
SZEGO KERNEL FUNCTION ON SOME DOMAINS
OF INFINITE CONNECTIVITY

BY MITSURU OZAWA

1. It is well known that the Szego kernel function closely relates to a
function which maps conformally a given planar w-ply connected domain onto
the n times covered unit disc ([2], [3], [5], [6]). Recently an interesting
eigen-value problem associated with the Szego kernel function was discussed in
[7], It will be natural to ask for whether these results remain valid or not in
the case of the domains of infinite connectivity. Under a somewhat severe
condition for the basic domains we shall discuss the nature of the Szego kernel
function and the related function of the domains of infinite connectivity. How-
ever it is very plausible to conjecture that the condition and the restriction
imposed on in the present paper can be released in a great extent.

We mainly follow a course invented in [3]. In §2 under a certain condi-
tion we discuss an existence theorem which plays a role in the remaining part
and seems interesting in itself. In § 3 we shall prove the analyticity of the
kernels on the boundary and a boundary relation between them. In §4 we
derive some results using the boundary relation. In order to prove the repro-
ducing property we make a restriction for the function class discussed in §5.
This restriction chiefly concerns with the Cauchy theorem. §6 is devoted to
derive some estimations for the kernels and then in § 7 we establish a theorem
guaranteeing the existence of the discrete eigen-values of a certain integral
equation associated with the Szego kernel function. This theorem is our chief
purpose in the present paper. In §8 we prove that two sorts of kernels
introduced in §3 and in §5 are coincident with each other. In §9 we shall
introduce a new restriction imposing on the domain, under which we discuss
two extremal problems and an exhaustion problem. In §10 we investigate the
behavior of the kernels around a cluster point of the boundary components.
Finally in §11 we offer several problems which seem very important.

2. Let D be a planar infinite domain bounded by an infinite number of
circles Cv defined by an equation | z — av \ = rv, 0 < av ̂  1, such that lim^oo av = 0
and av and rv satisfy the condition

( A ) 5 r ' < flf<°°>(A) 5 lo_g|t_r,
where M does not depend upon n. Then we say that D is of finite type. This
nomenclature is justified in §7. Throughout this paper we assume that D is
of finite type. Evidently we have
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Let Bv be the interior of the circle Cv and B the sum of all Bv.

LEMMA 1. Let σ{z) be an integrable function defined on C =
There is an integrable function Σ (z) on C such that

[ Σ(z)dz=[ σ(z)dz,

for each CVJ Σ(z) is regular in Ώ and

Jc z — w

for any w^B.

Proof. Let Σ(z) be of the following form:

i
y

y =i 2πi(z — av)'

If ΣΓ-il<*p| is of finite value, then
/ 1

i
/ 1

v=i z — av

converges absolutely and uniformly in D — Uε(0) to a regular function in D,
where £7e(0) is an ^-neighborhood of the origin for any positive number ε. Thus
the function is continuous in D — Uε(0) for any β>0. Next we show that Σ(z)
is integrable on C if ΣΓ=i | α U < ° ° . As a preparation we prove that

Γ27Γ rvdθ < 2πrv

~ — aμ\

for \z — αyI = r y e^ if v ^ μ . \ί v — μ, the left hand side integral is equal to
2π. By Schwarz's inequality we have

o \z-aμ\
2

Let w be z — αy, then

C^__dθ__ _ JL f _
Jo \z-aμ\

2 " i JΊ^ (w + αy — α )̂ ((αy - α^)^ + ry

2) (αy - α^)2 — r y

by the residue theorem, thus we have

~~ (av - aμf - rv

2'

By this estimation we have

ί.
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1 oo r/j-i

^-^-ΣL(Σ+J
"1 oo oo

^ ^ Σ Σ \θiv

co oo
V~1 I _. I >Γ"Ί _

— Z J I " v I 2-A ιγ~

ds

ί = i

VI <h ~ a, I2 - r/

1/2 / OO \ 1/2

since 1> is of finite type and ΣΓ=i l«y I < °° Let <ry denote the value defined
by the integral

σ(z)dz,

then there holds . Now set ^ v = <rv. Then satisfies

by the uniform convergence of Σ(z) on Cv. Let mi be min.|2 — w|, where the
minimum is taken over all z belonging to Σ17=N+ICJ, and m2 be m i n t e d z — w\
for a given w^B. Then we have

iv+ z — w υ=i i( )

J^ι\z-a,

by the integrability of Σ(z)> a n d further we have

ds<ε

yi
ΐ(« — av)

dz

oo oo

2 2 i
3=i V=N+I 2π )CJ I z —

w\\z — av\
co oo

Σ
V=N+1

Σ
y=JV+l

These show that

dzΓ d
)c z- w

N N

^ 2ττΐ(^ — w) (̂  — αv)

The first term in the right hand side is equal to zero by the residue theorem,
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which leads to the desired result, that is,

for any

3. Let L2 be a class of all complex-valued functions μ(s) defined on C
which have a finite Lebesgue integral

= [ \μ(s)\2ds.
JC

This class L2 is a Hubert space with the scalar product

(μ, u) = μ(s)Λjήds,
JC

defined for any pair of elements μ(s) and v(s) in L2. We consider the linear
subspace A2 of L2 consisting of these functions μ(s)eL2 which satisfy the
identity

jc z — w

It is clear that A2 is closed in L2. Then, for any element M(s)^L2, we can
select a function μ(s) in A2 which is nearest to M(s) in the sense that

\\M(s) - μ(s) \\2=[ \M(s) - μ(s) \2ds = minimum.
Jc

Then we have the decomposition

M(s) = μ(s) + v(8)z'(8), μ(s), v(

which is unique, and an orthogonality relation

(M-μ,pO = O
for any vι <^A2.

In the above decomposition we choose for M(s) the particular function

where t is a fixed point in Ώ, and we have

We can set up the pair of analytic functions

)c Z — w Δπ% Jc z — w

and we set
, , . , 1 1
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LEMMA 2. Let σ{z) be any integrable function defined on C with

f \σ(z)\d8 <oo,
Jc

which satisfies the relation

( t

Jc z — w

The indefinite integral F(w) of the analytic function

2π% )c z — w

in D is continuous in D + C — £7e(0) or more precisely in the neighborhood of
each Cv in D including Cv and its boundary value is equal to

[*σ(z)dz

up to an additive constant.

To show this we remark in the first place that we may suppose

I σ(z)dz = 0

for each Cy. Indeed, there exists a regular function Σ (z) satisfying the con-
ditions

ί Σ(z)dz=[ σ(z)dz
JCV JCV

and

f ^
Jc z —

w

by Lemma 1, and hence σ{z) — Σ (z) satisfies the conditions required. On the
other hand the indefinite integral of the analytic function

1 C Σ(z) ,

2πi Jc z — w

is continuous in the neighborhood of each Cv in D including Cv and its boundary
value is equal to

[*Σ(z)dz

up to an additive constant, since!'(z), by its construction, is an absolutely and
uniformly convergent series in the neighborhood of Cv in D including Cv and
hence Σ(z) is regular on Cv. Therefore we may suppose, with no loss of
generality, that there holds

ί σ(z)dz = 0
jcv

for each Cv. Now we have finished all the necessary preparations which enable
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us to prove Lemma 2, and the remaining part of the proof is a course due to
[3] ad verbum. And finally we have our Lemma 2.

Let m be the minimum distance from w^D to C, then we have

\\k(z, t)\\*C ds
\k(w,t)\*:

ιC ds
Jc \z — \4τr2 )c\z-w\2

) II 2

2π

\\k(z,t)\\*
2πm *=i I α, — w | + r,

and
V — 1

jέi I w - α̂  | + r̂  -" £ ί I α, -- αw - rv | + r, 2 ί = ,+i | α; - αv + rv | + r3

1 υ - 1 1 1 oo

^ Γ S r , + - + Ί r Σ r.;<oo.
I α y _ i — av — rv \ 3=ι Δ \av — rv — av+i | j=»+i

This shows that | k(w, t) \ = O(m"1/2). Similarly we have \ρ(w,t)\ = O(m,-1/2),
\l(w,t)\ = 0(m~U2), when w is bounded away from t in the last estimation.
A similar discussion as in [3] leads to an important fact that the functions
k{z, t) and l(z, t) defined by the Cauchy integral throughout D are analytic in
D and on each Cv, except for the simple pole of l(z, t) at z = t and they
satisfy the boundary relation

everywhere on each Cv. This is the one playing the most important role in
the theory of the Szegδ kernel function.

4. In §3 we have shown an orthogonal relation (M— μ, v%) = 0 for any
vi^Λ2. Therefore we have

I l(z, t)p(z, w)ds = 0.
Jc

By this relation we have
f r / l l

0 = \ p(z,w)l(ztt)ds=\ p(z,w)[-z—. —p(z,'
Jc Jc \ Δπi z — t

and

h(+ /i/Λ — •*" I ' v v v ' W J J •*" i v κ Z ' W '

2πi Jc z — t 2πi Jc z — t

1 f ds I f p(z, w)
4ττ2 )c(z-t)(z-w) 2πi)c z-t

which show that there holds an important relation
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t, w)=Γ(t,w),

where we set

and

ρ2(t, w)= I ρ(z,w)ρ(z,t)ds
J c

Evidently we have the Hermitian character of Γ and ρ2, that is, Γ(t, w)
=Γ(w, t) and p2(t, w)=ρ2(w, t). By its definition ρ2{t, w) is positive semi-definite,
that is, for any φ^L2

2f f f fί

\ ρ2(t, w)<ρ(t)φ(w)dstdsw=\ \\ ρ(t, z)φ(t)dst
JCJC JCJ\C

dsz ^ 0.

On the other hand there holds

(k(z, w), k(z, t)) = 1 l(z, t)l(z, w)ds
Jc

1 Γ p(zf w) 1 f p(z, t)
=Γ(t, w) ———— I — ds ———r I ds + p2{tf w)

2πi Jc Z — t Δπ% JcZ — W

=Γ(t, w) - ρ2(t, w) = k(t, w),

in particular,

1
ϊ)~~μ

In the above proof we do not use the reproducing property, which is not yet
settled.

5. The reproducing property of the Szego kernel function is an immediate
consequence of the Cauchy theorem in the classical case of any finitely con-
nected analytic domain. However we cannot, without any verification, conclude
that the Cauchy theorem remains valid in our case. Therefore we need to
replace Γ2 instead of A2. Let Φ be a class of functions regular in D and
having the L2 integrable boundary value ψ(z(s)) almost everywhere on C and
satisfying the Cauchy integrable formula

Let Γ2 be a class of L2 function μ(z) on C such that the condition

f μ(z)ψ(z)dz = 0

holds for any

For any L1 integrable function ψ(z) on C, the function defined by
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has the jump ψ(z) almost everywhere on C when either the inner normal
boundary value or the outer one exists. This is a well known theorem due to
Plemelj.

Thus in our case there remains valid

)cz-t
t<=B,

whence follows a fact that l/(z — f), t^B, belongs to the class Γ2. Since
1/(2 — t), t&B, also belongs to the class Φ, any function μ(s)eΓ2 satisfies

d z

= 0 ,

which shows that Γ2czΛ2. The class Γ2 is also evidently closed in ZA This
leads again to the following decomposition:

2πi(l-t) = p(Zt l) + k(Z' t)Z'
And further we can see that the orthogonality relation (k(z, t)zr, v(z)) = 0 holds
for any ^eJΓ2 and hence that

)c z —

This implies that k(z, t)^Λ2. Hence we can apply the same reasoning as in §3
and we have the existence of the kernels k(z, t), ρ(z, t) and l(z, t) which are
analytic on each Cv and satisfy the boundary relation

Then we have the reproducing property of k(z, t) for any

(<f(z),k(z,t))=[ <p(z)l(z,t)dz
jc

2πi

And further we have k(z, t)<=Φ and (k(z, w), k(z, t)) = k(t, w). The reproducing
property is a key property of the kernel and formally we can say that there
holds an extremal property

Hz, t)
k{t, t)

VII ψ(z)
Ψit)

for any L2 analytic function ψ in D belonging to the class Φ. This leads to
the monotoneity of the kernel, that is, if D1aD2, then
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Antisymmetricity of p(z, t) is now easily concluded as follows:

0 = 1 l(z, t)k(z, w)ds
jc

= 1 f 1 d z 1 f P(*> ™)
(2τα)2 J c (z - *)(s - w) 2π< J σ z -1

_ 1 Γ ^ 0 ώ + f p(Zf

It should be here remarked that the kernel k(z, t) has not the reproducing
property for any L2 analytic function in D. This will be proved in §11.

6. Let Γχ(z, 0 and kx(z, Q be the corresponding quantities of Γ and k in
the domain X, respectively. Then we have

and
1 o p

Thus we have

and hence we see

lim (ΓP<\z\(z, z) - kP<\z\<i{z, z)) = 0.

Let Dj and i?; be the domains defined by \z — aJ\>r] and r3<\z —
respectively, where P3 is determined in such a manner that R3aD and R3 is
maximal. Then by the monotoneity we have

i, z) + kDv(z, z) — kRv(z, z) t^ΓD(z, z) — kD(z, z) ^

in Rv, since there holds
oo oo

Γ1—.(/y *y\ — "V l 7~V> (Φ ^ ^ —— 'V ' If (/y ΛΛ
D\&f &J — x i JL Dj\™Ί &) ~~ / i "/Dη\™'f ™J*

Let z tend to a point C on Cv, then we have
oo

lim (ΓD(z, z) — kD(z9 z)) = lim Σ kDj(z, z).

On the other hand we have

and therefore we can conclude that

Jk,, ,
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The right hand side series is uniformly and absolutely convergent by our con-
dition (A), and hence it is also uniformly bounded on C.

7. Now we shall consider an integral equation

(B) f(z)=λ*[ p2(z,t)f(t)d8t

jc

for / being L2 analytic in D. We have already shown that Γ(z, z) - k(z, z)
= p2(z, z) and its uniform boundedness holds on C, therefore

I p2(z, t)\S\ I p(w, t) 11 p(w, z) I dsw

This shows that

\c\

Thus we have the following theorem.

THEOREM 1. Let D be a domain of finite type. Then Hilbert-Schmidt
theory is applicable to our integral equation

(B)

and therefore there exists a finite number of eigen-values of finite value and
a finite number of the associating eig en functions. However there may exist
an infinite number of eigenfunctions belonging to the eigen-value λ = oo.
Further, the eigenfunctions φv and φμ belonging to the different eigen-values
λ2 and λμ

2 are orthogonal and the eigenfunction φv

<p:>(z) (p = l, 2, , p) which
belong to an eigen-value λ2 of degeneracy p — 1 may be supposed orthogonal.

This theorem shows that the situation is the same as in the case of finitely
connected domain as far as we concern with our eigen-value problem. The
word "of finite type" is due to this fact. Singh discussed the problem re-
cently in a finitely connected analytic case [7], Since several results can be
obtained ad verbum as in [7], we do not enter into a further discussion in this
tendency.

Now we shall mention here some examples.

Example 1. Let an = 1/n and rn=l/n4, n = 2, 3, .
Then D is of finite type.

Example 2. Let an = 1/n and rn = 1/10% n = 1 , 2, .

Then D is of finite type.
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Example 3. Let an = 1/n and rn = l/2n(n +1), n =1, 2, .

Then D is not of finite type.

8. In §3 we explained the decomposition

2πi(l-t) =P(M) + fe(M)g/»

In §5 we also explained the decomposition

In order to avoid the eventual misunderstanding we shall denote the former
decomposition in the following form:

In §§3 and 5 we proved the inclusions Γ2aΛ2czL2 and ΦaΛ2. And further
we proved

z — w

and

Hz,
By the theorem of Plemelj we can see that P(z, t), p(z, t) and K(z, t) belong
to the class Φ. By these preparations we next prove that k(z,t)=K(z,t) and
p(z, t) =P(z, t).

Indeed, since L(z, w) = l/2πi(z — w) —P(z, w) is orthogonal to the class Λ2,
there holds

0= k(z, t)L(z, w)ds
Jc

which shows that

P{t'W) = ί toilcz-v.
On the other hand we have

1 Γ k(z, t) , ,. N

-jς-r\ ds-p(t,w)

2πι )c z — w Γ

= \ k(z, t)l(z, w)ds= I l(z, t)l(z, w)dz
JC JC4π2 jc (z — t)(z — w) 2πi jc z — w
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Therefore we see that ρ(t, w) =P(t, w). Thus k(z(s), t) = K(z(s), t), z(s) e C, re-
mains valid, which leads to the desired result k(z, t) =K(z, t).

9. We now introduce a new restriction imposed on the domain D. We
say, in general, that D is of infinite island type if there exists a closed sub-
domain Ώ' of D + {0} such that the complementary set consists of an infinite
number of disc islands and Γ(z, w) is uniformly bounded in Dr x Ώ' and dD'
contains the origin. There are many domains of infinite island type. Example
2 in §7 is surely of this type. Indeed, we see that

1 OO /y

ΓD(Z' W) = 2^S(za)(wa)rJ

is uniformly bounded for (z, w) G:DexDe, where De is a closed subdomain of
D + {0} defined by Π«=i{z; \z — an\^l/en}. In this case we have in DexDe

In general, since kD{z,z)^ΓD{ziz) and \kD(z, w)\2^kD(zy z)-kD(z, w), kD(z,z),
kD(z, w) are uniformly bounded in D', DfxD', respectively. Since, by Schwarz's
inequality, we have

\pD(z,w)\2^[ \kD(t,z)\2ds[ \pD(t,w)\2ds
JC JC

= kD(z, z) ρ2D{w, w) = kD(z, z)(ΓD(w, w) - kD(w, w)),

we can see that pD(z, w) is also uniformly bounded in D'xD'. Hence ZD(2, W)
is also so, when z is bounded away from w. By its expression it is evident
that ΓD{Zj W) =ΓD(ϊϋ, z) and ΓD(Z, Z) =ΓD(Z, Z)9 and on the other hand there holds
an inequality \ΓD(z, w)\2 ^ΓD(z, z)ΓD(w,w). If D is of infinite island type, then
we can select D r as a symmetric domain with respect to the real axis and
hence we can choose an infinite number of circles γn each of which lies in Df

and runs through the origin and separates the circles Cn and Cn+i and has its
centre on the real axis. The length of the periphery of γn tends to zero as n
tends to the infinity.

Let {Dn} be an exhaustion of D in a certain sense and §TO be a class of
functions, in which an extremal problem is considered. Under what condition
for D and for the problem does the extremal function of the problem tend to
an extremal function of the corresponding problem on DΊ Is the extremal
function for D unique? This problem, which we say the exhaustion problem,
is one of the most important problems to be considered, and there are numerous
papers for the various extremal problems.

Let SJΓ be a class of bounded single-valued regular function in X such that
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|/(z)| <^1, z e i λ Then Ϊ8D is a subclass of Φ. Indeed, we have for w

_ I _ Γ /(*> dz=

 1 r
2πi )cZ-W 2πi jΣf= 2 —

i 1 f
2τα J ΣJLΛΓ+ICJ--7\W Z — W

dz,

where TΆ has already been defined. The first term of the right hand side is
equal to f(w) by the residue theorem and the second one has its modulus less
than ε. Therefore we have

z — w
which shows that ^&DdΦ. In the above discussion we have not made use of a
fact that D is of infinite island type.

Since it is not yet settled whether there is the multiplication in Φ or not
and whether k(z, w)/l(z, w) is bounded or not, we need to make a detour and
to restrict ourselves to the domain of infinite island type.

Let D be of infinite island type. In this case we have for f(z) e %5D

f'(z) = 2πi[ lD(t,z)2f(t)dt.
Jc

In fact, we have for zeD'—Ut(0)

since pD(z, z) = 0. And further we have

fit)

since

and

[
JΣfLN+iCj-nv t — Z

fit)

ρD(t, z) dt < ε,

-Z
ρD(fi, z) dt =1

fit).
)γNt~Z

By these estimations we have

pD(t, z) dt

ΣS+1C3 \ t - Z \

*<f

K —

\J^zPS,z)dt = 0.

Quite similarly we can see that

Therefore we can conclude that

i[ lD(t,z)2f(t)dt
Jc
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for any /(£)e93z> and for any z^D'—Uε(0). The analyticity of each side im-
plies that this identity holds for any f(t)<=ΐ8D and for any z

By the identity we have

\lD(t,z)\2ds = 2π[ k^t~zjkD(t, z)ds = 2πkD(z, z),
C JC

which shows that

On the other hand it is well known that

sup ! g'(z) I = 2πkDcn>(z, z) ^ 2πkD(z, z),

where D(ri) is the subdomain of D bounded by the circles Cvt v = l, •• , n, and
a circle γn ([2], [3], [5], [6]). This and the compactness of the class ^8D and
the monotoneity of the functional in the sense of Ahlfors-Beurling [1] imply
that

sup \f'(z) I = 2π Km kDw(zf z) = 2πkD(z, z),

taking a suitable subsequence, if necessary.

For any n^>N+l, we have

\kD(t9 w)\2ds<ε, w(=D',
JTn

and further we have

[^n\kD(t9w)\2d8<ε9 w(=D,

since kD^L2. Then we see that

= kDw(z, z) - kD(zf z) - kD(z, z) + I kD(t, z)\2ds

^ kDcn>(z, z) - kD(z, z) + f I kD(t, z)\2ds< 3e,

which implies that

lim I n \kD(t,z) — kDCn>(ttZ)\2d8 = 0, z<=D'.

From this we see that \imn^ookDw(t, z) = kD(t, z), z^D', almost everywhere on
each Cv. Further we see that

tends to
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uniformly in the wider sense. Here "in the wider sense" means originally
that the convergence is uniform in any closed subdomain lying in D'—U£(0).
However it coincides with the ordinary one in this case. Similarly we see that
PDW(Z> W ) tends to PD(Z, W) uniformly in the wider sense. Thus this is also
true for the function lDcn^(zfw)9 that is, \imn-+oo lDm(z, w) = lD(z, w).

It is well known that there exists uniquely an extremal function FDw{ty z)
in SDCΠ) up to the rotation which gives ^vφ^Din^\gf{z)\ and this is connected
with the kernels as follows:

Fnw(t, z) = j D ( . ' γ »

Therefore we see that

Fn{t'Z)-~Wt7z)

exists and belongs to the class ^&D and FD(t, z) is an extremal function. Since
we have for any g <

I gf(z) I = 2πi [ lD(t, z)2g(t)dt ^ 2π [ \ lD(t, z)\2ds

= 2π [ lD(t, zY k.Df' Z] dt = 2π f lD(fi, z)*FD(t,z)dt
Jc lD\t9z) Jc

= —FD

f(zt z) = 2πkD(z, z),

the extremality and the uniqueness are obtained as usually. Of course we mean
that the extremal function is unique up to the rotation. Now we have an
affirmative answer to an exhaustion problem connected with the class 53.

Next we enter into the second extremal problem, which is also well known
in the case of finitely connected analytic domain. To seek for a function f(z)
such that ff(z) is regular except at z = t around which the expansion

— ~FΓ^-, Ί^~ + regular terms of z — t
2πι(z — t)2

holds and f'(z) gives the minimum length

minί \f'(z)\ds.
JC

Here we only state the final result with no detail. The indefinite integral f(z)
of the function ff(z) = —2πilD(z,t)2 is an extremal function of the problem and
the minimum value is equal to 2πkD(t, t). Then we have

lim — 2πilDw(zf t)2 = — 2πilD(z, t)2
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uniformly in the wider sense in D xD.

10. Here we shall study the boundary behavior of the kernels k(z, £), p(z, t)
and l(z, t), in particular, their behavior when t tends to the origin, which is
the only one cluster point of the boundary components. In this §10 we settle
a new assumption that

(C) ~rχa
(C) Ά W
holds. From (C) we have

which implies that 1/z G L 2 .

In the first place we prove that

dz fO,1 C
2πi )c2πi )c z{z-t)

For the left hand side integral / we have

m<.if ds < 1 if JLY*([
 ds

1 l=2)
f < if ([

2π)c\z\\z-t\ =2π\)c\z?) \ J σ l « - ί |

2πr} \vγ ~ 2πr, V"

If ί lies in a closed subdomain of D, then

oo r

Σ i Tfs i

holds and hence the integral I exists absolutely and uniformly in the wider
sense in D. This shows that

dzn Γ
Γ = limΣ

n-+oo j=l J *
Cj Z{Z - t)

If t e l? , then the integral / also exists absolutely and uniformly in the wider
sense in Bv. This shows that

7. ™ f dz 2πi

W->oo o = l J Cj Z\Z — t) t

We decompose l/2πiz in such a manner that

1
2πiz

and

Z<EΞC, Pt(z) e Γ 2

mm
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Then as in §§5 and 8 we have ki(z) &Λ2nΦ, pι(z)^Γ2 r\Φ and the analyticity
of kί(z), pί(z) and h(z) on each Cn, where h(z) = l/2πi z — pi(z). And further
we have h(z) = k^z) zf on each Cn. By the orthogonality l(z, t)±Γ2 and h(z)
±Γ2, we have

— f
Iπi Jc
2πi

and hence we have

2πι f
2πι Jc z — t

= J L _ [
 ds 1 f frW

4π2 Jc z(z-ί) 2τrί Jc z-t
_ 1 _

4τr2

dβ 1

2 ί ) 2 i
-ds.

Therefore we see that

L4τr2 Jc(2 — t)z(z — w) 2π% Jc z{z — w)\

Let m be the minimum distance min^ec I z — t |, then there holds

ds
IJc(£ — t)z(z — w) ~~ m Jc \z\\z — w\

for any w belonging to the angular domain Θ: π/2 + ε^argw^37r/2 — ε for an
ε>0. And further we have

ds
c \z — w\2\z\ c\z\

for any w lying in the angular domain Θ. On the other hand we have easily

ds o ~ rv{a2 + r2)

Therefore under the condition (C) the integral

• „ ds

exists absolutely and uniformly in Θ. Therefore limw->o k(t, w) = ki(t) holds,
where the limit is taken over the point-sequence lying in the angular domain
Θf and moreover we see that the differentiability

_u_k(t,w)-k1(t)
-^—7k(fi, w)

W

1 Γ da 1 Γ

" 4π2 Jc (z - ί)^2 2H Jc
p(z, t)

4
c z2 c z2
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holds for any limiting process in Θ. And again by the orthogonality l(z, t)
±kι(z), we have

from which we can see that \imw->op(t, w) = pι(t), w^Θ and

,. p(t, w) — pt(f) 1 f p(z, t) ,

w->o w Zπi Jc

under the condition (C). This implies that \imw->ol(t, w) — Zi(Q, we(9 and

l ί w ι Kt,w)-h(t) = ^ _ _ limptf>w)-p1tf)

Since there holds an identity

by the condition (C) and by the residue theorem, we have

2πi)c z2

Let V be any function of the class Φ. Then we have

and

whence follows that

and further that

|| k(z, w) - kx{z)\\2 ̂  - ^ - 1 | k(z, w) - kt(z) \

This shows that the strong convergence of k(z, w) to ki(z):

lim || k(z, w) - fa(z) ||2 = 0, w<=Θ

holds, from which we see that limw-»o&i(w) = ||&i(z)||2, w^Θ and limw-*ok(w, w)

Suppose further that there remains valid

d s ^
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Then there holds

ί ( , r ^ — )dz = w\ —irr1 rdz—>0,

as w tends to the origin in 0. Moreover it is evident that

lί k(z, w) - kj(

c z(z — w)
ds ί c \z\2\z — w\

- = O(\w\2)

as w tends to the origin in 6>. These show that

lim n — — ~ \ dZy

If l/zn belongs to the class L2 for any positive integer n, then we can
proceed these processes ad infinitum. The example 2 in §7 satisfies this
condition.

11. Let us decompose l/2πiz in such a manner that
1

and that

2πiz

1
2πiz = mm 2πiz -μ

then we have Pi, XΊ e Φ and both are analytic on each Cn with the boundary
relation Lι(z) = Kι(z)z' where we put Lι(z) = l/2πiz —Pi(z). And further we
have the orthogonality Li(z)±Λ2. Therefore we have

ir-r f k(t, w)^ = [ kit, w)P1(t)ds+\ k(t, w)Kx{t)dt
Δπ% Jc t Jc Jc

If we assume that
1

=Pi(w) + ί k(fi, w)Lx(t)ds =Pi(w).
Jc

r-r. v ds 1
/ v" W) t ~ 2πiw

remains valid, then Pi(w) = l/2πiw. However we have

Pi(w)
Jc w —

and

— f
2πi Jc

t

dw

t<=B

_1_

2πi J c w(w — t)

which is a contradiction. Thus we have a remarkable fact that there is a
function regular in D and belonging to the class L2, for which the reproducing
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property does not hold. The class Φ plays a central role for the reproducing
property.

Our results are of very special nature, since the boundary of the domain
consists of the circles and their centres lie on the real axis and the order of
clustering is very weak in our case. We have introduced two notions, that is,
"of finite type" and "of infinite island type", which rshow the orders of cluste-
ing of the circles, respectively.

There arise several unsolved problems, which are listed below.
(a) Can we extend the condition of finite type to a more general domain

than our cases presented here? It should be hoped that the condition to be
established is of purely metrical nature.

(b) Under what condition is the extremal function F(t,z) unique? We
have established this under the condition of infinite island type and of finite
type.

(c) Under what condition is the extremal function F(t, z) of type Blx in
the sense of Heins [4]? It is our final conjecture that the extremal function
F(t, z) is of type Blx in a case of infinite island type and simultaneously of
finite type.

REFERENCES

[ 1 ] AHLFORS, L., AND A. BEURLING, Conformal invariants and function-theoretic
null-sets. Acta Math. 83 (1950), 101-129.

[ 2 ] GARABEDIAN, P. R., Schwarz's lemma and the Szegδ kernel function. Trans.
Amer. Math. Soc. 67 (1949), 1-35.

[ 3 ] GARABEDIAN, P. R., AND M. SCHIFFER, On existence theorems of potential
theory and conformal mapping. Ann. of Math. 52 (1950), 164-187.

[ 4 ] HEINS, M., On the Lindelδf principle. Ann. of Math. 55 (1955), 296-317.
[ 5 ] NEHARI, Z., On bounded analytic functions. Proc. Amer. Math. Soc. 1 (1950),

268-275.
[ 6 ] SCHIFFER, M., Various types of orthogonalization. Duke Math. Journ. 17 (1950),

329-366.
[ 7 ] SINGH, V., An integral equation associated with the Szegδ kernel function.

Proc. London Math. Soc. (3) 10 (1960), 376-393.

DEPARTMENT OF MATHEMATICS,

TOKYO INSTITUTE OF TECHNOLOGY.




