SURFACES IN THE 4-DIMENSIONAL EUCLIDEAN SPACE ISOMETRIC TO A SPHERE

By Tominosuke $\bar{O}_{\text {tsuki }}$

In [3], the author introduced some kinds of curvatures and torsion form for surfaces in a higher dimensional Euclidean space. These curvatures are linearly dependent on the Gaussian curvature and carry out the same rôles of the curvature and the torsion of a curve in the 3 -dimensional Euclidean space with the torsion form. In the present paper, the author will investigate the isometric immersions of the two dimensional sphere into the 4 -dimensional Euclidean space with constant curvatures.

§ 1. Preliminaries.

Let M^{2} be a 2 -dimensional oriented Riemannian C^{∞}-manifold with an isometric immersion

$$
x: \quad M^{2} \rightarrow E^{4}
$$

of M^{2} into a 4 -dimensional Euclidean space E^{4}. Let $F\left(M^{2}\right)$ and $F\left(E^{4}\right)$ be the bundles of orthonormal frames of M^{2} and E^{4} respectively. Let B be the set of elements $b=\left(p, e_{1}, e_{2}, e_{3}, e_{4}\right)$ such that ($\left.p, e_{1}, e_{2}\right) \in F\left(M^{2}\right)$ and $\left(x(p), e_{1}, e_{2}, e_{3}, e_{4}\right) \in F\left(E^{4}\right)$ whose orientations is coherent with the one of E^{4}, identifying e_{i} with $d x\left(e_{i}\right), i=1,2 . \quad B \rightarrow M^{2}$ may be considered as a principal bundle with the fibre $O(2) \times S O(2)$. Let

$$
\tilde{x}: \quad B \rightarrow F\left(E^{4}\right)
$$

be the mapping naturally defined by $\tilde{x}(b)=\left(x(p), e_{1}, e_{2}, e_{3}, e_{4}\right)$. Let B_{ν} be the set of elements (p, e) such that $p \in M^{2}$ and e is a unit normal vector to the tangent plane $d x\left(T_{p}\left(M^{2}\right)\right)$ at $x(p) . \quad B_{\nu} \rightarrow M^{2}$ is the so-called normal circle bundle of M^{2} in E^{4} whose fibre at p is denoted by S_{p}^{1}. Let S_{0}^{3} be the unit 3 -sphere in E^{4} with the origin as its center. Let

$$
\tilde{\nu}: \quad B \rightarrow S_{0}^{3}
$$

be the mapping defined by $\tilde{\nu}(p, e)=e$.
We have the differential forms $\omega_{1}, \omega_{2}, \omega_{12}, \omega_{13}, \omega_{14}, \omega_{23}, \omega_{24}, \omega_{34}$ on B derived from the basic forms and the connection forms on $F\left(E^{4}\right)$ of the Euclidean space E^{4} through \tilde{x} as follows:

Received September 27, 1965.
(1) $\quad\left\{\begin{array}{rr}d x=\omega_{1} e_{1}+\omega_{2} e_{2}, & d e_{A}=\sum_{B=1}^{4} \omega_{A B} e_{B}, \\ \omega_{A B}=-\omega_{B A} & \end{array}\right.$
(2) $\left\{\begin{array}{l}d \omega_{1}=\omega_{2} \wedge \omega_{21}, \quad d \omega_{2}=\omega_{1} \wedge \omega_{12} \\ d \omega_{12}=\sum_{r=3}^{4} \omega_{1 r} \wedge \omega_{r 2}, \quad d \omega_{34}=\sum_{\imath=1}^{2} \omega_{3 \iota} \wedge \omega_{i 4} \\ d \omega_{i r}=\omega_{i \jmath} \wedge \omega_{j r}+\omega_{i t} \wedge \omega_{t r},\end{array}\right.$

$$
i, j=1,2, i \neq j ; \quad r, t=3,4, r \neq t
$$

and

$$
\begin{equation*}
\omega_{i r}=\sum_{j=1}^{2} A_{r i j} \omega_{j}, \quad A_{r i \jmath}=A_{r j i} . \tag{3}
\end{equation*}
$$

$\omega_{1}, \omega_{2}, \omega_{12}$ may be considered as the basic forms and the connection form on $F\left(M^{2}\right)$ of M^{2} and the Gaussian curvature of M^{2} at p is given by

$$
\begin{equation*}
d \omega_{12}=-G(p) \omega_{1} \wedge \omega_{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
G(p)=\sum_{r=3}^{4}\left(A_{r 11} A_{r 22}-A_{r 12} A_{r 12}\right) . \tag{5}
\end{equation*}
$$

The Lipschitz-Killing curvature at $(p, e) \in B_{\nu}$ is given by

$$
\begin{equation*}
G(p, e)=\operatorname{det}\left(A_{3 \imath \jmath} \cos \theta+A_{4 i \jmath} \sin \theta\right), \tag{6}
\end{equation*}
$$

where $e=e_{3} \cos \theta+e_{4} \sin \theta,\left(p, e_{1}, e_{2}, e_{3}, e_{4}\right) \in B$.
The total curvature at $p \in M^{2}$ is given by

$$
\begin{equation*}
K^{*}(p)=\int_{0}^{2 \pi}|G(p, e)| d \theta \tag{7}
\end{equation*}
$$

Now, for any $e \in S_{0}^{3}$, let $m_{i}(e)$ be the number of critical points of index i for the function

$$
x \cdot e: \quad M^{2} \rightarrow R, \quad(x \cdot e)(p)=x(p) \cdot e
$$

and put

$$
\begin{equation*}
m(e)=\sum_{i=0}^{2} m_{i}(e) . \tag{8}
\end{equation*}
$$

Let us assume that M^{2} is of genus g, then by virtue of the Morse's inequalities we have

$$
\left\{\begin{array}{l}
m_{0}(e) \geqq 1, \quad m_{1}(e)-m_{0}(e) \geqq 2 g-1, \tag{9}\\
m_{2}(e)-m_{1}(e)+m_{0}(e)=2(1-g)=\chi\left(M^{2}\right)
\end{array}\right.
$$

for any $e \epsilon S_{0}^{3}$, except a set of measure 0 , where $\chi\left(M^{2}\right)$ denotes the Euler characteristic of M^{2}. Then we have

$$
\begin{equation*}
\int_{M^{2}} K^{*}(p) d V=\int_{S_{0}^{3}} m(e) d \Sigma_{3}, \tag{10}
\end{equation*}
$$

where $d V=\omega_{1} \wedge \omega_{2}$ and $d \Sigma_{3}$ are the volume elements of M^{2} and $S_{0.1}^{3}{ }^{1)}$
Let $\lambda(p)$ and $\mu(p)$ be the maximum and the minimum of $G(p, e)$ on S_{p}^{1} respectively. $\lambda(p)$ and $\mu(p)$ are continuous on M^{2} and differentiable on the open subset of M^{2} in which $\lambda \neq \mu . \quad \lambda$ and μ are called the principal curvature and the secondary curvature of M^{2} in E^{4} respectively. Let (p, \bar{e}_{3}) be a point of B_{ν} at which $G\left(p, \bar{e}_{3}\right)$ $=\lambda(p)$. If $\lambda(p) \neq \mu(p)$, there exist two such points that they are two vectors at $x(p)$ with the opposite directions. For any $\left(p, e_{1}, e_{2}\right) \in F\left(M^{2}\right)$, the element $b=\left(p, e_{1}, e_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$ ϵB is uniquely determined from \bar{e}_{3} and $G\left(p, \bar{e}_{4}\right)=\mu(p) . \quad b=\left(p, e_{1}, e_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$ is called a Frenet frame of M^{2} in E^{4}. Then

$$
\begin{equation*}
G(p, e)=\lambda(p) \cos ^{2} \theta+\mu(p) \sin ^{2} \theta, \tag{11}
\end{equation*}
$$

where $e=\bar{e}_{3} \cos \theta+\bar{e}_{4} \sin \theta$, and we have

$$
\begin{equation*}
\lambda(p)+\mu(p)=G(p) \tag{12}
\end{equation*}
$$

Now, let us introduce the open set of M^{2} by

$$
M_{-}=\left\{p \in M^{2}, \lambda(p) \mu(p)<0\right\}
$$

and the continuous function $\alpha(p)$ on M_{-}by

$$
\begin{equation*}
\cos 2 \alpha=-\frac{\lambda+\mu}{\lambda-\mu}, \quad 0<\alpha<\frac{\pi}{2} . \tag{13}
\end{equation*}
$$

Then, we have

$$
K^{*}(p)= \begin{cases}(4 \alpha-\pi) G(p)+4 \sqrt{-\lambda_{\mu}} & \left(p \in M_{-}\right), \\ \pi|G(p)| & \left(p \bar{\epsilon} M_{-}\right)\end{cases}
$$

Making use of (10), (9), the above equations and the Euler's formula:

$$
\int_{M^{2}} G(p) d V=2 \pi \chi\left(M^{2}\right)=4 \pi(1-g),
$$

we get the following formulas

$$
\begin{equation*}
\int_{S_{0}^{3}} m_{1}(e) d \Sigma_{3}=-\pi \int_{M_{2}} G(p) d V+2 \int_{M_{-}}\left\{-\left(\frac{\pi}{2}-\alpha\right) G+\sqrt{-\lambda \mu}\right\} d V,^{2)} \tag{14}
\end{equation*}
$$

[^0]where $M_{2}=\left\{p \in M^{2}, \lambda(p) \leqq 0\right\}$. We will be mainly concerned with this formula (14) in this paper.

Now, a local cross-section $b=\left(p, e_{1}, e_{2}, \bar{e}_{3}(p), \bar{e}_{4}(p)\right)$ of $B \rightarrow F\left(M^{2}\right)$, whose image consists of Frenet frames, is called a Frenet cross-section. Making use of a differentiable Frenet cross-section $b=\left(p, e_{1}, e_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$ of $B \rightarrow F\left(M^{2}\right)$, we have

$$
\left\{\begin{align*}
d x= & \omega_{1} e_{1}+\omega_{2} e_{2} \tag{15}\\
d e_{1}= & \omega_{12} e_{1}+\omega_{13} \bar{e}_{3}+\omega_{14} \bar{e}_{4} \tag{16}\\
d e_{2}= & -\omega_{12} e_{1}+\quad \omega_{23} \bar{e}_{3}+\omega_{24} \bar{e}_{4} \tag{17}\\
d \bar{e}_{3}= & -\omega_{13} e_{1}-\omega_{23} e_{2} \quad+\bar{\omega}_{34} \bar{e}_{4} \tag{18}\\
d \bar{e}_{4}= & -\omega_{14} e_{1}-\omega_{24} e_{2}-\bar{\omega}_{34} \bar{e}_{3} \\
& \omega_{13} \wedge \omega_{23}=\lambda(p) \omega_{1} \wedge \omega_{2} \\
& \omega_{14} \wedge \omega_{24}=\mu(p) \omega_{1} \wedge \omega_{2} \\
& \omega_{13} \wedge \omega_{24}+\omega_{14} \wedge \omega_{23}=0
\end{align*}\right.
$$

$\bar{\omega}_{34}=d \bar{e}_{3} \cdot \bar{e}_{4}$ is a 1-form on the domain of the local cross-section in M^{2} and it is called the torsion form of M^{2} in E^{4}.

§2. M^{2} diffeomorphic to S^{2}.

Let M^{2} be diffeomorphic to a two dimensional sphere S^{2}, then from (9) we have

$$
\begin{equation*}
m_{0}(e) \geqq 1, \quad m_{2}(e) \geqq 1, \quad m_{1}(e)=m_{0}(e)+m_{2}(e)-2 \tag{19}
\end{equation*}
$$

for $e \in S_{0}^{3}$, except a set of measure 0 . Hence

$$
\begin{equation*}
m(e)=2\left(m_{0}(e)+m_{2}(e)-1\right) \geqq 2 \tag{20}
\end{equation*}
$$

and the equality holds only when $m_{0}(e)=m_{2}(e)=1$. If the equality holds for ${ }^{3}$ almost $e \in S_{0}^{3}$, from (9) we get

$$
\int_{M^{2}} K^{*}(p) d V=2 c_{3}
$$

and so M^{2} is a convex surface imbedded in a hyperplane by virtue of ChernLashof's theorem [1], where c_{3} denotes the volume of the unit 3 -sphere S_{0}^{3} and is equal to $2 \pi^{2}$. Hence we have

Theorem 1. Let M^{2} be a two-dimensional Riemannian manifold diffeomorphic to a sphere and admitting an isometric immersion $x: M^{2} \rightarrow E^{4}$. If there exists no hyperplane containing $x\left(M^{2}\right)$, then the measure of the set of $e \in S_{0}^{3}$ such that $m(e) \geqq 4$ is positive.

Theorem 2. Let M^{2} be a two-dimensional Riemannian manifold with non-

[^1]negative Gaussian curvature, diffeomorphic to a sphere and admitting an isometric immersion $x: M^{2} \rightarrow E^{4}$. If there exists no hyperplane containing $x\left(M^{2}\right)$, then the secondary curvature μ is negative at a point.

Proof. If $\mu \geqq 0$ everywhere, it must be $M_{-}=\phi$. It may be put $M_{2}=\phi$ since $G(p) \geqq 0$ everywhere. From (14), we get

$$
\int_{S_{0}^{3}} m_{1}(e) d \Sigma_{3}=0
$$

which follows $m_{1}(e)=m_{0}(e)+m_{2}(e)-2=0$, hence $m(e)=2$ for almost points $e \in S_{0}^{3}$. By Theorem 1, there exists a hyperplane containing $x\left(M^{2}\right)$. This contradicts the assumptions.

Theorem 3. Let M^{2} be a two dimensional Riemannian manifold with constant positive Gaussian curvature $1 / a^{2}$, diffeomorphic to a sphere and admitting an isometric immersion $x: M^{2} \rightarrow E^{4}$. If there exists no hyperplane containing $x\left(M^{2}\right)$, the principal curvature λ is constant and $m(e)=4$ for almost $e \in S_{0}^{3}$, then $\lambda a^{2}=t$ is a constant such that

$$
\begin{equation*}
\sin \sqrt{t(t-1)}=\frac{1}{2 t-1}, \quad 1.5<t<2 \tag{21}
\end{equation*}
$$

Proof. By (12) and Theorem 2, the secondary curvature μ of $x: M^{2} \rightarrow E^{4}$ is a negative constant and $\lambda a^{2}=t>1$. Accordingly, α is also constant on $M_{-}=M^{2}$. By the assumption, $m_{0}(e)+m_{2}(e)=3$ and $m_{1}(e)=1$. Hence from (14) we have

$$
\begin{aligned}
c_{3} & =2 \pi^{2}=2 \int_{M^{2}}\left\{\sqrt{\lambda\left(\lambda-\frac{1}{a^{2}}\right)}-\left(\frac{\pi}{2}-\alpha\right) \frac{1}{a^{2}}\right\} d V \\
& =8 \pi\left\{\sqrt{\overline{t(t-1)}}-\left(\frac{\pi}{2}-\alpha\right)\right\}
\end{aligned}
$$

hence
(22)

$$
\frac{3 \pi}{4}-\alpha=\sqrt{\bar{t}(t-1)}
$$

On the other hand, from (13) we get

$$
\cos 2 \alpha=-\frac{1}{2 t-1}
$$

hence

$$
\sin 2 \sqrt{t(t-1)}=\sin \left(\frac{3 \pi}{2}-2 \alpha\right)=-\cos 2 \alpha=\frac{1}{2 t-1}
$$

and

$$
\frac{\pi}{4}<\alpha<\frac{\pi}{2}
$$

From (22), it must be

$$
\frac{1}{2}+\sqrt{\frac{\pi^{2}}{16}+\frac{1}{4}}=1.43 \cdots<t<\frac{1}{2}+\sqrt{\frac{\pi^{2}}{4}+\frac{1}{4}}=2.14 \cdots .
$$

There exists a unique value in this interval that satisfies (21) and furthermore we can easily see that $1.5<t<2$.
§3. Two examples of analytic isometric immersions and imbeddings of \boldsymbol{S}^{2} in \boldsymbol{E}^{4}.
In this section, we shall give two examples of isometric immersions and imbeddings of a sphere S^{2} into E^{4} such that the immersion or the imbedding $x: S^{2} \rightarrow E^{4}$ is analytic and the image $x\left(S^{2}\right)$ is not contained in any hyperplane of E^{4}.

As in the ordinary method, we represent S^{2} by
(23) $\quad x_{1}=a \sin u \cos v, \quad x_{2}=a \sin u \sin v, \quad x_{3}=a \cos u \quad 0 \leqq u \leqq \pi, \quad 0 \leqq v<2 \pi$
in E^{3}. Its line element is

$$
\begin{equation*}
d s^{2}=a^{2} d u^{2}+a^{2} \sin ^{2} u d v^{2} . \tag{24}
\end{equation*}
$$

Example 1. Let $x: S^{2} \rightarrow E^{4}$ be given by

$$
\left\{\begin{array}{l}
x_{1}=\frac{a}{2} \sin ^{2} u \cos 2 u=\frac{a}{8}(-1+2 \cos 2 u-\cos 4 u), \tag{25}\\
x_{2}=\frac{a}{2} \sin ^{2} u \sin 2 u=\frac{a}{8}(\quad 2 \sin 2 u-\sin 4 u) \\
x_{3}=a \sin u \cos v, \quad x_{4}=a \sin u \sin v
\end{array}\right.
$$

We get easily

$$
d s^{2}=\sum_{A=1}^{4} d x_{A} d x_{A}=a^{2} d u^{2}+a^{2} \sin ^{2} u d v^{2}
$$

hence (25) is isometric. Except the north pole $(0,0,1)$ and the south pole $(0,0,-1)$, the mapping $x: S^{2} \rightarrow E^{4}$ is one-to-one and the two poles are mapped to the origin $(0,0,0,0)$ of E^{4}. Hence x is an analytic isometric immersion of S^{2} into E^{4}. Putting

$$
\begin{aligned}
& e_{1}^{*}=\frac{1}{a} \frac{\partial x}{\partial u}=\left(\frac{-\sin 2 u+\sin 4 u}{2}, \frac{\cos 2 u-\cos 4 u}{2}, \cos u \cos v, \cos u \sin v\right), \\
& e_{2}^{*}=\frac{1}{a \sin u} \frac{\partial x}{\partial v}=(0,0,-\sin v, \cos v), \\
& e_{3}^{*}=(-\sin 3 u, \cos 3 u, 0,0), \\
& e_{4}^{*}=\left(-\frac{\cos 2 u+\cos 4 u}{2},-\frac{\sin 2 u+\sin 4 u}{2}, \sin u \cos v, \sin u \sin v\right),
\end{aligned}
$$

$\left(p, e_{1}^{*}, e_{2}^{*}, e_{3}^{*}, e_{4}^{*}\right) \in B$ and $d x=e_{1}^{*} \omega_{1}^{*}+e_{2}^{*} \omega_{2}^{*}, \omega_{1}^{*}=a d u, \omega_{2}^{*}=a \sin u d v$. Putting

$$
d e_{A}^{*}=\sum_{B} \omega_{A B}^{*} e_{B}^{*}, \quad \omega_{i r}^{*}=\sum_{j} A_{r i j}^{*} \omega_{j}^{*},
$$

we have

$$
\left(A_{3 i j}^{*}\right)=\left(\begin{array}{cc}
\frac{3 \sin u}{a} & 0 \\
0 & 0
\end{array}\right), \quad\left(A_{4 i j}^{*}\right)=\left(\begin{array}{cc}
-\frac{1}{a} & 0 \\
0 & -\frac{1}{a}
\end{array}\right) .
$$

For $e=e_{3}^{*} \cos \theta+e_{4}^{*} \sin \theta$, the Lipschitz-Killing curvature is given by

$$
\begin{aligned}
G(p, e) & =\operatorname{det}\left(A_{3 i j}^{*} \cos \theta+A_{4 i j}^{*} \sin \theta\right) \\
& =\frac{1}{2 a^{2}}(1-\cos 2 \theta-3 \sin u \sin 2 \theta)
\end{aligned}
$$

hence

$$
\begin{equation*}
\chi(p)=\frac{1}{2 a^{2}}\left(1+\sqrt{1+9 \sin ^{2} u}\right), \quad \mu(p)=\frac{1}{2 a^{2}}\left(1-\sqrt{1+9 \sin ^{2} u}\right), \tag{26}
\end{equation*}
$$

$\mu \leqq 0$ and $\mu=0$ only at the poles.
Putting $\bar{e}_{2}=e_{2}^{*}, i=1,2, \bar{e}_{3}=e_{3}^{*} \cos \theta_{0}+e_{4}^{*} \sin \theta_{0}, \bar{e}_{4}=-e_{3}^{*} \sin \theta_{0}+e_{4}^{*} \cos \theta_{0}$, where

$$
\theta_{0}=\frac{3 \pi}{4}-\frac{\alpha_{0}}{2}, \quad \cos \alpha_{0}=\frac{3 \sin u}{\sqrt{1+9 \sin ^{2} u}}, \quad 0<\alpha_{0} \leqq \frac{\pi}{2},
$$

then ($p, \bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}$) is a Frenet frame, from which the torsion form of $x: S^{2} \rightarrow E^{4}$ is

$$
\begin{equation*}
\bar{\omega}_{34}=\omega_{34}^{*}+d \theta_{0}=\frac{9 \cos u\left(1+6 \sin ^{2} u\right)}{2\left(1+9 \sin ^{2} u\right)} d u . \tag{27}
\end{equation*}
$$

Since we can not choose θ so that

$$
A_{3 \imath \jmath}^{*} \cos \theta+A_{s i j}^{*} \sin \theta=0,
$$

there exists no hyperplane containing $x\left(S^{2}\right)$.
Example 2. Let $x: S^{2} \rightarrow E^{4}$ be given by

$$
\left\{\begin{array}{l}
x_{1}=\frac{4 a}{3} \cos ^{3} \frac{u}{2}=\frac{a}{3}\left(\cos \frac{3 u}{2}+3 \cos \frac{u}{2}\right) \tag{28}\\
x_{2}=\frac{4 a}{3} \sin ^{3} \frac{u}{2}=\frac{a}{3}\left(-\sin \frac{3 u}{2}+3 \sin \frac{u}{2}\right) \\
x_{3}=a \sin u \cos v, \quad x_{4}=a \sin u \sin v
\end{array}\right.
$$

This is an analytic isometric imbedding of S^{2} into E^{4}. Putting

$$
e_{1}^{*}=\frac{1}{a} \frac{\partial x}{\partial u}=\left(-\sin u \cos \frac{u}{2}, \sin u \sin \frac{u}{2}, \cos u \cos v, \cos u \sin v\right),
$$

$$
\begin{gathered}
e_{2}^{*}=\frac{1}{a \sin u} \frac{\partial x}{\partial v}=(0,0,-\sin v, \cos v), \\
e_{3}^{*}=\left(\cos u \cos \frac{u}{2},-\cos u \sin \frac{u}{2}, \sin u \cos v, \sin u \sin v\right), \\
e_{4}^{*}=\left(\sin \frac{u}{2}, \cos \frac{u}{2}, 0,0\right), \\
\left(p, e_{1}^{*}, e_{2}^{*}, e_{3}^{*}, e_{4}^{*}\right) \in B \text { and } d x=e_{1}^{*} \omega_{1}^{*}+e_{2}^{*} \omega_{2}^{*}, \omega_{1}^{*}=a d u, \omega_{2}^{*}=a \sin u d v . \quad \text { Putting } \\
d e_{A}^{*}=\sum_{B} \omega_{A B}^{*} e_{B}^{*}, \quad \omega_{i r}^{*}=\sum_{j} A_{r i}^{*} \omega_{j}^{*},
\end{gathered}
$$

we have

$$
\begin{array}{ll}
\omega_{12}^{*}=\cos u d v, \quad \omega_{13}^{*}=-d u, & \omega_{14}^{*}=\frac{1}{2} \sin u d u, \quad \omega_{23}^{*}=-\sin u d v, \\
\omega_{24}^{*}=0, \\
\left(A_{3 i j}^{*}\right)=\left(\begin{array}{cc}
-\frac{1}{a} & 0 \\
0 & -\frac{1}{a}
\end{array}\right), \quad\left(A_{4 i j}^{*}\right)=\left(\begin{array}{cc}
\frac{\sin u}{2 a} & 0 \\
0 & 0
\end{array}\right) .
\end{array}
$$

For $e=e_{3}^{*} \cos \theta+e_{4}^{*} \sin \theta$, the Lipschitz-Killing curvature is given by

$$
G(p, e)=\frac{1}{2 a^{2}}\left(1+\cos 2 \theta-\frac{\sin u}{2} \sin 2 \theta\right),
$$

hence

$$
\begin{equation*}
\lambda(p)=\frac{1}{2 a^{2}}\left(1+\sqrt{1+\frac{\sin ^{2} u}{4}}\right), \quad \mu(p)=\frac{1}{2 a^{2}}\left(1-\sqrt{1+\frac{\sin ^{2} u}{4}}\right) . \tag{29}
\end{equation*}
$$

Putting $\bar{e}_{i}=e_{2}^{*}, i=1,2, \bar{e}_{3}=\bar{e}_{3}^{*} \cos \theta_{0}+e_{4}^{*} \sin \theta_{0}, \bar{e}_{4}=-e_{3}^{*} \sin \theta_{0}+e_{4}^{*} \cos \theta_{0}$, where

$$
\theta_{0}=\pi-\frac{\alpha_{0}}{2}, \quad \cos \alpha_{0}=\frac{1}{\sqrt{1+\frac{\sin ^{2} u}{4}}}, \quad 0 \leqq \alpha_{0}<\frac{\pi}{2}
$$

then ($p, \bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}$) is a Frenet frame, from which the torsion form of this imbedding is

$$
\begin{equation*}
\bar{\omega}_{34}=\omega_{34}^{*}+d \theta_{0}=-\frac{\cos u\left(6+\sin ^{2} u\right)}{2\left(4+\sin ^{2} u\right)} d u . \tag{30}
\end{equation*}
$$

Since we can not choose θ so that

$$
A_{3 i \jmath}^{*} \cos \theta+A_{4 i \jmath}^{*} \sin \theta=0,
$$

there exists no hyperplane containing $x\left(S^{2}\right)$.
Now, for the two isometric mappings we have

$$
\lambda(p)=\frac{1}{2 a^{2}}\left(1+\sqrt{1+h^{2} \sin ^{2} u}\right) \geqq \frac{1}{a^{2}}, \quad \mu(p)=\frac{1}{2 a^{2}}\left(1-\sqrt{1+h^{2} \sin ^{2} u}\right) \leqq 0,
$$

where $h=3$ or $1 / 2$, hence (14) becomes

$$
\begin{aligned}
\int_{s_{0}^{3}} m_{1}(e) d \Sigma_{3}= & \int_{M^{2}}\left\{-(\pi-2 \alpha) \frac{1}{a^{2}}+2 \sqrt{-\lambda \mu}\right\} d V \\
= & \int_{0}^{2 \pi} \int_{0}^{\pi}\left(-\sin u \cos ^{-1} \frac{1}{\sqrt{1+h^{2} \sin ^{2} u}}+h \sin ^{2} u\right) d u d v \\
= & 2 \pi\left\{\left[\cos u \cos ^{-1} \frac{1}{\sqrt{1+h^{2} \sin ^{2} u}}\right]_{0}^{\pi}-h \int_{0}^{\pi} \frac{\cos ^{2} u}{1+h^{2} \sin ^{2} u} d u\right. \\
& \left.\quad+h \int_{0}^{\pi} \sin ^{2} u d u\right\}=\frac{2-2 \sqrt{1+h^{2}}+h^{2}}{h} \pi^{2} .
\end{aligned}
$$

Accordingly, we have

$$
\frac{\int_{s_{0}^{3}} m_{1}(e) d \Sigma_{3}}{c_{3}}=\frac{2-2 \sqrt{1+h^{2}}+h^{2}}{2 h}= \begin{cases}\frac{11-2 \sqrt{10}}{6} \doteqdot 0.779 & (h=3) \\ 2+\frac{1}{4}-\sqrt{5} \doteqdot 0.014 & \left(h=\frac{1}{2}\right)\end{cases}
$$

This shows that for the isometric mappings (25) and (28), $m_{0}(e)=m_{2}(e)=1$ and $m_{1}(e)$ $=0$ hold good for $e \in S_{0}^{3}$, at least about 22.1% and 98.6% of the point of S_{0}^{3} respectively.

§4. An example of isometric imbedding of S^{2} in \boldsymbol{E}^{4} with constant curvatures.

The two examples in $\S 3$ are constructed by the method that taking the plane curves:

$$
x_{1}=\frac{a}{2} \sin ^{2} u \cos 2 u, \quad x_{2}=\frac{a}{2} \sin ^{2} u \sin 2 u
$$

and

$$
x_{1}=\frac{4 a}{3} \cos ^{3} \frac{u}{2}, \quad x_{2}=\frac{4 a}{3} \sin ^{3} \frac{u}{2} \quad \text { (asteroid) }
$$

corresponding to the segment in E^{3} joining the two poles of S^{2}, the parallel circles of S^{2} are transformed to the circles in E^{4} with their centers on these curves that the planes containing these circles are parallel to the $x_{3} x_{4}$-coordinate plane. By means of the same method, let $x: S^{2} \rightarrow E^{4}$ be given by

$$
\begin{equation*}
x_{1}=a f(u), \quad x_{2}=a g(u), \quad x_{3}=a \sin u \cos v, \quad x_{4}=a \sin u \sin v, \tag{31}
\end{equation*}
$$

where $f(u)$ and $g(u)$ are indetermined functions. In order that x is isometric, it must be

$$
\begin{equation*}
f^{\prime 2}+g^{\prime 2}=\sin ^{2} u \tag{32}
\end{equation*}
$$

Putting

$$
\begin{aligned}
& e_{1}^{*}=\frac{1}{a} \frac{\partial x}{\partial u}=\left(f^{\prime}(u), g^{\prime}(u), \cos u \cos v, \cos u \sin v\right), \\
& e_{2}^{*}=\frac{1}{a \sin u} \frac{\partial x}{\partial u}=(0,0,-\sin v, \cos v),
\end{aligned}
$$

$d x=e_{1}^{*} \omega_{1}^{*}+e_{2}^{*} \omega_{2}^{*}, \omega_{1}^{*}=a d u, \omega_{2}^{*}=a \sin u d v$. Let $e=\left(\xi_{1}, \xi_{2}, \rho \cos v, \rho \sin v\right)$ be a normal unit vector at $x(p)$, then

$$
\xi_{1}^{2}+\xi_{2}^{2}+\rho^{2}=1, \quad \xi_{1} f^{\prime}+\xi_{2} g^{\prime}+\rho \cos u=0,
$$

from which putting

$$
\begin{aligned}
& e_{3}^{*}=\left(-\frac{\cos u}{\sin u} f^{\prime}(u),-\frac{\cos u}{\sin u} g^{\prime}(u), \sin u \cos v, \sin u \sin v\right), \\
& e_{4}^{*}=\left(\frac{1}{\sin u} g^{\prime}(u),-\frac{1}{\sin u} f^{\prime}(u), 0,0\right), \quad 0<u<\pi,
\end{aligned}
$$

$\left(x(p), e_{1}^{*}, e_{2}^{*}, e_{3}^{*}, e_{4}^{*}\right) \in F\left(E^{4}\right)$. Assuming ($\left.p, e_{1}^{*}, e_{2}^{*}, e_{3}^{*}, e_{4}^{*}\right) \in B$ and putting

$$
d e_{A}^{*}=\sum_{B} \omega_{A B}^{*} B e_{B}^{*}, \quad \omega_{i r}^{*}=\sum_{J} A_{r i j}^{*} \omega_{j}^{*},
$$

we have

$$
\begin{gathered}
\omega_{12}^{*}=\cos u d v, \quad \omega_{13}^{*}=-d u, \quad \omega_{14}^{*}=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\sin u} d u, \\
\omega_{23}^{*}=-\sin u d v, \quad \omega_{24}^{*}=0, \\
\left(A_{3 i j}^{*}\right)=\left(\begin{array}{cc}
-\frac{1}{a} & 0 \\
0 & -\frac{1}{a}
\end{array}\right), \quad\left(A_{4 i j}^{*}\right)=\left(\begin{array}{cc}
\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{a \sin u} & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

For $e=e_{3}^{*} \cos \theta+e_{4}^{*} \sin \theta$, the Lipschitz-Killing curvature is given by

$$
G(p, e)=\frac{1}{2 a^{2}}\left(1+\cos 2 \theta-\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\sin u} \sin 2 \theta\right),
$$

hence

$$
\left\{\begin{array}{l}
\lambda(p)=\frac{1}{2 a^{2}}\left(1+\sqrt{1+\frac{\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)^{2}}{\sin ^{2} u}}\right), \tag{33}\\
\mu(p)=\frac{1}{2 a^{2}}\left(1-\sqrt{1+\frac{\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)^{2}}{\sin ^{2} u}}\right)
\end{array} \quad(0<u<\pi) .\right.
$$

Therefore, in order that the principal curvature λ is constant, it must be

$$
\begin{equation*}
f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}=c \sin u, \quad c=\text { constant } . \tag{34}
\end{equation*}
$$

By means of (32), we have

$$
g^{\prime}=\varepsilon \sqrt{\sin ^{2} u-f^{\prime 2}}, \quad g^{\prime \prime}=\frac{\varepsilon\left(\sin u \cos u-f^{\prime} f^{\prime \prime}\right)}{\sqrt{\sin ^{2} u-f^{\prime 2}}} \quad(\varepsilon= \pm 1)
$$

and, putting these into (34), we get

$$
\begin{equation*}
f^{\prime \prime} \sin u-f^{\prime} \cos u=\varepsilon c \sqrt{\sin ^{2} u-f^{\prime 2}} \tag{35}
\end{equation*}
$$

$f^{\prime}=\sin u$ is a special solution of (35) which gives an isometric imbedding equivalent to $S^{2} \subset E^{3}$. Now, putting $f^{\prime}=\varphi \sin u,|\varphi| \leqq 1$, we get from (35) the equation with respect to φ

$$
\frac{\varphi^{\prime}}{\sqrt{1-\varphi^{2}}}=\frac{\varepsilon c}{\sin u},
$$

from which we have

$$
\varphi=\sin \left(\varepsilon c \log \tan \frac{u}{2}+c_{1}\right), \quad 0<u<\pi,
$$

where c_{1} is a constant. Accordingly, we have

$$
\begin{aligned}
& f^{\prime}=\sin u \sin \left(\varepsilon c \log \tan \frac{u}{2}+c_{1}\right), \\
& g^{\prime}=\varepsilon \sin u\left|\cos \left(\varepsilon c \log \tan \frac{u}{2}+c_{1}\right)\right| .
\end{aligned}
$$

Making use of the continuity of f^{\prime} and g^{\prime} and changing suitably the constants c and c_{1}, we may put

$$
\begin{aligned}
& f^{\prime}=\sin u \sin \left(c \log \tan \frac{u}{2}+c_{1}\right), \\
& g^{\prime}=\sin u \cos \left(c \log \tan \frac{u}{2}+c_{1}\right), \quad 0<u<\pi,
\end{aligned}
$$

which satisfy clearly (34) and ($p, e_{1}^{*}, e_{2}^{*}, e_{3}^{*}, e_{4}^{*}$) $\in B$, since

$$
\lim _{u \rightarrow 0} \operatorname{det}\left(e_{1}^{*} e_{2}^{*} e_{3}^{*} e_{4}^{*}\right)=1 .
$$

Accordingly, we have

$$
\begin{equation*}
f(u)=\int_{0}^{u} \sin u \sin \left(c \log \tan \frac{u}{2}+c_{1}\right) d u+c_{2}, \tag{36}
\end{equation*}
$$

$$
g(u)=\int_{0}^{u} \sin u \cos \left(c \log \tan \frac{u}{2}+\dot{c_{1}}\right) d u+c_{3}
$$

where c_{2} and c_{3} are constants. f and g are analytic in the interval $0<u<\pi$, of class C^{1} but not of class C^{2} on the interval $0 \leqq u \leqq \pi$. Let ($p, \bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}$), $\bar{e}_{1}=e_{1}^{*}, \bar{e}_{2}$ $=e_{2}^{*}, \bar{e}_{3}=e_{3}^{*} \cos \theta_{0}+e_{4}^{*} \sin \theta_{0}, \bar{e}_{4}=-e_{3}^{*} \sin \theta_{0}+e_{4}^{*} \cos \theta_{0}$, be a Frenet frame, then θ_{0} is a constant by means of (34). And so, the torsion form of $x: S^{2} \rightarrow E^{4}$ is

$$
\bar{\omega}_{34}=\omega_{34}^{*}=-e_{3}^{*} \cdot d e_{4}^{*}=-\frac{c \cos u}{\sin u} d u, \quad(0<u<\pi),
$$

hence the torsion form is singular at the poles.
Essentially we may put $c_{1}=c_{2}=c_{3}=0$, but regarding the constant c we have

$$
t=\lambda a^{2}=\frac{1}{2}\left(1+\sqrt{1+c^{2}}\right),
$$

hence

$$
c=2 \sqrt{t(t-1)} .
$$

Thus we see that by this method we can not construct an isometric imbedding $x: \quad S^{2} \rightarrow E^{4}$ of class C^{2} with constant curvatures and $x\left(S^{2}\right)$ is not contained in any hyperplane in E^{4}.

§ 5. Tubular isometric immersions of S^{2} in E^{4} with constant curvatures.

We say a mapping x of S^{2} into E^{4} is a tubular isometric immersion, if x is an isometric immersion, the parallel circles of S^{2} are transformed to circles in E^{4} and the locus of the centers of these circles is orthogonal to the planes containing them.

Let $x: S^{2} \rightarrow E^{4}$ be a tubular isometric immersion and $y:[0, \pi] \rightarrow E^{4}$ be the mapping which represents the locus of the centers of the image circles of the parallel circles of S^{2}. Put

$$
\begin{equation*}
y=a \boldsymbol{f}, \quad \boldsymbol{f}=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \tag{37}
\end{equation*}
$$

and let ($y, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \boldsymbol{u}_{4}$) be its Frenet frame, that is

$$
\left\{\begin{array}{l}
d y=\boldsymbol{u}_{1} d \sigma, \tag{38}\\
d \boldsymbol{u}_{1}=\quad \boldsymbol{u}_{2} k_{1} d \sigma, \\
d \boldsymbol{u}_{2}=-\boldsymbol{u}_{1} k_{1} d \sigma+\quad \boldsymbol{u}_{3} k_{2} d \sigma, \\
d \boldsymbol{u}_{3}=r \quad-\boldsymbol{u}_{2} k_{2} d \sigma \quad+\boldsymbol{u}_{4} k_{3} d \sigma \\
d \boldsymbol{u}_{4}=
\end{array}\right.
$$

where σ denotes its arclength,

$$
\begin{equation*}
d \boldsymbol{\sigma}=a \sqrt{\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}} d u \tag{39}
\end{equation*}
$$

and k_{1}, k_{2}, k_{3} are its curvatures. Corresponding to $v=0$ and $v=\pi / 2$, let us introduce two orthogonal unit vectors

$$
\boldsymbol{p}=\sum_{\beta=2}^{4} \boldsymbol{u}_{\beta} p_{\beta}, \quad \boldsymbol{q}=\sum_{\beta=2}^{4} \boldsymbol{u}_{\beta} q_{\beta}
$$

such that

$$
\begin{equation*}
\boldsymbol{p} \cdot \boldsymbol{p}=\boldsymbol{q} \cdot \boldsymbol{q}=1, \quad \boldsymbol{p} \cdot \boldsymbol{q}=0 . \tag{40}
\end{equation*}
$$

Then, x can be written as

$$
\begin{equation*}
x=x(u, v)=y(u)+\boldsymbol{p} a \sin u \cos v+\boldsymbol{q} a \sin u \sin v . \tag{41}
\end{equation*}
$$

Since

$$
\begin{aligned}
d x=\boldsymbol{u}_{1} d \sigma & +\boldsymbol{p} a(\cos u \cos v d u-\sin u \sin v d v) \\
& +\boldsymbol{q} a(\cos u \sin v d u+\sin u \cos v d v) \\
& +\frac{d \boldsymbol{p}}{d u} a \sin u \cos v d u+\frac{d \boldsymbol{q}}{d u} a \sin u \sin v d u,
\end{aligned}
$$

the line element of $x: S^{2} \rightarrow E^{4}$ can be written as

$$
\begin{aligned}
d s^{2}= & a^{2}\left\{\left(\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}\right)+\cos ^{2} u-2 a\left(\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}\right) k_{1} \sin u\left(p_{2} \cos v+q_{2} \sin v\right)\right. \\
& \left.+\sin ^{2} u\left(\frac{d \boldsymbol{p}}{d u} \cdot \frac{d \boldsymbol{p}}{d u} \cos ^{2} v+\frac{d \boldsymbol{q}}{d u} \cdot \frac{d \boldsymbol{q}}{d u} \sin ^{2} v+2 \frac{d \boldsymbol{p}}{d u} \cdot \frac{d \boldsymbol{q}}{d u} \cos v \sin v\right)\right\} d u^{2} \\
+ & 2 a^{2} \sin ^{2} u\left(\boldsymbol{q} \cdot \frac{d \boldsymbol{p}}{d u}\right) d u d v+a^{2} \sin ^{2} u d v^{2}
\end{aligned}
$$

Hence, it must be

$$
\begin{gather*}
\boldsymbol{q} \cdot \frac{d \boldsymbol{p}}{d u}=0 \tag{42}\\
\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}-2 a\left(\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}\right) k_{1} \sin u\left(p_{2} \cos v+q_{2} \sin v\right)
\end{gather*}
$$

$$
\begin{equation*}
+\sin ^{2} u\left\|\frac{d \boldsymbol{p}}{d u} \cos v+\frac{d \boldsymbol{q}}{d u} \sin v\right\|^{2}=\sin ^{2} u \tag{43}
\end{equation*}
$$

From (43), it must be

$$
p_{2}=q_{2}=0 \quad \text { or } \quad k_{1}=0 .
$$

Case: $k_{1}=0$. (43) becomes

$$
\begin{gathered}
\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}+\sin ^{2} u\left\{\frac{1}{2}\left(\left\|\cdot \frac{d \boldsymbol{p}}{d u}\right\|^{2}+\left\|\frac{d \boldsymbol{q}}{d u}\right\|^{2}\right)+\frac{1}{2}\left(\left\|\frac{d \boldsymbol{p}}{d u}\right\|^{2}-\left\|\frac{d \boldsymbol{q}}{d u}\right\|^{2}\right) \cos 2 v\right. \\
\left.+\left(\frac{d \boldsymbol{p}}{d u} \cdot \frac{d \boldsymbol{q}}{d u}\right) \sin 2 v\right\}=\sin ^{2} u
\end{gathered}
$$

which is equivalent to

$$
\begin{equation*}
\left\|\frac{d \boldsymbol{p}}{d u}\right\|=\left\|\frac{d \boldsymbol{q}}{d u}\right\|, \quad \frac{d \boldsymbol{p}}{d u} \cdot \frac{d \boldsymbol{q}}{d u}=0 \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}=\sin ^{2} u\left(1-\left\|\frac{d \boldsymbol{p}}{d u}\right\|^{2}\right) \tag{45}
\end{equation*}
$$

In this case, we may consider $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \boldsymbol{u}_{4}$ being constant unit vectors and $\boldsymbol{f}=(f(u), 0,0,0)$. If \boldsymbol{p} is constant, then \boldsymbol{q} is also constant. If $d \boldsymbol{p} / d u \neq 0$, then $d \boldsymbol{q} / d u$
has the same direction as \boldsymbol{q} by (40), (42) and (44). Hence \boldsymbol{q} is a constant unit vector, hence \boldsymbol{p} must be a constant vector by (44), this contradicts the assumption. Hence, in the case, \boldsymbol{p} and \boldsymbol{q} are constant vectors and from (45) we have $f(u)= \pm \cos u$, thus the mapping x is equivalent to $S^{2} \rightarrow S^{2} \subset E^{3}$.

Case: $\quad p_{2}=q_{2}=0$. We rewrite (41) as

$$
\begin{equation*}
x=x(u, v)=y+\boldsymbol{u}_{3} a \sin u \cos \bar{v}+\boldsymbol{u}_{4} \alpha \sin u \sin \bar{v}, \quad \bar{v}=v-\varphi, \quad \varphi=\varphi(u) . \tag{46}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
d x= & \left\{\boldsymbol{u}_{1}+\left(-\boldsymbol{u}_{2} k_{2}+\boldsymbol{u}_{4} k_{3}\right) a \sin u \cos \bar{v}-\boldsymbol{u}_{3} \alpha k_{3} \sin u \sin \bar{v}\right\} d \sigma \\
& +\boldsymbol{u}_{3} a(\cos u \cos \bar{v} d u-\sin u \sin \bar{v} d \bar{v}) \\
& +\boldsymbol{u}_{4} a(\cos u \sin \bar{v} d u+\sin u \cos \bar{v} d \bar{v}),
\end{aligned}
$$

from which

$$
d s^{2}=\left(1+a^{2} k_{2}^{2} \sin ^{2} u \cos ^{2} \bar{v}\right) d \sigma^{2}+a^{2} \cos ^{2} u d u^{2}+a^{2} \sin ^{2} u\left(d \bar{v}+k_{3} d \sigma\right)^{2} .
$$

In order that x is an isometric immersion, it must be

$$
\begin{equation*}
\varphi=\int_{0}^{u} k_{3} \frac{d \sigma}{d u} d u+c, \quad c=\text { constant } \tag{47}
\end{equation*}
$$

and

$$
\left\{1+a^{2} k_{2}{ }^{2} \sin ^{2} u \cos ^{2}(v-\varphi)\right\}\left(\boldsymbol{f}^{\prime} \cdot \boldsymbol{f}^{\prime}\right)=\sin ^{2} u .
$$

Since u and v are independent variables, it must be $k_{2}=0$. Hence, the curve $y:[0, \pi] \rightarrow E^{4}$ is a plane curve. Furthermore,

$$
\boldsymbol{u}_{3} \cos \bar{v}+\boldsymbol{u}_{4} \sin \bar{v}=\left(\boldsymbol{u}_{3} \cos \varphi-\boldsymbol{u}_{4} \sin \varphi\right) \cos v+\left(\boldsymbol{u}_{3} \sin \varphi+\boldsymbol{u}_{4} \cos \varphi\right) \sin v
$$

and from (38) and (47)

$$
d\left(\boldsymbol{u}_{3} \cos \varphi-\boldsymbol{u}_{4} \sin \varphi\right)=d\left(\boldsymbol{u}_{3} \sin \varphi+\boldsymbol{u}_{4} \cos \varphi\right)=0 .
$$

Therefore, if x is not the trivial imbedding $S^{2} \rightarrow S^{2} \subset E^{3}$, then x must be equivalent to the one given in $\S 4$. Thus we get

Theorem 4. Any tubular isometric immersion of S^{2} into E^{4} with constant curvatures which is not equivalent to $S^{2} \rightarrow S^{2} \subset E^{3}$, is equivalent to the isometric immersion

$$
\left\{\begin{array}{l}
x_{1}=a \int_{0}^{u} \sin u \sin \left(c \log \tan \frac{u}{2}\right) d u \\
x_{2}=a \int_{0}^{u} \sin u \cos \left(c \log \tan \frac{u}{2}\right) d u \\
x_{3}=a \sin u \cos v, \quad x_{4}=a \sin u \sin v, \quad a, c \neq 0, \text { constants }
\end{array}\right.
$$

and it is of class C^{1} and not of class C^{2} on S^{2} but analytic on the subset excluded the two poles from S^{2}.

References

[1] Cnern, S. S., and R. K. Lashof, On the total curvature of immersed manifolds. Amer. J. Math., 79 (1957), 306-318.
[2] AND , On the total curvature of immersed manifolds, II. Michigan Math. J., 5 (1958), 5-12.
[3] Ötsuki, T., On the total curvature of surfaces in Euclidean spaces. Japanese J. Math., 35 (1966), 61-71.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 1) Where, ω_{1} and ω_{2} are considered only on the subbundle of $F\left(M^{2}\right)$ whose element (p, e_{1}, e_{2}) has the orientation coherent with the one of M^{2}.
 2) See [3], §3.
[^1]: 3) In the following, we use simply "almost" in place of "except a set of measure 0 ".
