$\left|\bar{N}, p_{n}\right|$ SUMMABILITY FACTORS OF INFINITE SERIES

By S. M. Mazhar

1.1. Let $\sum a_{n}$ be a given infinite series with s_{n} as its n-th partial sum. Also let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that P_{n} tends to infinity with n, where $P_{n}=\sum_{v=0}^{n} p_{v}$. We write

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{\nu} . \tag{1.1.1}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be absolutely summable (\bar{N}, p_{n}) or, simply summable $\left|\bar{N}, p_{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation.

If for some finite s

$$
\sum_{\nu=1}^{n}\left|s_{\nu}-s\right| p_{v}=o\left(P_{n}\right),
$$

as $n \rightarrow \infty$, then $\sum a_{n}$ is said to be strongly summable (\bar{N}, p_{n}) or, simply summable [\bar{N}, p_{n}]. If

$$
\sum_{\nu=1}^{n}\left|s_{\nu}\right| p_{\nu}=O\left(P_{n}\right)
$$

as $n \rightarrow \infty$, then $\sum a_{n}$ is said to be bounded $\left[\bar{N}, p_{n}\right]$.
Writing $p_{n}=1 / n$ in the above definitions we get summability $|R, \log n, 1|,{ }^{1)}$ summability $[R, \log n, 1]$ and bounded [$R, \log n, 1]$ respectively.
1.2. Suppose $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|$. Then, since

$$
s_{n+1} p_{n+1}=t_{n+1} P_{n+1}-t_{n} P_{n},
$$

we have

$$
\begin{aligned}
\sum_{1}^{m}\left|s_{n+1}\right| p_{n+1} & =\sum_{1}^{m}\left|\Delta t_{n} P_{n}\right| \\
& \leqq \sum_{1}^{m} P_{n}\left|\Delta t_{n}\right|+\sum_{1}^{m}\left|t_{n+1}\right|\left|\Delta P_{n}\right| \\
& =O\left(P_{m}\right)+O\left(\sum_{1}^{m}\left|\Delta P_{n}\right|\right)
\end{aligned}
$$

Received September 27, 1965.

1) Summability $|R, \log n, 1|$ is equivalent to the summability $|\bar{N}, 1 / n|$.

$$
=O\left(P_{m+1}\right) .
$$

Thus if a series $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|$ it is necessarily bounded $\left[\bar{N}, p_{n}\right]$. However the converse is not true.

The object of this paper is to obtain a suitable summability factor $\left\{\lambda_{n}\right\}$ so that boundedness $\left[\bar{N}, p_{n}\right]$ of $\sum a_{n}$ may imply $\left|\bar{N}, p_{n}\right|$ summability of $\sum a_{n} \lambda_{n}$.
2.1. In what follows we shall prove the following theorem.

Theorem 1. If Σa_{n} is bounded $\left[\bar{N}, p_{n}\right]$, where $\left\{p_{n+1} / p_{n}\right\}$ is bounded and if $\left\{\lambda_{n}\right\}$ is a bounded sequence satisfying the following conditions:
(a)

$$
\sum_{i}^{m}\left|\Delta \lambda_{n}\right|=O(1)
$$

(b)

$$
\sum_{2}^{m} \frac{p_{n}\left|\lambda_{n}\right|}{P_{n}}=O(1)
$$

(c)

$$
\sum_{2}^{m} P_{n}\left|\Delta \lambda_{n+1}\right|\left|\Delta \frac{1}{p_{n}}\right|=O(1)
$$

(d)

$$
\sum_{2}^{m} \frac{P_{n}}{p_{n}}\left|\Delta^{2} \lambda_{n}\right|=O(1)
$$

as $m \rightarrow \infty$, then $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|$.
It may be remarked that the special case for $p_{n}=1 / n$ of this theorem has been recently considered by Kulshrestha [2].
2. 2. Proof of Theorem 1. Let $c_{n}=a_{n} \lambda_{n}, T_{n}=\sum_{v=0}^{n} c_{\nu}$ and

$$
t_{n}^{*}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} T_{\nu} p_{v}
$$

We have

$$
\begin{aligned}
\Delta t_{n} & =\Delta\left(\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} T_{\nu}\right) \\
& =\Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n} p_{\nu} T_{\nu}-\frac{p_{n+1} T_{n+1}}{P_{n+1}} \\
& =-\Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-1} P_{\nu} c_{\nu+1}+\Delta\left(\frac{1}{P_{n}}\right) P_{n} T_{n}-\frac{p_{n+1} T_{n+1}}{P_{n+1}} \\
& =-\cdot \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n} P_{\nu} c_{\nu+1} \\
& =-\Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-1}\left(s_{\nu+1}-a_{0}\right) \Delta\left(P_{\nu} \lambda_{\nu+1}\right)-\Delta\left(\frac{1}{P_{n}}\right)\left(s_{n+1}-a_{0}\right) P_{n} \lambda_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
= & \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-1}\left(s_{\nu+1}-a_{0}\right) \lambda_{\nu+1} p_{\nu+1}-\Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-1}\left(s_{\nu+1}-a_{0}\right) P_{\nu+1} \Delta \lambda_{\nu+1} \\
& -\Delta\left(\frac{1}{P_{n}}\right)\left(s_{n+1}-a_{0}\right) P_{n} \lambda_{n+1} \\
= & \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} \Delta \lambda_{\nu+1} \sum_{\mu=0}^{\nu}\left(s_{\mu+1}-a_{0}\right) p_{\mu+1}+\Delta\left(\frac{1}{P_{n}^{-}}\right) \lambda_{n} \sum_{\mu=0}^{n-1}\left(s_{\mu+1}-a_{0}\right) p_{\mu+1} \\
& -\Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} \Delta\left\{\frac{P_{\nu+1}}{p_{\nu+1}} \Delta \lambda_{\nu+1}\right\} \sum_{\mu=0}^{\nu}\left(s_{\mu+1}-a_{0}\right) p_{\mu+1} \\
& -\Delta\left(\frac{1}{P_{n}}\right) \frac{P_{n}}{p_{n}} \Delta \lambda_{n} \sum_{\mu=0}^{n-1}\left(s_{\mu+1}-a_{0}\right) p_{\mu+1}-\Delta\left(\frac{1}{P_{n}}\right)\left(s_{n+1}-a_{0}\right) P_{n} \lambda_{n+1} \\
= & L_{1}+L_{2}+L_{3}+L_{4}+L_{5}, \quad \text { say. }
\end{aligned}
$$

Now

$$
\begin{align*}
\sum_{2}^{m}\left|L_{1}\right| & =O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2}\left|\Delta \lambda_{\nu+1}\right| P_{\nu+1}\right) \\
& =O\left(\sum_{0}^{m-2}\left|\Delta \lambda_{\nu+1}\right| P_{\nu+1} \sum_{\nu+2}^{m} \Delta\left(\frac{1}{P_{n}}\right)\right) \tag{2.2.1}\\
& =O\left(\sum_{\nu=0}^{m-2}\left|\Delta \lambda_{\nu+1}\right|\right)=O(1),
\end{align*}
$$

by virtue of the condition (a) of the hypotheses.
Next

$$
\begin{aligned}
\sum_{2}^{m}\left|L_{2}\right| & =O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right)\left|\lambda_{n}\right| P_{n}\right) \\
& =O\left(\sum_{2}^{m}\left|\lambda_{n}\right| \cdot \frac{p_{n+1}}{P_{n+1}}\right) \\
& =O\left(\sum_{2}^{m}\left|\lambda_{n}\right| \cdot \frac{p_{n}}{P_{n}}\right)=O(1),
\end{aligned}
$$

by the condition (b) and the hypothesis that $\left\{p_{n+1} / p_{n}\right\}$ is bounded.

Again

$$
\begin{aligned}
\sum_{2}^{m}\left|L_{3}\right| & =O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} P_{\nu+1}\left|\Delta\left\{\frac{P_{\nu+1}}{p_{\nu \mid 1}} \Delta \lambda_{\nu+1}\right\}\right|\right) \\
& =O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} P_{\nu+1} \frac{p_{\nu+2}}{p_{\nu+1}}\left|\Delta \lambda_{\nu+1}\right|\right)+O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} \frac{P_{\nu+1} P_{\nu+2}}{p_{\nu+1}}\left|\Delta^{2} \lambda_{\nu+1}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|\bar{N}, p_{n}\right| \text { SUMMABILITY FACTORS } \\
& +O\left(\left.\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} P_{\nu+1} P_{\nu+2}\left|\Delta \lambda_{\nu+2}\right| \Delta\left(\frac{1}{p_{\nu+1}}\right) \right\rvert\,\right) \\
& =O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-2} P_{\nu+1}\left|\Delta \lambda_{\nu+1}\right|\right)+O\left(\sum_{\nu=0}^{m-2} P_{\nu+1}\left|\Delta \lambda_{\nu+2}\right|\left|\Delta\left(\frac{1}{p_{\nu+1}}\right)\right|\right) \\
& +O\left(\sum_{\nu=0}^{m-2} \frac{P_{\nu+1}}{p_{\nu+1}}\left|\Delta^{2} \lambda_{\nu+1}\right|\right)=O(1),
\end{aligned}
$$

by (2.2.1) and conditions (c) and (d) respectively.
Next

$$
\begin{aligned}
\sum_{2}^{m}\left|L_{4}\right| & =O\left(\sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) \frac{P_{n}}{p_{n}}\left|\Delta \lambda_{n}\right| P_{n}\right) \\
& =O\left(\sum_{2}^{m}\left|\Delta \lambda_{n}\right|\right)=O(1) .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
\sum_{2}^{m}\left|L_{5}\right| & \leqq \sum_{2}^{m} \Delta\left(\frac{1}{P_{n}}\right) P_{n}\left|\lambda_{n+1}\right|\left|s_{n \mid 1}-a_{0}\right| \\
& =\sum_{2}^{m} \frac{p_{n+1}}{P_{n+1}}\left|\lambda_{n+1}\right|\left|s_{n+1}-a_{0}\right| \\
& =\sum_{2}^{m-1} \Delta\left(\frac{\left|\lambda_{n+1}\right|}{P_{n+1}}\right) \sum_{\mu=0}^{n} p_{\mu+1}\left|s_{\mu+1}-a_{0}\right|+\frac{\left|\lambda_{m+1}\right|}{P_{m+1}} \sum_{\mu=0}^{m} p_{\mu+1}\left|s_{\mu+1}-a_{0}\right|+O(1) \\
& =O\left(\sum_{2}^{m-1}\left|\frac{\left(\Delta\left|\lambda_{n+1}\right|\right)}{P_{n+1}}\right| P_{n+1}\right)+O\left(\sum_{2}^{m-1}\left|\lambda_{n+2}\right| \Delta\left(\frac{1}{P_{n+1}}\right) P_{n+1}\right)+O\left(\left|\lambda_{m+1}\right|\right)+O(1) \\
& =O\left(\sum_{2}^{m-1}\left|\Delta \lambda_{n+1}\right|\right)+O\left(\sum_{2}^{m-1}\left|\lambda_{n+2}\right| \frac{p_{n+2}}{P_{n+2}}\right)+O(1)=O(1),
\end{aligned}
$$

by conditions (a) and (b) of the hypotheses.
This completes the proof of Theorem 1.
3.1. The following theorem concerning summability $|C, 1|$ of $\sum a_{n} \lambda_{n}$ is a direct corollary of the above theorem (obtained by taking $p_{n}=1$).

Theorem 2. If

$$
\begin{equation*}
\sum_{1}^{n}\left|s_{v}\right|=O(n) \tag{3.1.1}
\end{equation*}
$$

and $\left\{\lambda_{n}\right\}$ is a bounded sequence such that
$(a)^{\prime}$

$$
\sum_{1}^{m}\left|\Delta \lambda_{n}\right|=O(1)
$$

$(b)^{\prime}$

$$
\sum_{2}^{m}\left|\frac{\lambda_{n}}{n}\right|=O(1)
$$

(c) ${ }^{\prime}$

$$
\sum_{2}^{m} n\left|\Delta^{2} \lambda_{n}\right|=O(1)
$$

as $m \rightarrow \infty$, then $\sum a_{n} \lambda_{n}$ is summable $|C, 1|$.
This is a generalisation of the following theorem of Pati [3].
Theorem A. If $\sum a_{n}$ is summable $[C, 1]$ then $\sum a_{n} \lambda_{n}$ is summable $|C, 1|$, where $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum \lambda_{n} / n<\infty$.

It may be observed that summability [$C, 1]$ implies (3.1.1). Also it is well known [1,4] that if $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum \lambda_{n} / n<\infty$, then λ_{n} necessarily satisfies all the above conditions of Theorem 2 but the converse is not true.

The author is highly indebted to Prof. B. N. Prasad for his constant encouragement and helpful suggestions.

References

[1] Chow, H. C., On the summability factors of Fourier series. J. London Math. Soc. 16 (1941), 215-220.
[2] Kulshrestha, G. C. N., Absolute Riesz summability factors of infinite series. Math. Z. 86 (1965), 365-371.
[3] Pati, T., The summability factors of infinite series. Duke Math. J. 21 (1954), 271-284.
[4] Pati, T., Absolute Cesàro summability factors of infinite series. Math. Z. 78 (1962), 293-297.

Department of Mathematics and Statistics,
Aligarh Muslim University, Aligarh, India.

