oί W at each point of V. Then we have from (8. 16)

(9. 6) hcb

x=A*gcb+fz

cfybBzy*, Bzy*=Byz

x.

Substituting (9. 6) in the second equation of (9. 3), we find

k(fxdfcb ~fxcfdb - 2fdcf
xb)

=VdA
xgcb-VcA

xgdb

(9.7)
+ [(PdΛλΛa - (Pcfvd)fub +fυc(Pdf

ub) -fυd(Pcf
ub)]Bυu

x

+fv

cf
ubPdBυu

x -fv

df
u

bPcBυu

x.

Transvecting (9. 7) with fdcfy

b, we obtain

and, substituting (9. 6) in the second equations of (4. 2),

/dc(Pd/βc) = -r4',

r being the rank of the induced /-structure /δ

α. From these two equations we have

(9.8) kδ$ = -A*Bay*.

On the other hand, substituting the first equations of (4. 2) in the identity

(reMf*a+f**(ref*a)=o,
we find

tlcayfybfXa-hceXfyefyt>^U,

which implies together with (9. 6)

(9. 9) (n-r-l)Ax=Bvu

υgux-gυuBvu

x.

Thus we have

PROPOSITION 9. 1. If, in a Fubini space W, a metric f -surf ace is f -umbilic and
the holomorphic extension T?( V) of tangent space of V coincides with the tangent
space TP(W) of W at each point P of F, then equation (9. 8) and (9. 9) are valid.

If we now assume that Bzy

x appearing in (9. 6) has the form
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i.e. that hcb

x has the form

hcb

x=A*hcb+Bxmcb,

then (9. 8) and (9. 9) reduce respectively to

kgx*=-AxBy,
(9. 10)

(n-r-l)(Ax+B*)=Q.

The equations (9. 10) imply, provided n—r—1^0,

&=0, A*=0, #*=0

and consequently

(9.11) Aβ6*=0.

Therefore, the enveloping Fubini space W is necessarily locally flat and the surface
V is totally geodesic. Thus we have

THEOREM 9. 3. In a Fubini space W, which is not locally flat, there exists no
metric f-surf ace V such that its second fundamental tensor hcb

x has the form

hcb

x=Axgcb+Bxmcb

and the holomorphic extension T?(V) of tangent space of Vcoincides with the tangent
space TP(W) of W at each point of V, if the rank of the induced f-structure is smaller
than n—l, the surface V being n-dimensional.

THEOREM 9.4. When, in a locally flat Fubini space, there exists a metric f-surface
satisfying the conditions mentioned in Theorem 9. 3, the second fundamental tensor
hcb

x of the f-surface vanishes identically, i.e. the surface is totally geodesic, if
the rank of the induced f-structure is smaller than n—l, the surface being n-
dimensionaL

If, for a metric hypersurface in a Euclidean space of even dimensions n+l,
the conditions mentioned in Theorem 9. 4 are satisfied, then the hypersurface is a
portion of a hypersphere Sn. If this is the case, the induced /-structure is of rank
n—l. (Cf. Kurita [4], Tashiro [10], [11], Tashiro and Tachibana [12], Yano and
Ishihara [21]).
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