SZEGO KERNEL FUNCTION ON SOME DOMAINS
OF INFINITE CONNECTIVITY

By MITSURU OzZAWA

1. It is well known that the Szego kernel function closely relates to a
function which maps conformally a given planar n-ply connected domain onto
the » times covered unit dise ([2], [8], [5], [6]). Recently an interesting
eigen-value problem associated with the Szegt kernel function was discussed in
[7]. It will be natural to ask for whether these results remain valid or not in
the case of the domains of infinite connectivity. Under a somewhat severe
condition for the basic domains we shall discuss the nature of the Szegt kernel
function and the related function of the domains of infinite connectivity. How-
ever it is very plausible to conjecture that the condition and the restriction
imposed on in the present paper can be released in a great extent.

We mainly follow a course invented in [3]. In §2 under a certain condi-
tion we discuss an existence theorem which plays a role in the remaining part
and seems interesting in itself. In §3 we shall prove the analyticity of the
kernels on the boundary and a boundary relation between them. In §4 we
derive some results using the boundary relation. In order to prove the repro-
ducing property we make a restriction for the function class discussed in §5.
This restriction chiefly concerns with the Cauchy theorem. §6 is devoted to
derive some estimations for the kernels and then in §7 we establish a theorem
guaranteeing the existence of the discrete eigen-values of a certain integral
equation associated with the Szego kernel function. This theorem is our chief
purpose in the present paper. In §8 we prove that two sorts of kernels
introduced in §3 and in §5 are coincident with each other. In §9 we shall
introduce a new restriction imposing on the domain, under which we discuss
two extremal problems and an exhaustion problem. In §10 we investigate the
behavior of the kernels around a cluster point of the boundary components.
Finally in §11 we offer several problems which seem very important.

2. Let D be a planar infinite domain bounded by an infinite number of
circles C, defined by an equation |z —a,|=7,, 0< a, <1, such that limy—~wa,=0
and a, and 7, satisfy the condition

=) r;
(A) ng ICLJ_G/nIZ_'rJ2 <M< °°1
Jxn

where M does not depend upon n. Then we say that D is of finite type. This
nomenclature is justified in §7. Throughout this paper we assume that D is
of finite type. Evidently we have
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T i r=n.
2=1
Let B, be the interior of the circle C, and B the sum of all B,.

LEMMA 1. Let o(2) be an integrable function defined on C=312,C,.
There is an integrable function X (z) on C such that

LZ’ (z)dz = jcf(z) dz,

for each C,, X (2) is regular in D and
j 2@ 4.0

cz—w
for any weB.

Proof. Let 3 (2) be of the following form:
oo a,
§1 2ri(z —a,)
If 312, |a,] is of finite value, then
o ay,
v=1 z— a,,

converges absolutely and uniformly in D —U.(0) to a regular function in D,
where U,(0) is an e-neighborhood of the origin for any positive number e. Thus
the function is continuous in D —U.(0) for any £>0. Next we show that I (2)
is integrable on C if 317 |a,|<oo. As a preparation we prove that

Sz" r.d0 2z,
= <
0 lz—ap[_\/(av—aylz_”'vz

for |z—a,|=re? if v#u. If v=pu, the left hand side integral is equal to

2r. By Schwarz’s inequality we have
21
r<omr, 5 _Toif
0 l z— a/z |

Let w be z—a,, then

rr dn __1_5 dw o 1
o lz—a, P i) (wta,—a)(@—a)w+rd) T (@ —a)— 1t

by the residue theorem, thus we have

(2zr,)?
2 R i A—
I g (a'v - a/t)z - 7';:2 )

By this estimation we have
1 o
[jr@as=5- 5
_ 12 i3 & lay |
—_2n2Uc,<2+ 5 ) B dstnlal |
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< (1 +M1/271?>§1|av | < oo,

since D 1is of finite type and >0 |a@,| < co. Let o, denote the value defined
by the integral

s @z,

then there holds 317 |0, <co. Now set a,=o,. Then X (z) satisfies
1 o,

| r@i= 5| i,

by the uniform convergence of X (z) on C,. Let m; be min|z — w|, where the
minimum is taken over all z belonging to >';2x,;C;, and m; be min,ec|z —w|
for a given we&B. Then we have

f}j 1 i v dz{

J=N+1JC; 2 —W ¥=12r1(2 — a,)

& e ol
< ——ds<e¢
- 271"”’01 j=§+ls‘0jv§1 lz_‘aul

by the integrability of 31 (z), and further we have

i 1 i o
g N - dz
1Jc, 2 —w »=N+1 2742 — @)
2 oyl S ds

v=N+1 2n Jg lz—wllz—a,l

S EN)| ds

y=N+1 lez_‘avl

v ——— L 2
|d ]<j—;ﬂevx/la/—av[2_7’12 + TE>
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These show that

Jroz

The first term in the right hand side is equal to zero by the residue theorem,

2| 2e.

R

15=1 2ri(z — w) (2 — a,,)
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which leads to the desired result, that is,

dz
o @52 =0

for any w €B.

3. Let L? be a class of all complex-valued functions u(s) defined on C
which have a finite Lebesgue integral

2= jC! (s)|2ds.

This class L? is a Hilbert space with the scalar product

(4, v) = j(;c(s)@ds,

defined for any pair of elements u(s) and p(s) in L% We consider the linear
subspace 42 of L? consisting of these functions u(s)=L? which satisfy the
identity

j ﬂdzzo, z=2(s), w EB.
cr—w

It is clear that A2 is closed in L2. Then, for any element M(s)=L? we can
select a function u(s) in 42 which is nearest to M(s) in the sense that

132 = ) 1= | |1(5) = p(s) 1 ds = minimmum.
Then we have the decomposition
M(s) = u(s) +u(8)2'(s),  uls), v(s) €42,

which is unique, and an orthogonality relation

(M_ M x"1) =0
for any v, 42,

In the above decomposition we choose for M(s) the particular function

1 1
Mis)= 2r1 2(s)—t’
where t is a fixed point in D, and we have
1 1 _ L. .
Bni 2@ -t P, t)+ k(z, ©)2/(s), p(s), t), k(2(s), t) €42

We can set up the pair of analytic functions
__ 1 ( k&1t =1 [ Pt
k(w, 1) = 2m}Sc z2—w dz,  p(w, t)= 2r1 Sc z—w dz,

and we set
1

w—t

1
l(ws t) = -27'[—7: - lo(w, t)-
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LEMMA 2. Let o(z) be any integrable function defined on C with
[ Jot@1ds <oo,
C
which satisfies the relation
j 9@ g,—0, weB.
cCR—wW
The indefinite integral F(w) of the analytic function
1
7w =57 |

in D is continuous in D+ C—U.(0) or more precisely in the neighborhood of
each C, in D including C, and its boundary value is equal to

ra(z) dz

o(z)
cR—W

up to an additive constant.
To show this we remark in the first place that we may suppose
S o(z)dz=0
Cy

for each C,. Indeed, there exists a regular function X (2) satisfying the con-
ditions

50» 2 (@)dz= jc,,o(z) dz

and

Sﬁ)_dzzo
cr—w

by Lemma 1, and hence o(z) — 3 (2) satisfies the conditions required. On the
other hand the indefinite integral of the analytic function

l.j —Sﬁdz, weD
2r1 Joz—w

is continuous in the neighborhood of each C, in D including C, and its boundary
value is equal to

rZ' (z)dz

up to an additive constant, since X (z), by its construction, is an absolutely and
uniformly convergent series in the neighborhood of C, in D including C, and
hence X (z) is regular on C,. Therefore we may suppose, with no loss of
generality, that there holds

L}ya(z) dz=0

for each C,. Now we have finished all the necessary preparations which enable



200 MITSURU OZAWA

us to prove Lemma 2, and the remaining part of the proof is a course due to
[3] ad verbum. And finally we have our Lemma 2.

Let m be the minimum distance from w D to C, then we have

&Gz, 8) 12 S ds
2 <
[e(w, )12 = it Jelr—wP
_ Iz, D1 & 7,
2r sile,—wl|t—rk
ke o s
= 2mm Sileg—w|+7,
and
co ,r] <»—1 ,rJ l oo 1-]
,;Iw—a,l-i—r]=,=1|a]—av—'r,,|+'r,+2+g=$+1la,—ap+'r»l+'r,
—1__%170 _|_.l+_______.1;____ i /r<oo
= lav—l—av_'rv 7=1 ! 2 |av_/rv_av+1|j=v+1 J '

This shows that |k(w, t)|=0(m ?). Similarly we have |p(w,t)|=O0(m /3,
[ l(w, t)|=0(m™*?), when w is bounded away from ¢ in the last estimation.
A similar discussion as in [3] leads to an important fact that the functions
k(z, t) and I(z, t) defined by the Cauchy integral throughout D are analytic in
D and on each C,, except for the simple pole of I(z,t) at z=t and they
satisfy the boundary relation

Uz, t)=k(z, t)2'(s)

everywhere on each C,. This is the one playing the most important role in
the theory of the Szego kernel function.

4. In §3 we have shown an orthogonal relation (M — u, v;))=0 for any
v €42, Therefore we have

S I(z, t)p(z, w)ds=0.
c
By this relation we have

0= scﬁ(m,l(z, t)ds = jC‘O(TM(# z—it — p(z, t)>ds

1 S pEw) o Scﬁ@i)p(z, t)ds

= 271 Jo 22—t
and
1 k@, w) , 1 Uz, w)
Jelt, w) = 2r Sc z—t T 2ni jc z—t ds
1 X ds _ 1 s p(z,w)ds
T 4r? Yo k—H)E—w) 218 Jo z—t

which show that there holds an important relation
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Pat, w) + Ek(t, w)=I"(t, w),
where we set

Pu(t, w) = jcp(z, w) p(z, t)ds

and

1 ds
T, w= 4z L C—DE—n)"

Evidently we have the Hermitian character of I' and p,, that is, I'(t, w)
=I'(w, t) and p,(t, w)=p,(w, t). By its definition ps(t, ) is positive semi-definite,
that is, for any ¢ €L?

jc Lpz(t, ) $(0) p(w) ds, ds, = XCHC ot, 2@ ds.

On the other hand there holds

2
ds, =0.

(k(z, w), kz, 8)) = jcl(z, 1)1z, w)ds

_ 1 piz,w) . 1 pzt)
=I't, w) 21 jc z—t ds 2 ch—wds+p2(t’ w)

=I'(t, w) — pa(t, w) = k(t, w),

in particular,
2

| 1
2 — min | _
k&, t) =|k(z, t)] —/Eréljlz Srie =10 M

In the above proof we do not use the reproducing property, which is not yet
settled.

5. The reproducing property of the Szegd kernel function is an immediate
consequence of the Cauchy theorem in the classical case of any finitely con-
nected analytic domain. However we cannot, without any verification, conclude
that the Cauchy theorem remains valid in our case. Therefore we need to
replace I"? instead of 42. Let @ be a class of functions regular in D and
having the L? integrable boundary value ¢(2(s)) almost everywhere on C and
satisfying the Cauchy integrable formula

¢(t)=~1—j $@ 42, teD.

2r1 Joz—1t

Let I'? be a class of L? function u(z) on C such that the condition
[ uarp@dz=0
JC

holds for any ¢ @.

For any L' integrable function Y~(z) on C, the function defined by
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_ Y@ 4
¢t = 2n1 j cz— t

has the jump Yr(2) almost everywhere on C when either the inner normal
boundary value or the outer one exists. This is a well known theorem due to
Plemelj.

Thus in our case there remains valid

S ‘Mz)d =0, teB,

z—t

whence follows a fact that 1/(z —t), t =B, belongs to the class I'2. Since
1/(z—t), t =B, also belongs to the class @, any function u(s)eI™ satisfies

Jo

which shows that I'™2c 42, The class I"? is also evidently closed in L2. This
leads again to the following decomposition:

teB,

1 2
27i(z — t) =p(z, t) + k(z, 1)/, teD, pz, t)ysl™

And further we can see that the orthogonality relation (k(z, t)z/, v(z)) =0 holds
for any v €I'? and hence that

j k(z, £) ——dz=0, w EB.
CcC 2—W

This implies that k(z, t)=4%. Hence we can apply the same reasoning as in §3
and we have the existence of the kernels k(z, t), p(z, t) and l(z, t) which are
analytic on each C, and satisfy the boundary relation

U(2(s), t) = k(2(s), t)2/(s).
Then we have the reproducing property of k(z, t) for any ¢ € @:

(@), kz, 1) = jcsp(z) (e, t)dz

1 5 ¢(2) )z S 9(2) p(z, t)dz = ¢(t).

T 21 oz —

And further we have k(z, t) €@ and (k(z, w), k(2, t)) = k(t, w). The reproducing
property is a key property of the kernel and formally we can say that there
holds an extremal property

_, k(z, 2<’ ¢ |?
kit t) | kG 6 | T ¢

for any L? analytic function ¢ in D belonging to the class @. This leads to
the monotoneity of the kernel, that is, if D; CD,, then

kp, @, ©) = kpy(¢, ©).
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Antisymmetricity of p(z, ) is now easily concluded as follows:

0 =g l(z, t)k(z, w)ds
c

_ 1 1 1 o(z, w)
(2w Sc (z—1t)(z—w) dz— 55 'Sc v—i %
_2_}:? LZ(%:Z dz +LP(% t) p(z, w)dz =— p(t, w) — p(w, t).

It should be here remarked that the kernel %(z, t) has not the reproducing
property for any L2 analytic function in D. This will be proved in §11.

6. Let I'x(z, &) and kx(z, &) be the corresponding quantities of I" and %k in
the domain X, respectively. Then we have
1 = 1
ko<izi<i(z, ) = o > T oot

v=0

[szv + P2v+lz-v-1 z-v-l]

and
1 oo ‘02v+1
ZI— = (ZZ)”” .

ko<121(2, §) =Tb<i2/(2, £) =
Thus we have
i oo p2v+1 P2v+1 _ i oo 'z I2v
o frper lz ’2u+2 1 +p2u+1 o =0 1 +p2u+1 ’

To<i21(2, 2) — ko<iz1<1(, 2)=

and hence we see
l;}mp(Fp< 121(2, 2) — ko< 21<1(2, 2)) = 0.

Let D; and R, be the domains defined by |z2—a,|>7, and 7, <|z—aq,|<P,
respectively, where P, is determined in such a manner that R,cD and R, is
maximal. Then by the monotoneity we have

;i# ko2, 2) + kp,(2, 2) — kr,(2, 2) =I'p(2, 2) — kn(2, 2) = ;i# kp,(z, 2)
J=1, %V J=1, xv
in R,, since there holds

Iz, 2) = 3300,z 2) = 3o, (2, 2.
Let z tend to a point £ on C,, then we have
lim (Io(z, 2) — ko2, 2) =lim 31 kny(z, 2).
z2—-L z2—f J=1, xv

On the other hand we have

1 7y

8D e =g

and therefore we can conclude that

lim (To(e, 2 — e, 2)) = 13 %

2r 7=1, xv [C—aJIZ—TJZ’

..
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The right hand side series is uniformly and absolutely convergent by our con-
dition (A), and hence it is also uniformly bounded on C.

7. Now we shall consider an integral equation
®) f@ =k o070

for f being L? analytic in D. We have already shown that I'(z, z) —k(z, 2)
=p2(2, 2) and its uniform boundedness holds on C, therefore

| po(e, )| < jc| pw, 1) || o(w, 2) | ds.,

= (] e, oeas)” ([ 1otw 2y as)”

= Po(t, 1)172 ps(z, 2)'/%.
This shows that

SCS (e D P ds. ds, < ( j P2 ds>2

o 2
§M2<Z2M]> < oo,
J=1
Thus we have the following theorem.

THEOREM 1. Let D be a domain of finite type. Then Hilbert-Schmidt
theory is applicable to our integral equation

®) F@)=r jcpz<z, f ) ds,

and therefore there exists a finite number of eigen-values of finite value and
a finite number of the associating eigenfunctions. However there may exist
an infinite number of eigenfunctions belonging to the eigen-value A= co.
Further, the eigenfunctions ¢, and ¢, belonging to the different eigen-values
A2 and 2,2 are orthogonal and the eigenfunction ¢,°(z) (0=1, 2, ---, p) which
belong to an eigen-value 2,2 of degeneracy p—1 may be supposed orthogonal.

This theorem shows that the situation is the same as in the case of finitely
connected domain as far as we concern with our eigen-value problem. The
word ‘‘of finite type’’ is due to this fact. Singh discussed the problem re-
cently in a finitely connected analytic case [7]. Since several results can be
obtained ad verbum as in [7], we do not enter into a further discussion in this
tendency.

Now we shall mention here some examples.
Example 1. Let a,=1/n and r,=1/n% n=2,8, ---.

Then D is of finite type.
Example 2. Let ¢,=1/» and r,=1/10", n=1,2, ---.

Then D is of finite type.
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Example 3. Let a,=1/n and r,=1/2n(n+1), n=1,2, ---.
Then D is not of finite type.

8. In §3 we explained the decomposition

___1__ = (2 )2/ 2
Zrie—1) =p(z, t) + k(z, t)z’, teD, e, k42
In §5 we also explained the decomposition
___1_._ — I(y $)o/ 2 2
Srie — 1) = p(z, t) + k(z, t)z’, teD, pel™ ke

In order to avoid the eventual misunderstanding we shall denote the former
decomposition in the following form:

1 _ 7PV
Wg = P(z, t) +K(z, t)z'.
In 8§38 and 5 we proved the inclusions I'?c A2cL? and @ c A% And further

we proved
1
z—w

el?n0ca?, weEB,

and
k(z,t) @ A2

By the theorem of Plemelj we can see that P(z,t), p(z,t) and K(z, t) belong
to the class @. By these preparations we next prove that k(z, t) =K(z, t) and

oz, t) =P(z, t).

Indeed, since L(z, w)=1/2ri(z — w) —P(z, w) is orthogonal to the class 42,
there holds

0= S k(z, t)L(z, w)ds
c

—_— 1
= jck(z, t)(m —-P(z, ’Ll)))ds,
which shows that

Pt w)= | ke PG, w)ds = %L% ds.

On the other hand we have

1 KaY
271 ﬁc z—wds Pt w)

=S k(z, t)l(z, w)ds = S‘ Iz, t) (2, w)dz
c c

_—IS dz 1 j ‘o(z’t)dz
T Ant Jo(z—t)(z—w) 2miJocz—w
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1 [ Pk w) _
E;'L—L?t—dz +Lp(z, t)p(z, w) dz=0.

Therefore we see that p(t, w) =P(t, w). Thus k(z(s), t) =K(2(s), t), 2(s) =C, re-
mains valid, which leads to the desired result k(z, t) =K(z, t).

9. We now introduce a new restriction imposed on the domain D. We
say, in general, that D is of infinite island type if there exists a closed sub-
domain D’ of D + {0} such that the complementary set consists of an infinite
number of disc islands and I'(z, w) is uniformly bounded in D’xD’ and 0D’
contains the origin. There are many domains of infinite island type. Example
2 in §7 is surely of this type. Indeed, we see that

1 = Ty
oz, w) = 2_71'70;1 @ — )W — @) — 122
is uniformly bounded for (2, w) €D, X D,, where D, is a closed subdomain of
D + {0} defined by Nyi{z; |z—a,|=1/e"}. In this case we have in D, XD,
1 = 10"
Ip(z, w)| = ?Engl 10
In general, since kp(z,2)<Ip(z,2) and |kp(z, w)|2<ko(z, 2)-kn(z, w), ko(z,2),
kp(z, w) are uniformly bounded in D’, D' X D’, respectively. Since, by Schwarz’s
inequality, we have

< oo,

| ooz w) |2 < jcl kntt, 2) 2 ds jcl poft, w)[2ds
= kp(2, 2) Pop(w, w) = kp(2, 2)(I'p(w, w) — kp(w, w)),

we can see that pp(z, w) is also uniformly bounded in D’XD’. Hence In(z, w)
is also so, when 2 is bounded away from w. By its expression it is evident
that In(z, w) =Ip(w, z) and Ip(z, 2) =Ip(Z, %), and on the other hand there holds
an inequality |Ip(z, w) |2 <Ip(z, 2)Ip(w,w). If D is of infinite island type, then
we can select D’ as a symmetric domain with respect to the real axis and
hence we can choose an infinite number of circles y, each of which lies in D’/
and runs through the origin and separates the circles C, and C,,; and has its
centre on the real axis. The length of the periphery of y, tends to zero as n
tends to the infinity.

Let {D.} be an exhaustion of D in a certain sense and &, be a class of
functions, in which an extremal problem is considered. Under what condition
for D and for the problem does the extremal function of the problem tend to
an extremal function of the corresponding problem on D? Is the extremal
function for D unique? This problem, which we say the exhaustion problem,
is one of the most important problems to be considered, and there are numerous
papers for the various extremal problems.

Let Bx be a class of bounded single-valued regular function in X such that
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|f(2)| <1, z€D. Then By is a subclass of @. Indeed, we have for weD

1 § f@ 4,1 g f@) 1 S f(2)

. = - dz+ ——
27t Jcz—w 2rt Znr1Ci—ry 2 — W

dz,

N Citry 2 —w 271

where yy has already been defined. The first term of the right hand side is
equal to f(w) by the residue theorem and the second one has its modulus less
than . Therefore we have

fw)= 1 So S @) dz, weD,

2r1 z2—w
which shows that B, c®. In the above discussion we have not made use of a
fact that D is of infinite island type.

Since it is not yet settled whether there is the multiplication in @ or not
and whether k(z, w)/l(z, w) is bounded or not, we need to make a detour and
to restrict ourselves to the domain of infinite island type.

Let D be of infinite island type. In this case we have for f(z) =B,
Fi(e) = 2nijclp(t, D F B dt.

In fact, we have for zD’—U.(0)

g f@®

X Citry t—2

0o(t, 2)dt = 271 f(2)- pp(2, 2) =0,

since pp(z,2) =0. And further we have

H S @)

Z;;N_HCJ'—?’N t—z

polt, 2)dt ] <

since

JS® ‘<S 1o, )| .0 &
jz,‘sﬂc;‘t—-zpp(t’ 2)dt| = n541Ci |t —2]| ds < 2

and
e

H mt_f% Po(t, 2) dt]éMjde :

By these estimations we have
f(@) _
L—t ~ polt, 2)dt =0.
Quite similarly we can see that
Sch(t, D F(Hdt=0, feBp, zeD'—T.0).
Therefore we can conclude that

F1(2) = 2xi jClD(t, DRf () dt
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for any f(t) =Bp and for any z €D'—U.(0). The analyticity of each side im-
plies that this identity holds for any f(t) =%, and for any z<D.

By the identity we have
|f/(2) |27 jCi Ip(t, 2) |2ds =2r Sckp(t, 2)kp(t, 2)ds = 2rkp(z, 2),

which shows that
sup | f'(2) | < 2rkp(z, 2).
Bp

On the other hand it is well known that
sup | 9'(2) | = 27k pny (2, 2) = 2nkn(2, 2),

Bpnw
where D(n) is the subdomain of D bounded by the circles C,, v=1, -+, m, and
a circle y, ([2], [8], [6], [6]). This and the compactness of the class B, and
the monotoneity of the functional in the sense of Ahlfors-Beurling [1] imply
that

Sup [f'(2) = 2”}3?0 ke (2, 2) = 2nk (2, 2),
taking a suitable subsequence, if necessary.
For any n =N+ 1, we have
jr [Ep(t, w)|2ds < e, weD,
and further we have ’
j):;’fwl kp(t, w) |2ds < ¢, weD,
since kp =L?. Then we see that

s2?0j+7nl kD(t’ z) - kn(n)(t’ Z) Izds

= lenener )= Il ) ol )+ o el 2 2

ékD(n)(z’ z)_kD(z; z)+j lkp(t, Z)|2d8<36, ZED/,

wr1CItT

which implies that

i — 2 — /
71113;10 SE’{CjwnlkD(t' 2) —kpw(t, 2)|2ds =0, zeD’.
From this we see that limn—oo kpny(t, 2) = kn(t, 2), z €D’, almost everywhere on
each C,. Further we see that
1 Epeny(t, w)
- = L dt
2r1 JZiCi+rn t—z

ko (2, w) =

tends to
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kp(z, w) = —2—iz—jc—kl;(t_’ 1:) dt
uniformly in the wider sense. Here ‘‘in the wider sense’’ means originally
that the convergence is uniform in any closed subdomain lying in D’— U.(0).
However it coincides with the ordinary one in this case. Similarly we see that
Ppny(?, w) tends to pp(z, w) uniformly in the wider sense. Thus this is also
true for the function Iy, (2, w), that is, limn—e lpwm, (2, w) = Ip(2, ).

It is well known that there exists uniquely an extremal funection Fp, (¢, ?)
in Bpa, up to the rotation which gives supspwm,]9’(z)| and this is connected
with the kernels as follows:

_ kp(m(t, 22.
Fp(n)(t, z) - lD(n)(ty Z) .
Therefore we see that
_ kD(ty Z)
ol =00, 2

exists and belongs to the class Bp and Fy(¢, 2) is an extremal function. Since
we have for any g =8,

lg'2) = 2m‘jclp(t, 2g(t)dt ]g o Ll Io(t, ) Pds

p. j Lot 22?4y erj Int, 2)°Fot, ) dt
C lD(t’ Z) C

= %FD,(Z’ 2) =2rkp(z, 2),

the extremality and the uniqueness are obtained as usually. Of course we mean
that the extremal function is unique up to the rotation. Now we have an
affirmative answer to an exhaustion problem connected with the class B.

Next we enter into the second extremal problem, which is also well known
in the case of finitely connected analytic domain. To seek for a function f(z)
such that f’(2) is regular except at z =¢ around which the expansion

1
- m + regular terms of z—¢

holds and f’(z) gives the minimum length
minS | f'(2)]ds.
c

Here we only state the final result with no detail. The indefinite integral f(z)
of the function f’(z)=—2xilp(z,t)? is an extremal function of the problem and
the minimum value is equal to 2zkp(t,t). Then we have

lim — 274l peny (2, t)? = — 2riln(2, t)?

n—oo
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uniformly in the wider sense in D X D.

10. Here we shall study the boundary behavior of the kernels k(z, t), p(2, t)
and I(z, t), in particular, their behavior when ¢ tends to the origin, which is
the only one cluster point of the boundary components. In this §10 we settle
a new assumption that

e r(a.?+ 72

(©) 2 ey <o
holds. From (C) we have
g — 1,2 <o
which implies that 1/z € L2
In the first place we prove that
1 J dz { 0, teD,
27t Jo 2(z—t) ~ | —1/t, tEB.

For the left hand side integral I we have

1 ds 1 ds \2 ds 12
'I'éz_nscmnz—tl§E<le12> <Sclz—tiz>

o 1/2 / 172
i(z 2z, > <E 2zr, > ’ teD.

2z \;=1la, 12— 12 =ila,—t)2—1rt

If ¢ lies in a closed subdomain of D, then

7
la, —t12—1? =N <eo

holds and hence the integral I exists absolutely and uniformly in the wider
sense in D. This shows that
=lim i S _dz =0.

n—o 9=1JCj z(z_t)
If teB, then the integral I also exists absolutely and uniformly in the wider
sense in B,. This shows that

i j‘ dz _ 271
cj Z(Z—t) t

I=lim >

n—0o0 3=1
We decompose 1/2z%z in such a manner that
1 s .
omiz pi(2) + ki(2)?’, ze(, pR)erl’
and

) I

min — p1(2)

pET? Zmz 2ni 2

u()” ’
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Then as in §§5 and 8 we have ki(z) €420 0, pi(z) EI? 1 ® and the analyticity
of ki(2), pi(2) and [(2) on each C,, where [,(2) =1/2ziz — pi(2). And further
we have l;(2) =ki(z)2’ on each C,. By the orthogonality I(z,%) LI'? and l;(2)
171, we have

1 [ pGb) . S 0.2)
——y ﬁ(zz’—t)ds = scﬂl(z) oz, t)ds = —Tlc—s ri(2) ds,

271 Jo 2zt Jcz—t1

and hence we have

1 ( k(2 1 L(z)
kl(t)—2mscz—tdz 2m§ z—td
=1 g -1 S @)
4z Jc z(z —t) 2r1 z—1
=1 ds 1 ( p&1)
T A4n? Xo #ZH(z—1) + 2r1 50 z ds.

Therefore we see that

1 ds 1
k0= 0= s [ Gy —m 37 o T 0
Let m be the minimum distance min.cc|z —t|, then there holds
SRS S
c(z—0ZGE—w) |~ mJc|z|lz—w|

for any w belonging to the angular domain 0: z/2+¢ <argw < 8r/2— ¢ for an
£>0. And further we have

U“”h€7ﬂ<§W“W“Lﬁt%mméwhé%

for any w lying in the angular domain ©. On the other hand we have easily
S ds _ o M@+ 1.7
clzl* 7 A (@2 —12)?

Therefore under the condition (C) the integral

o )-<z )

exists absolutely and uniformly in ©. Therefore limw—ok(t, w)=ki(t) holds,
where the limit is taken over the point-sequence lying in the angular domain
O, and moreover we see that the differentiability

k(t, w) — ku(?)

<o,

8 .
Eha) P+
SRS T Y
T 4n? Jo (k—1)72 ' 211 z2
—1¢ 1 1 o
— J(C—ﬁgz(z, tyds= 5 - SC Sk, dz
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holds for any limiting process in 6. And again by the orthogonality I(z, t)
1 k4(2), we have

Pi8) = 2 Joz—t 27t Jo =z

1 j Pu2). dz=_is P& 4

from which we can see that limw—op(t, w) = pi(t), w €6 and

LW 1 S e 4

we6
w0 w 271 Jo 2

under the condition (C). This implies that lim,—ol(t, w) =1;(t), w = O and
m W =L@ 1 e w) — )
w—0 w 2rit? w—0 w

_ 1 1 pkY
= 2miet T om SC dz,

Since there holds an identity

dz
jc_——zz(z—t) =0, teD

by the condition (C) and by the residue theorem, we have

0 1 k(z, t)
%l(t’ w) \w:n_- 2nitt  2ri jc 22 ds.

weo.

Let ¢ be any function of the class ®. Then we have

and

©(2), k(z, w) — ks(2)) = —j PR

whence follows that
(¢(2), ky(2)) = EH(I) o(w), weBO,

and further that
172
(e, ) = o)l < 121, )~ 1 1| e ) -

EARE
This shows that the strong convergence of k(z, w) to ki(2):
lim || k(z, w) — k1(2) |2=0, weeo
w—0

holds, from which we see that limw—ok;(w)=|ki(2) ]2, w6 and limw-ok(w, w)
= ky(2) |3, weo.

Suppose further that there remains valid

ds
LW“"
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Then there holds

as w tends to the origin in ®. Moreover it is evident that

k(z, w) =k 2
L*(z_z(i:—)——w)ﬁdsl <| k(z, w) — k(2) ll?jcm:a]%w_lz=o(lwlz)

as w tends to the origin in ®. These show that

lim W, W) —ky(w) 1 j LA

5 dz weeo,
w0 w? 21 Jo 28

If 1/z" belongs to the class L? for any positive integer m, then we can
proceed these processes ad infinitum. The example 2 in §7 satisfies this

condition.

11. Let us decompose 1/2z¢z in such a manner that

1 [
97z =Pi(z)+ Ki(2)2’, P, K, e4*
and that
1 2 . 1 2
” Znie @) = roi| 2mie TH

then we have P;, K; =® and both are analytic on each C, with the boundary
relation Li(2) = Ki(z)2’ where we put L;(z) =1/2riz—Pi(z). And further we
have the orthogonality L;(z) L A2, Therefore we have

1

S S T, ) 'w)— —5 Tt w )Pl(t)ds+SCk(t, W) Ki(t) dt

—Pw) + jck(t, ) I ds = Py(w).

If we assume that

j k(t, w) 2mw

remains valid, then P;(w)=1/2ziw. However we have
j de =0, teB
cw—t

and
1 S dw __ 1
27t Jeww—t) ~  t’
which is a contradiction. Thus we have a remarkable fact that there is a
function regular in D and belonging to the class L? for which the reproducing

teB,
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property does not hold. The class @ plays a central role for the reproducing
property.

Our results are of very special nature, since the boundary of the domain
consists of the circles and their centres lie on the real axis and the order of
clustering is very weak in our case. We have introduced two notions, that is,
‘“‘of finite type’’ and ‘‘of infinite island type’’, which rshow the orders of cluste-
ing of the circles, respectively.

There arise several unsolved problems, which are listed below.

(a) Can we extend the condition of finite type to a more general domain
than our cases presented here? It should be hoped that the condition to be
established is of purely metrical nature.

(b) Under what condition is the extremal function F'(¢, z) unique? We
have established this under the condition of infinite island type and of finite
type.

(c¢) Under what condition is the extremal function F(¢, z) of type Bl; in
the sense of Heins [4]? It is our final conjecture that the extremal function
F(t, z) is of type Bl; in a case of infinite island type and simultaneously of
finite type.
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