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1. Introduction.

In the present paper we shall establish the Picard theorem on some Riemann
surfaces with automorphisms. Here we shall adopt a special method based on the
Schottky theorem and the most far-reaching method due to Nevanlinna-Selberg.
We shall roughly say that a class of meromorphic functions is exceptional if its any
member has unreasonably many exceptional values. This nomenclature has no
meaning in some cases when we impose the conditions guaranteeing the presence
of an essential singularity or some growth conditions. The most important and
well-known example of the exceptional class is that of functions of bounded type
in \z <1. Anyhow it is important to determine and to study the exceptional class
in the various cases.

In order to investigate and to determine the number of Picard's exceptional
values and the exceptional class of functions it is necessary to prove the existence
of the fundamental functions in some cases. The functions play an essential role in
the respective cases.

We shall make free use of the notations in [4], [6] and [7]. Any quantities in
[7] and in [4] are distinguished from those in [6] by the subscripts A and P,
respectively. In a way we shall give some remarks on the general value distribu-
tion theory, especially on the general defect relation.

Let W be a Riemann surface admitting a conformal transformation group Gn

onto itself, which is a free abelian group with n generators Ti, •••, Tn. Further we
assume that W has only one ideal boundary point defined by r=limm->±00Tjmp,j=l,
- ,n, when n^2 and just two defined by γι=\imm^+0oTmp and γ2~limm^+00T-mp
when n—\ and that W is an unramified abelian covering surface of a closed
Riemann surface. This class of surfaces is denoted by @«. Then W^OG if
n = l,2, and W$OG but W€θAD if We®n,n^3 [3].

We shall adopt an exhaustion { Wa} of W whose member Wa is the interior
of a set defined by
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where R* is a fundamental domain for G. When W€®n, n^2, all components of
dWa can be joined by a suitable number of analytic curves {γa} lying in Wa—Wa-2.
Resulting connected collection of curves is denoted by La which can be covered by
a set of small discs whose number does not exceed Can~l for a suitable fixed
number C. In the case n — l we need some modifications in the above.

If W is a Riemann surface conformally equivalent to a surface with a
finite spherical area, then we say W^PMD. If it is not the case, then we say

2. Existence of the fundamental functions.

We shall prove the following

THEOREM 1. // there exists a non-constant bounded regular function f(p) on an
end Ω of T^e©2, then there exists a function Fϋ(p) in W satisfying the following
conditions:
( i ) Fo(p) maps W conformally onto a do-sheeted covering surface Φ(W,F0) spread
over the punctured sphere |w;|<oo, where do is the minimum local degree of γ in
Heins1 sense [2],
(ii) Fo(p) satisfies two functional equations F0(Tjp)=Fo(p') + tj, j =1,2, for two
generators 7\, T2 of G2 and for two non-zero constants ti, U satisfying Im(tι/t2') Φ 0.

Proof. By Heins' composition theorem 5.1 in [2] there exists a subend Ω* of
Ω on which there exists a non-constant bounded regular function fι(p) such that
fι(p) has the minimum local degree do at γ and

for some bounded regular function φ in the unit disc |w;]<l and |/i (/>)!=! in Ω*
and \fι(p)\=l on dΩ* and /ι(j)=0. Then there hold two functional equations

fι(Tjp) = φj fι(p)9 .7 = 1,2,

where φjf j=l,2, are two bounded regular functions univalent in \w\<l and
£κ(0) = 0, \φj(w)\^maxΩχ\fι(Tjp)\. The above composition theorem shows that by
any non-constant regular bounded function f(p) in Ω* do points pi, ~,P<LQ lie over
the same point φ(w), if these points lie in Ω* and lie over a point w by /i, that is,
w=fι(pι) = '~=fι(Pdo) Further, then, for each; Tjpι,'~,Tjp<ι0 lie over the same
point ψj(w) by /i.

Now we shall define an identification map P in Ω* in such a manner that
pp! = ... =Ppdo when fι(pι) = ••- =/ι(Az0). Next we shall define the map P in any general
part of W in such a manner that ppι = . .=PpdQ if Tjmpιf -•-, TjmpaQ lie in Ω* and
these points are identified by P. In this definition the map P is invariant in any
choice of m and j. Indeed, we can construct a finite chain of equivalent points of
the following form Π7*m*/>z which joins TjmpL to TjnpL in Ω*. If PTj

mp1 = -"
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=PTjmpdQ, then we have

and hence

and finally

Invariance of P for 7 is quite similarly established.
We shall construct an abstract surface 28 in such a manner that pi, ••',pa(> are

identified and a new point $ is defined when Ppi = -"=PpdQ. In this 28 we intro-
duce a notion of neighborhood -ftφ) of p by

where Nj(pj) is a neighborhood of P, on 1/F. Local parameter at p is introduced
as follows: W—WQ if the inverse image Pi of p belongs to Ω* and fι(pι)=Wo, and
the same w— WQ if TjmP-l$zΩ* and PTjmP-l^=wQ for some w and and for
any choice of P~lp. This choice of the local parameter has meaning. Indeed, if
we choose TjnP~l$ζΩ* and PTjnP~l$=Zo, then there is a relation w=g(z) with a
suitable univalent regular function g around z0 satisfying g(z0) = Wo. Therefore we
have w—Wo = g(z) — g(z0) = Σιx>an(z—ZQ)n, #ι^0. Similarly we can prove the invari-
ance of the local parameter for j and for a choice of P"1}}.

Thus 28 is a Riemann surface on which W lies. Then the identification map
P is a standard projection map from W onto 28. This 28 has only one ideal
boundary component and admits a free abelian group of rank 2 as a group of
automorphisms. Let Ppι=.-=Pρd()=$ and PTjpι = ' ' = PTjpαQ=$ι, then the neigh-
borhoods around pι, ,pd0 correspond conformally to the neighborhoods around
Tjpi, •••, Tjpd0 by T3 sheet by sheet and hence PT/P-1 is conformal. This induced
conformal map is denoted by Xj. Then Sti and &2 generate a free abelian group
® of automorphisms on 28.

By the method of construction we can prove that 28 is simply connected. By
the uniformization map Ψ 28 can be mapped conformally onto the punctured sphere
28*: {|^*|<oo}. Then the group (8* corresponding to © can be represented by

Let ΩQ be an end of W such that the image ΨP(Ωϋ} of ΩQ coincides with
|w*|>l. Let F0(p) be ΨPp, then the function l/F0(p) has the minimum local
degree do at γ by its definition and satisfies |F0(/>)|>1 in Ω0, \FQ(p)\ = l on dΩ^
and FQ(γ')=oo. FQ can be defined in the whole W. By the definitions of FQ,Ψ,P,
;£,, ϋtj * and t} we have
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The final fact in (ii) is evident from the group structure and the finiteness of d0.
This is the desired result.

Under the condition W$PMD, Mizumoto announced theorem 1 in [10].

COROLLARY 1. Let W belong to the class @2. A perfect condition for WsPMD

is the existence of a non-constant bounded regular function on an end.

THEOREM 2. Let W belong to ®ι. If there exists a non-constant bounded
regular function /(/>) on an end Ω, then there is a regular function F0(p) in W for
which Fo(Tp) = tF0(p) remains true for some constant t (^0,1), Further F0(p) is
bounded in some end and FQ(γι)=Q and has dQ sheets over all points with two ex-
ceptions w—Q and oo, where d0 is the minimum local degree at γi.

Under some suitable modifications we can prove the above theorem 2 similarly
which was already formulated in [5].

COROLLARY 2. Let WG&I. A perfect condition for WsPMD is the existence of
a non-constant bounded regular function on an end.

M. Tsuji stated the following facts in [9] p. 486: (We follow his notations.)

THEOREM X. 47. (i) // r^3, then Φ SUM D*.
( i i ) If r=2, then there are two cases:

(a) G0 = mi(D1-}-m2(j02, (b) G0 = ̂ i^i+m2^i*.
In case (a), Φ€θMD*.
In case (b), ΦζPMD*, when and only when there exists an abelian integral of the
first kind on F, whose periods Ω^,Ω^* on Cτ, Cz* (/=!, •••,/>) satisfy the same linear
relations as ωτ, ω^.

Unfortunately there was an erroneous point which was pointed out by L. Sario.
(See Math. Rev. 19 (1958), pp. 1043-1044.) In Tsuji's proof of (ii), case (a) there
was the same erroneous point. It should be emphasized that this case can be
corrected by our theorem 1. Further it is still conjectured, based on various pheno-
mena, that Tsuji's main result, that is, WGUMD, remains true when Wζ®n, n^3.

Let W belong to ©2Γ\Λf/> Then there exists the fundamental function FQ(p)
on W satisfying the conditions in theorem 1. Then the parallelogram Ri with four
vertices 0, ti,U-\-U,U determines a fundamental domain R* of G2 in such a manner
that R* is a part of W over the Ri by the projection map F0(p). Over the
periphery dRi of RI there are at most do closed curves in W, which surrounds R*.
Identifying the corresponding segments of oR*, R* becomes a closed Riemann
surface R (= FFmodGy. Let L be a connected image of a part of dR* by the
proces R*—*R. Then L is divided into two non-void closed curve classes (M) and
(N) called joint in later. Each member in (M) intersects with some one in (N)
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and vice versa. M and N are not homologous in R. They have the forms ma
and nβ with some integers m and n, respectively. Here α, β are generators of G2.
If Tsuji's case (ii), (a) is the case, then W is obtained from R with two cuts along
two non-conjugate non-dividing independent cycles. Thus W$PMD.

THEOREM 3. If WC^^PMD, then the fundamental domain R* of G2 is
obtained from the closed Riemann surface W mod G2 by cutting along a number
of joint systems of closed curves. Especially Tsuji's conclusion for (ii), (a) remains
true.

For Tsuji's case (ii), (b), the existence of the fundamental function F0(p) on
W and hence that of an abelian differential dF0 of the first kind on R play an
essential role. Thus to establish a perfect condition for W€PMD in terms of the
Riemann matrix attached to the closed Riemann surface W mod G2 is now possible.

3. Schottky's method.

Let w(z) be single-valued and regular in the unit disc in which w(z)Φ$9 1,
then w(z) satisfies an inequality

in 1 2 1 < 3/4 with an absolute constant A. See [1], p. 293.

THEOREM 4. If f(p) is a regular function in W— WaQ having two Picard's

exceptional values 0 and 1, then f(p) satisfies either log\f(p)\^ex.p(Can~1) or

logCl/l/C/OD^expCCfl7*"1) in a domain Wa—Wal for a suitable constant C. The
same conclusion holds for two functions /(/>) — 1 and /(/>)/(/(/>)—!).

Proof. We may assume that f(p)Φ 0,1 for a suitable subend W—WaΓ In the
first place we shall consider a case such that there exists a sequence of {3Wa} on
which there exist two points pa, Qa such that \f(pa)\<εn, !/(#«) I > l/£n fora sequence
εn satisfying εn—

 >0 when n-*oo. Then there is a point ra on any La such that
\f(ra)\=l. Then by the above sharpend Schottky theorem we have

loglΛ/Ol^expίC'β"-1) and log(l/|/(ί)|)^exp(C'fl»-1)

on {dWa} and hence on Wa—Wσ.^ In the second place, if either \f(p)\ or l/|/(/>)| is
bounded on {dWa}, then the same holds for Wa—War Thus we have the desired
result, which may be considered as a sort of Picard's theorem.

We shall study more precisely the case n—\. Let f(p) be a meromorphic

function on an end Ω of W. If f(Ωo) is not the extended plane for some subend
ΩQ of Ω, then we say fsAeB(Ω). If there is no non-constant meromorphic function
f(p) in any end Ω in which f(p) has at least n+l Picard's exceptional values, then
we say that W is of strong ^-Picard type. If any non-constant meromorphic
function f(p) in Ω which admits at least n+l Picard's exceptional values belongs
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to the class AeB(Ω) for some end Ω, then we say that W is of n-Picard type.
Ordinary big Picard theorem shows that the finite plane is of 2-Picard type. Heins
[2] gave an example of Riemann surface of strong 2-Picard type.

We shall prove the following

THEOREM 5. Let W belong to the class ©i. If WzPMD, then W is of 2-Picard
type. If WsOxD, then W is of strong 2-Picard type.

Proof. Let R* be a fundamental domain for G. Let f(p) be a non-constant
meromorphic function in an end Ω which takes a value infinitely often but takes
three values 0, 1 and oo only finitely often, then we may assume that /(/>) does not

take three values 0, 1 and oo in Ω and further f(Ω) is the extended plane by Heins'
theorem 4.2 in [2]. Then by a similar argument as in theorem 4 we arrive at a
contradiction.

Let f(p) be a non-constant meromorphic function in Ω which takes every value

finitely often, then by Heins' theorems 4.1 and 4.2 in [2] we may assume that f(Ω0)
is not the extended plane for some subend ΩQ. Thus fξAeB(Ω). Further we may
assume that /(/>) is bounded and regular in a subend Ω0 of Ω. Then by theorem

2 WsPxD.
If W^PMD, there is a rational function ψ for any meromorphic function /(/>)

with a finite spherical area such that f(p) = φ°F0(p) by the fundamental func-
tion Fo(p). Fo(p) excludes evidently three different values in any end and FQ(p)
is regular in the whole W. F0(p) maps W conformally onto a finitely-sheeted
covering surface Φ(W, F0) spread over the punctured sphere 0<|w|<oo. Thus W
is of 2-Picard type. Thus we have the desired result.

In [5] we established a perfect condition by using the periodicity moduli of the
abelian differentials of the first kind of the closed surface R (= Wmod d) in order
that W&PMD. By this theorem we can roughly say that almost all W in ©i belong
to the class OMD, when the genus of R is not less than 2, and hence to the strong
2 -Picard type. By theorem 5 the exceptional class is completely determined.

4. Nevanlinna-Selberg's method.

In the case W€©2 we cannot obtain a perfect result on the number P of
Picard's exceptional values by the Schottky method. When TFe©2Π^Vz?, we can
obtain a somewhat precise information for P by the far-reaching result due to
Nevanlinna and to Selberg [4], [7].

Let /(/>) be single-valued and meromorphic on W. Then F(w), defined by
f°Fo~l(w), is at most d0-valued in the punctured disc r0^\w\<,oo. Then we have

in any cases with the exception of at most do- valued algebraic functions over the
disc
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When We®ιΓ}PifD, we can say by Schottky's method that P^2. However
by Nevanlinna-Selberg's method we cannot yet say that P^2. For the method we
have P^2dQ. It is not known that P^2d0 is the best possible inequality in the
case T7e®2Γ\Λfi? It is conjectured that P^2.

5. Remarks on the value distribution theory.

We do not aim at to establish any general value distribution theory, but we
intend to study an interesting phenomenon arising in the theory. The so-called
defect relation and the number of Picard's exceptional values are our problem.
We shall show the following fact: In a special type of Riemann surfaces we
cannot derive any effective conclusions for any non-trivial functions of slow growth
from the general defect relation, however the special theory gives some effective
conclusions.

Let W^Z^PMD. By the fundamental function F*(p) we can determine a
conformal metric

ds=λ(z)\dz =
2πd0 \F0\

with u(p)+iv(p) = logF0(p). This metric satisfies the following conditions: λ(z) is
non-negative and continuous with no points of accumulation of its zeros and
further

ds=l,
7

where Lσ is the level line u=σ. Let WK be the domain satisfying u<k. Then the
distance d(p, Wk) between p and Wk tends to oo when p tends to γ. Further log λ
is harmonic except for logarithmic poles. Thus we can apply Sario's formulation
of the second fundamental theorem [6]: Let / be a meromorphic function on W.
Then

with some exceptional intervals Δ with

\
J

for α^

Now we shall examine the various quantities in the above general second
fundamental theorem more precisely.

Evidently dFQ(p) is an abelian differential of the first kind on the closed
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Riemann surface R(=Wmoά G2), and hence the sum of orders of its zeros in R is
equal to 2g— 2, where g is the genus of R. We may assume that g>l and d0>l.
Thus by definition we have asymptotically

where A0 is the area of a fundamental parallelogram. Therefore, if

_ e2σ _ T(σ)
(2) lim "T^yΓ^^00' lim — — = +°°,

then there holds

— N(σ, II λ)
lim — ̂ T-. — = 00.

T(σ)

Let e(σ) be the Euler characteristic of Wσ, then we have n(σ, l/λ)=e(σ)—d0. There-
fore the integrated Euler characteristic of Wa satisfies

This shows that

E(σ)={' e(σ)dσ=N(σ,
Jo

E(σ) — N(σ, I//)
7=lim π, N =lιm

^» TV) 2Z T(σ) ~

Under the condition (2) the general defect relation

(α)

gives no effective conclusions for the number of defect values and the number P.

When T(σ)/σ^M<oo, the spherical area of the image f(W) of W by f is 01
finite value and hence the covering surface Φ(W,f) is finitely-sheeted [2] and
further f(p)=F°FQ(p) with a suitable rational function F(w) of w by theorem 1
This class of functions was already called exceptional.

We shall now prove that there is surely a family of non-exceptional mero-
morphic functions satisfying (2) and a concrete representation of any functions
satisfying (2) can be established. Let f(p) be such a function on W. Let F(w) be
a function defined by f°F0~

1(w), then F(w) is at most d0-valued function on |w|<oo
Any fundamental symmetric polynomials of all branches of F(w) are single-valued
and meromorphic in |w|<oo. Thus F satisfies an algebraic equation
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with the single- valued meromorphic coefficients A3 in \w\<oo. By the definitions
of T(σ) and TA(σ, F) we have

=NA(σ, F) + mA(σ, F) + O(σ) = TA(σ, F) + O(σ).

Here σ corresponds to log r, w=reίθ. Therefore any coefficients satisfy

Let the jth and the kth sheets of Φ(W,F0) have at least one common branch
point in a fundamental parallelogram and hence in any fundamental parallelogram.
Let G be the difference of two branches Fj and Fk of F, then by Selberg's theory
on algebroid functions

^4- Σ TA(σ,

and

TA(σ,G)=TA(σ,l/G) + 0(σ)

e2"

This is a contradiction, unless G^const. and hence G=Q. Therefore Fj=F/c.
Repeating this process we can say that each branch coincides with any other and
hence F must satisfy the single-valuedness in \w\<oo. Therefore f(p) can be
represented in the form

with a single-valued meromorphic function F(w) in |^|<oo satisfying TP(σ,F)
=o(e2"). Thus we have the desired result.

Let f(p) be any meromorphic function on W with the representation

f(p)=F°F0(p)

by a suitable single-valued meromorphic function F in \w\<oo. Then we have

fz=Fw Foz

and

nι(σ) = n(σ, l/fz)+2n(σ,f)-n(σ,fz).

Thus we have
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Hι(<0 = »(<7, l/Foz)+d0(nP(σ, l/Fw)+2nP(σ, F)-nP(σ,

If (2) holds, then Sario's -9 is in general also of infinite value:

a-Hm ^-=00.
- T(σ)

<7->oo v '

Fortunately the causes of the above insignificance, that is, 77=00, and $=oo, are
lying in both sides of (1) with the same term, and hence we can modify (1) to a
more effective form. In general we have

(lp) Σ Wp(<7, aj)^2TP(σ, F)-N1P(σ) + O(σ+\og TP(σ, F))

with some exceptional intervals. This is nothing but the Nevanlinna second
fundamental theorem in |M;|<OO. Then we can draw the legitimate conclusions:
the defect relation, the ramification relation and so on.

Further we can conclude the following fact: Let f(p) be a non-exceptional
meromorphic function on W satisfying

then the number P of Picard's exceptional values is at most one, when
Indeed, by the condition on the order of f(p) we can apply the rigidity of projec-
tion map stated already and we have the representation f(p)=F°F0(p) with a
single-valued meromorphic function F in \w\<oo which has the same order.
Then by the classical theory we have the desired result.

Let /(/>) be represented by F°FQ(p} with a d0-valued algebroid function F in
the whole plane. Then (1) is reduced to the second fundamental theorem on algebroid
functions formulated by Selberg [7]. Indeed, we have

NA(σ; £) = (0—1)—r

TA(<r, F)=T(σ)+0(σ)ί

NA(σ; 3F)-NA(σ; X)=N1A(<r, F),

and the ramification theorem

NA(σ; X)^(2do-
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By these relations we have

(U) Σ mA(σ; aj)<2TA(σ\ F)-NA(σ\ %F)+NA(a\ 3e) + O(tf+log TA(σ\ F)).
i

This is nothing but the second fundamental theorem on algebroid functions.

We can summarize our earlier results in the following

THEOREM 6. With the exception of arbitrary exceptional functions the number
P of Picartfs exceptional values of a meromorphic function f(p) on
satisfies the following inequalities:

2 if

2d« if p=2,

2 if p=l,

1 ι/ P<2,

where p is the order of f. Any exceptional function is represent able as a composite
function F°F0(p) with a suitable rational function F.

As a byproduct we have the following somewhat curious inequality: For any
dQ-valued algebroid function F(w) whose proper existence domain is Φ(W, F0) there
holds

^ e2'

In some places we have stated several unsolved problems. Further we shall
state an important problem, which seems very difficult to settle.

It is not known what class plays the exceptional role in the cases
and

We can construct a Riemann surface on which ^=+°° holds for any mero-
morphic functions / of finite order or of finite hyperorder. Then no effective
conclusion from the general defect relation can also be drawn. However the
presence of the ramification theorem and the rigidity property of projection
map for any functions of lower order help us out of some senselessness. Then
the Nevanlinna theory and the Selberg theory play an essential role and give
somewhat significant conclusions. It is not known whether there is another type
of Riemann surfaces for which 37=4-00 without any inevitability for the function
excepting some trivial functions. The unit disc does not belong to this type.
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