ON THE EXISTENCE OF ANALYTIC MAPPINGS, II

By Mitsuru Ozawa

1. Let $G(z)$ and $g(z)$ be two entire functions having no zero other than an infinite number of simple zeros, respectively. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^{2}=G(x)$ and $y^{2}=g(x)$, respectively. In our previous paper [3] we offered a conjectural problem: Is the order ρ_{G} of G an integral multiple of the order ρ_{g} of g, when there is an analytic mapping φ from R into S ? As we remarked there, in this problem we should assume that $\rho_{G}<\infty$ and $0<\rho_{g}<\infty$ and further suitable normalizations on G and g are done. Let G_{c} and g_{c} be two canonical products having the same zeros with the same multiplicities as those of G and g, respectively. In this paper an analytic mapping means a non-trivial one.

Theorem 1. Assume that $\rho_{G_{c}}<\infty$ and $0<\rho_{g_{c}}<\infty$ and that there exists an analytic mapping φ from R into S. Then $\rho_{G_{c}}$ is an integral multiple of $\rho_{g_{c}}$.

This is somewhat effective criterion for the non-existence of an analytic mapping from R into S. Theorem 1 can be stated in the following form:

Assume that $\rho_{N(r, 0, G)}<\infty$ and $0<\rho_{N(r, 0, g)}<\infty$ and that there exists an analytic mapping φ from R into S. Then the former one is an integral multiple of the latter one.
2. To prove theorem 1 we need an elegant theorem due to Valiron [7]. We can state his result in the following manner.

Let $h(z)$ be an entire function satisfying one of the following conditions:
(a) h(z) has a finite order;
(b) There is a suitable number $\lambda>1$ satisfying

$$
\lim _{r \rightarrow \infty} \frac{\log V\left(r^{\lambda}\right)}{V(r)}=0, \quad V(r)=\log M(r), \quad M(r)=\max _{|z| \leqq r}|h(z)| .
$$

Then the equation $h(z)=w$ has at least one solution z in the annulus

$$
M^{-1}(|w|) \leqq|z| \leqq M^{-1}(|w|)^{1+\alpha}
$$

for an arbitrary small positive number α, if $|w|$ is sufficiently large, $|w|>A(\alpha)$.
As Valiron remarked, (b) implies (a) and (b) is satisfied by a quite wide class of entire functions, which contains some entire functions of infinite order. He also gave another theorem which is more precise and applicable than the above.

[^0]3. Next we shall prove some estimations on the value-distribution of a composite entire function $g \circ h(z)$, where g and h are two entire functions. Let $g(z)$ be as in $\S 1$. Since g has no zero other than an infinite number of simple zeros, the N-function $N_{2}(r ; 0, g \circ h)$ of simple zeros of $g \circ h$ satisfies
$$
N(r ; 0, g \circ h)=N_{2}(r ; 0, g \circ h)+N_{1}(r ; 0, g \circ h)+\bar{N}_{1}(r ; 0, g \circ h)
$$
and
\[

$$
\begin{aligned}
\bar{N}_{1}(r ; 0, g \circ h) & \leqq N_{1}(r ; 0, g \circ h) \leqq N\left(r ; 0, h^{\prime}\right) \leqq m\left(r, h^{\prime}\right) \\
& \leqq m(r, h)+m\left(r, h^{\prime} \mid h\right) \leqq(1+\varepsilon) m(r, h), \quad \lim _{r \rightarrow \infty} \varepsilon=0
\end{aligned}
$$
\]

with some negligible exceptional intervals. Further

$$
N(r ; 0, g \circ h) \geqq \sum_{1}^{p} N\left(r ; w_{\mu}, h\right)
$$

for an arbitrary but fixed number p of zeros $\left\{w_{\mu}\right\}$ of $g(z)$ and for all sufficiently large r. Assume that h is transcendental. By the second fundamental theorem for h

$$
\begin{aligned}
\sum_{1}^{p} N\left(r ; w_{\mu}, h\right) & \geqq(p-1) m(r, h)-O(\log r m(r, h)) \\
& \geqq\left(p-1-\varepsilon^{\prime}\right) m(r, h), \quad \lim _{r \rightarrow \infty} \varepsilon^{\prime}=0
\end{aligned}
$$

with some negligible exceptional intervals. Thus we have

$$
N(r ; 0, g \circ h) \geqq K m(r, h), \quad N_{2}(r ; 0, g \circ h) \geqq K m(r, h)
$$

for an arbitrary but fixed positive number K and for all sufficiently large r with some negligible exceptional intervals. These imply that

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, g \circ h)}{N_{2}(r ; 0, g \circ h)}=1, \quad \varlimsup_{r \rightarrow \infty} \frac{N_{2}(r ; 0, g \circ h)}{N(r ; 0, g \circ h)}=1 \tag{A}
\end{equation*}
$$

and

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, g \circ h)}{m(r, h)}=\infty, \quad \varlimsup_{r \rightarrow \infty} \frac{m(r, h)}{N(r ; 0, g \circ h)}=0 .
$$

Further here we assume that h is of finite order. Then

$$
n(r ; 0, g \circ h)=\Sigma^{*} n\left(r ; w_{\mu}, h\right)
$$

where Σ^{*} indicates the summation over all w_{μ} for which there exists at least one root of $h(z)=w_{\mu}$ in $|z|<r$. By Valiron's theorem and by the second fundamental theorem for h we have

$$
\begin{aligned}
\Sigma^{*} n\left(r ; w_{\mu}, h\right) & \geqq \Sigma^{*} N\left(r ; w_{\mu}, h\right) / \log \left(r / r_{0}\right) \\
& \geqq\left(n\left(M\left(r^{\prime /(1+\alpha)} ; 0, g\right)-2\right) \frac{m(r, h)}{\log r-\log r_{0}}\right.
\end{aligned}
$$

Since $m(r, h) \geqq P\left(\log r-\log r_{0}\right)$ for all sufficiently large r and for an arbitrary but fixed positive number P, we have

$$
n(r ; 0, g \circ h) \geqq P\left(n\left(M\left(r^{1 /(1+\alpha)}\right) ; 0, g\right)-2\right) .
$$

Since $M\left(r^{1 /(1+\alpha)}\right)>r$ for all sufficiently large r and $N(r), n(r)$ are monotone for r, we have by dividing by r and by integrating

$$
\begin{equation*}
N(r ; 0, g \circ h) \geqq P(N(r ; 0, g)-2 \log r+O(1)) . \tag{B}
\end{equation*}
$$

We construct another estimation for $N(r ; 0, g \circ h)$ under the same assumptions. By the well-known inequalities

$$
n(r / 2) \log 2 \leqq N(r)=\int_{r_{0}}^{r} \frac{n(r)}{r} d r \leqq n(r)\left(\log r-\log r_{0}\right)
$$

we have
(B^{\prime})

$$
N(r ; 0, g \circ h) \geqq n\left(\frac{r}{2} ; 0, g \circ h\right) \log 2
$$

$$
\geqq\left(\frac{N\left(M\left((r / 2)^{1 /(1+\alpha)}\right) ; 0, g\right)}{\log M\left((r / 2)^{1 /(1+\alpha)}\right)-\log c_{0}}-2\right) P \log 2
$$

for all sufficiently large r and for an arbitrary but fixed positive number P.
If h is a polynomial of degree ν and has a form $a_{0} z^{\nu}+a_{1} z^{\nu-1}+\cdots+a_{\nu}$, then we have

$$
\begin{aligned}
n(r ; 0, g \circ h) & \geqq \Sigma^{*} n\left(r ; w_{\mu}, h\right) \geqq \Sigma^{* \nu} \\
& =\nu n\left(\left|a_{0}\right| r^{\nu}(1-\varepsilon) ; 0, g\right)-O(1), \quad \varepsilon>0
\end{aligned}
$$

and hence
(C)

$$
N(r ; 0, g \circ h) \geqq N\left(\left|a_{0}\right| r^{\nu}(1-\varepsilon) ; 0, g\right)-O(\log r) .
$$

4. We shall now enter into our proof of theorem 1. In our previous papers [3], [4] we proved the following theorem.

If there exists an analytic mapping φ from R into S, then there exist two entire functions h and f satisfying an equation of the form

$$
f(z)^{2} G_{c}(z)=g_{c} \circ h(z)
$$

and vice-versa.
By this theorem we have

$$
\begin{align*}
N_{2}\left(r ; 0, g_{c} \circ h\right) & \leqq N\left(r ; 0, G_{c}\right)=N\left(r ; 0, g_{c} \circ h\right)-2 N(r ; 0, f) \tag{D}\\
& \leqq N_{2}\left(r ; 0, g_{c} \circ h\right)+2 m(r, h)-2 N(r ; 0, f) .
\end{align*}
$$

This shows that by (A), (A^{\prime})
(D^{\prime})

$$
N(r ; 0, f) \leqq m(r, h)=o\left(N\left(r ; 0, g_{c} \circ h\right)\right)=o\left(N_{2}\left(r ; 0, g_{c} \circ h\right)\right)
$$

Thus we have

$$
N_{2}\left(r ; 0, g_{c} \circ h\right) \leqq N\left(r ; 0, G_{c}\right) \leqq(1+\varepsilon) N_{2}\left(r ; 0, g_{c} \circ h\right) \leqq\left(1+\varepsilon^{\prime}\right) N\left(r ; 0, g_{c} \circ h\right) .
$$

In the first place we assume that

$$
m\left(r, G_{c}\right)=O(m(r, h))
$$

Then we have

$$
K m(r, h) \leqq N_{2}\left(r ; 0, g_{c} \circ h\right) \leqq N\left(r ; 0, G_{c}\right) \leqq m\left(r, G_{c}\right)=O(m(r, h)),
$$

which shows that K is bounded above. This contradicts the arbitrariness of K. If h is of infinite order, then by the order finiteness of G_{c} we have

$$
m\left(r, G_{c}\right)=o(m(r, h)) .
$$

Next we assume that h is of finite non-zero order. Then by (B^{\prime}) and by the non-zero property of $\rho_{g_{c}}$ there exists an infinite sequence $\left\{r_{n}\right\}$ for which

$$
\frac{N\left(r_{n} ; 0, g_{c} \circ h\right)}{N\left(r_{n} ; 0, G_{c}\right)} \geqq \frac{P \log 2}{r_{n}^{\rho} G_{c}+\varepsilon}\left(\frac{\exp \left(\left(r_{n} / 2\right)^{1 /(1+\alpha)\left(\rho_{n}-\varepsilon\right)}\left(\rho_{g c}-\varepsilon\right)\right)}{\left(r_{n} / 2\right)^{\left(\sigma_{n}+c\right)(1+\alpha)}-c_{1}}-2\right) .
$$

The right hahd side term tends to ∞ if n tends to ∞. This implies that

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, G_{c}\right)}=\infty,
$$

which is untenable by (D) and (D^{\prime}).
If h is transcendental but of order zero, then we have

$$
M\left((r / 2)^{1 /(1+\alpha)}\right) \geqq(r / 2)^{p /(1+\alpha)}
$$

for an arbitrary positive number p and for all sufficiently large r. Then by (B^{\prime}) we have

$$
\frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, G_{c}\right)} \geqq \frac{P \log 2}{r^{\rho} G_{c}+\varepsilon}\left(\frac{\left.(r / 2)^{p\left(\rho g_{c}\right.}-\varepsilon\right) /(1+\alpha)}{(r / 2)^{\varepsilon /(1+\alpha)}-c_{1}}-2\right)
$$

and hence by the non-zero property of $\rho_{g_{c}}$ and by the arbitrariness of p we can say that the right hand side term tends to ∞ when r tends to ∞ along a suitable sequence $\left\{r_{n}\right\}$. This implies that

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, G_{c}\right)}=\infty,
$$

which is again untenable by (D) and (D^{\prime}).
If h is a polynomial of degree ν, then by (C)

$$
\log m\left(r, g_{c} \circ h\right) \geqq \log N\left(r ; 0, g_{c} \circ h\right) \geqq \log N\left(\left|a_{0}\right| r^{\nu}(1-\varepsilon) ; 0, g_{c}\right)-O(\log \log r)
$$

and hence

$$
\begin{aligned}
\rho_{g_{c} \circ h} & \geqq \rho_{N\left(r ; 0, g_{c} \cdot h\right)} \geqq \varlimsup_{r_{n} \rightarrow \infty} \frac{\log N\left(\left|\alpha_{0}\right| r_{n}^{\nu}(1-\varepsilon) ; 0, g_{c}\right)}{\log r_{n}} \\
& \geqq \varlimsup_{r_{n} \rightarrow \infty} \frac{\left(\rho_{g_{c}}-\varepsilon\right) \cup \log r_{n}-c}{\log r_{n}}=\left(\rho_{g_{c}}-\varepsilon\right) \nu,
\end{aligned}
$$

for a suitable sequence $\left\{r_{n}\right\}, r_{n} \rightarrow \infty$ and for an arbitrary positive number ε. Thus we have

$$
\rho_{g_{c} o h} \geqq \nu \rho_{g_{c}} .
$$

Further we have

$$
\begin{aligned}
\nu \rho_{g_{c}} \leqq \rho_{N\left(r ; 0, g_{c} \circ h\right)} & =\rho_{G_{c}}=\varlimsup_{r \rightarrow \infty} \frac{\log N\left(r ; 0, G_{c}\right)}{\log r} \\
& =\rho_{N\left(r ; 0, G_{c}\right)}=\rho_{N\left(r ; 0,0, g_{c} / h\right)} \leqq \rho_{g_{c} / h} .
\end{aligned}
$$

Evidentiy we have by Pólya's method [5]

$$
\rho_{g_{c} \circ h} \leqq \nu \rho_{g_{c}} .
$$

Thus we have the desired result and its corollary.
5. We shall prove the following theorem:

Theorem 2. Let g be an entire function of finite order having no zero other than an infinite number of simple zeros. Let R be an ultrahyperelliptic surface defined by $y^{2}=g(x)$. If there exists an analytic mapping φ from R into itself, then φ is a univalent conformal mapping from R onto itself and the corresponding entive function $h(z)$ is a linear function of the form $e^{2 \pi i q / p} z+b$ with a suitable rational number q / p.

Proof. If $\rho_{g_{c}}>0$, then by theorem 1 we have $\rho_{g_{c}}=\nu \rho_{g_{c}}$. This implies $\nu=1$ in this case. Thus h must be a linear function $a z+b$.

If $\rho_{g_{c}}=0$ and $0<\rho_{h}$, then $m\left(r, g_{c}\right)=o(m(r, h))$. On the other hand by the equation $f(z)^{2} g(z)=g \circ h(z)$ we have

$$
\begin{aligned}
N_{2}\left(r ; 0, g_{c} \circ h\right) & \leqq N\left(r ; 0, g_{c}\right)=N\left(r ; 0, g_{c} \circ h\right)-2 N(r ; 0, f) \\
& \leqq N_{2}\left(r ; 0, g_{c} \circ h\right)+2 m(r, h)-2 N(r ; 0, f)
\end{aligned}
$$

and by (A) and (A^{\prime})

$$
N\left(r ; 0, g_{c} \circ h\right) \sim N_{2}\left(r ; 0, g_{c} \circ h\right) \sim N\left(r ; 0, g_{c}\right)
$$

This implies that $N\left(r ; 0, g_{c} \circ h\right)=o(m(r, h))$, which contradicts (A^{\prime}).
If $\rho_{g_{c}}=0$ and $\rho_{h}=0$, then by (B)

$$
N\left(r ; 0, g_{c} \circ h\right) \geqq P\left(N\left(r ; 0, g_{c}\right)-2 \log r\right) .
$$

Therefore by $\log r=o\left(N\left(r ; 0, g_{c}\right)\right)$

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, g_{c}\right)} \geqq P .
$$

Since P is arbitrary, we finally have

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, g_{c}\right)}=\infty .
$$

This contradicts

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, g_{c}\right)}=1 .
$$

If $\rho_{g_{c}}=0$ and h is a polynomial of degree ν, then $\rho_{g_{c}} \circ h=0$ and by (C) or more direct enumeration

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N\left(r ; 0, g_{c}\right)} \geqq \nu .
$$

On the other hand the left hand side term is equal to 1 . Hence $\nu=1$. Thus h must be a linear function $a z+b$.

In all cases we have that h must be a linear function $a z+b$. This implies the first part of theorem 2, that is, φ is a univalent conformal mapping from R onto itself. Then its iteration $\varphi_{n}=\varphi \circ \varphi_{n-1}$ is also of the same nature. These mappings carry every branch point to a branch point and vice versa. If $|\alpha|>1$, then the set E of zero points of $g(z)$ satisfies $E=(E-b) / a$, and hence E has a finite cluster point $b /(1-a)$. This is a contradiction. If $|\alpha|<1$, then the set E of zero points of $g(z)$ has a finite cluster point $b /(1-a)$. This is also untenable. Let a be $e^{2 \pi r a}, \alpha$: real. If α is an irrational number, then E has at least one cluster point on a circumference with a suitable radius and the center $b /(1-a)$. This is also untenable. Thus we have the desired result.

As a corollary we have the following fact:
Corollary 1. If there exist two into analytic mappings $\varphi: R \rightarrow S$ and $\psi: S \rightarrow R$ and if R is an ultrahyperelliptic surface defined by an equation $y^{2}=g(x)$ having no zero other then an infinite number of simple zeros and satisfying $\rho_{g}<\infty$, then R and S are conformally equivalent with each other.
6. Remarks. We should here remark that Shimizu [6] solved the following equation

$$
g(z)=g \circ h(z) .
$$

To solve the Shimizu equation is somewhat easier than ours. In fact, as he did, it is sufficient to compare two Nevanlinna characteristic functions $m(r, g)$ and $m(r, g \circ h)$ and then he obtained the solution $h(z)=e^{2 \pi i q / p} z+b$ with a suitable rational number q / p. However the appearance of an unknown function $f(z)$ makes our problem difficult and we cannot prove theorem 2 by comparison of two characteristic functions $m(r, g)$ and $m(r, g \circ h)$. It would be very plausible to conjecture that theorem 2 holds without any additional condition on the order of g.

In some special cases the equation

$$
f(z)^{2} G(z)=g \circ h(z)
$$

was perfectly solved [1], [3]. In these cases f had a quite few zeros. This is indeed a general property. We shall prove this. By the equation we have

$$
N(r ; 0, f) \leqq m(r, h)=o(N(r ; 0, g \circ h)) .
$$

This shows that the number of zeros of f is quite few in relation to that of $g \circ h$. Further we can conclude that the defect

$$
\delta(0, f)=1-\varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, f)}{m(r, f)}
$$

is equal to 1 , when $m(r, f) \geqq O(N(r ; 0, g \circ h))$. If $m(r, f)=o(N(r ; 0, g \circ h))$, then the above fact does not hold in general. This is shown by several examples.

Refferences

[1] Hiromi, G. and M. Ozawa., On the existence of analytic mappings between two ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 281-306.
[2] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin (1936).
[3] Ozawa, M., On complex analytic mappings between two ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 158-165.
[4] Ozawa, M., On the existence of analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 191-197.
[5] Pólya, G., On an integral function of an integral function. Journ. London Math. Soc. 1 (1926), 12-15.
[6] Shimizu, T., On the fundamental domains and the groups for meromorphic functions, II. Jap. Journ. Math. 8 (1931), 237-304.
[7] Valiron, G., Sur un théorème de M. Fatou. Bull. Sci. Math. 46 (1922), 200-208.
Department of Mathematics, Tokyo Institute of Technology.

[^0]: Received March 23, 1965.

