
ON THE EQUATION Δu + λf{x, y)u = O UNDER THE

FIXED BOUNDARY CONDITION

BY IMSIK HONG

In the present paper, we shall consider some problems concerning the
equation

Δu + λf(x, y)u = 0

under the fixed boundary condition for an arbitrary bounded domain, where
f(x, y) is a bounded continuous function with continuous first derivatives and
satisfies M^zf(x, y)^>μ>0, M and μ being constants.

For convenience of description, we shall treat the first eigenvalue and
the first eigenfunction in theorem 1, the k-th. eigenvalue and the A -th eigen-
function in theorem 2.1}

§1. THEOREM 1. Let D be a bounded domain on the x, y-plane and C
its boundary. Let {Dn} be a sequence of domains exhausting D:

that is, a sequence such that Hindoo Dn = D, where the boundary Cn of the
domain Dn consists of a finite number of smooth curves. Let further λii7l

and uίtn be the first eigenvalue and the first eigenfunction, respectively, of
the problem

r Δu + λf{x, y)u = 0 in Dn,

I u = Q on Cn

and ulfn be normalized by

f(%, V)ui

Then

(1) lim/ίi,n = /ίi and li
7»->oo n-ϊoo

exist and are determined independently of a choice of exhausting sequence.

(2) The normalization condition

f(χ,
D

holds.

Received January 13, 1959.
1) In our previous paper [2] and [3], we have studied on the same problem for the

equation with constant coefficient, i.e. the equation Δu -b λu = 0.
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(3) The limit function ut and the limit value λι satisfy the equation

Δui 4- λifix; y)uι ~0 in D

together with the condition uL = 0 on C except for a set of capacity zero.
The exceptional points are identical with those of the ordinary Green's
function for the same domain.

(4) In particular, if C consists of a finite number of closed smooth
curves, the limit value λι and the limit function Uι coincide, respectively,
with the first eigenvalue and the first eigenfunction of D.

We would remark that our theorem 1 contains the continuity theorems
of the first eigenvalue and the first eigenfunction with respect to the domain
bounded by a finite number of closed smooth curves. It suggests further the
limit value and the limit function might be regarded, respectively, as the
definitions of the first eigenvalue and the first eigenfunction of our equation
for general bounded domain.

The proof of theorem 1 will be given in several steps.

§2. Let D* be another domain which contains D and its boundary consists
of a finite number of closed smooth curves. Let further λ* be the first eigen-
value of the same problem for D*. Since our eigenvalue is a monotone de-
creasing domain function in the strict sense, we have

Λi,n>Λi,n+i and Λi,n>Λ* * for every n.

Hence there exists a limit value of λί>n as n—>oo. Put lim»->ooΛi,w = Λi then
λi^λ*. From the monotoneity it is evident that our limit value λι is deter-
mined independently of a choice of exhausting sequence.

§3. For our later reasoning, we shall give here two lemmas.

LEMMA 1. Let R be a domain bounded by a finite number of smooth
curves. Consider the boundary value problems

(1) ΔwΛ- λMiv = 0
and

(2) Δu ±~λfu = 0

in R under the fixed boundary condition, M being a positive constant such
that M^f(x, y). Let μ* be the first eigenvalue of the problem (1), and μι
that of the problem of (2). Then μt}tμι* holds.

In fact, denoting by G(p, q) the ordinary Green's function of the domain
Rt we get

— = max \ \G(p, q)f(p)ψ(p)ψ(q)dpdq
μι + jj

^ max f [G(P, q)Mψ(p)Mψ(q)dpdq =~
* JJ μi
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i. e.

LEMMA 2. Let w and u satisfy the equations

Aw 4- Mw = 0 in R,

Λu -f f{x, y)u = 0 in R,

where M is a positive constant and f(x, y) a positive function such that
M^f(x, y) in R. Here R is a domain for which there exists only trivial
solution, i. e. identically zero, of the above equations under the fixed boun-
dary condition.^ If w = u>0 on the boundary of R, then w^u in R.

In fact, from the equations for u and w, we get

A{u — w) + M(u — w) = (M—f)u.

Namely, putting u — w = v, v satisfies

Av + Mv = (M—f)u in R,

v = 0 on the boundary of R.

Let Γ(p, q) be the Green's function for tίie operator A + M, with the fixed
boundary condition. We get

v= - |JΓ(P, q)(M-f{q))u(q)dσ{q)

where p and q denote the points in the domain and dσ the areal element.
As u > 0, M^f(q) > 0, Γ(p, q)>0 in R, we obtain v ^ 0 in R, i. e. τv ̂  u in R.

Now, let A be a subdomain of D with a positive distance 2ε from the
boundary of D, and Af another subdomain of D with the positive distance ε
from the boundary of D.

Fixing ε, there exists m such that A1 c Dn for n ^ m.
(a) {uit7l} is uniformly bounded in A.
To show this, let p be an arbitrary point in A and K a circle of radius

ε about p. Since K is contained in Af and also in Dn for n large enough.
By taking ε sufficiently small, let K have the same property as R, that is,
there exist no non-trivial solutions of the equations Aw + Mw = 0 and AuitTl

+ λf(x, y)uίf n = 0 in K under the fixed boundary condition where M^ λiy nf(%, y)
By lemma 2, if Uitn = w on the boundary of K, then we obtain the

2) In fact, let the area of R be smaller than that of the circle whose first eigen-
value for the equation Δw + λιυ = 0 under the fixed boundary condition is M. Then, by
a theorem on isoperimetric inequalities, the first eigenvalue of the same problem for any
domain with the same area of the above circle, is larger than M. By monotone de-
creasing properties of the eigenvalue, all eigenvalues of the equation Δw + λw = 0 with
the fixed boundary condition, are greater than M. Hence the equation Δw 4- Mw = 0
under the fixed boundary condition has only trivial solution in R. By lemma 1, the
same is true with the equation Διc + f(x, y)u = Q.
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relation uit n^ιυ in K. Therefore, using the Weber's mean-value theorem

1 C2π

/ τ-
0(*JMe) J 0

/ τ - Wdθ= Tf llϋΓ \\

2πJ0(*JMe) J 0 2πJ^M ε) J 0

where the integration is taken over the boundary of the circle K. Putting

JoijMε) = k and taking ε small enough such that k > 0. Then we get

Multiplying both sides by r and integrating with respect to from 0 to ε,

uι,n(p) [rdr V [
Jo 2ττA; Jojo

whence follows by the Schwarz's inequality and the normalization of uiί7l,

for any j ) G i and any n^m, where Λja = Jπε2. Thus {u1}n} is uniformly
bounded in A.

Next remembering that a solution of the equation Λuit n + λlf nf(%, y)u1} n

= 0 with λlnf(x, y)>0, uίin is a superharmonic function. Therefore, we get

where the right-hand member denotes the areal mean of the u1)n over the
disk about p with radius r. On the other hand, we have a relation

k πr2

where k = J0(jMr).
From these two relations we obtain

and, by virtue of JoCO) = 1,

(b) lim {sup | ult n(p) - arult n(p) |} = 0.
r+0 PEA

(a) and (b) show that the Arsove's condition [1] for normal family is satis-
fied by {ui>n}. Therefore we can select from {th,n} a subsequence {uί>n'}
uniformly convergent throughout A. Let its limit function be uίt i. e.

lim Uιtn' = Ui in A.
w'->co

§4. For later purpose we study on the uniform boundedness of the
sequence {uί}n} in D. Let the smooth boundary curves of the domain DN

for a fixed N be

C = {C c0) C α ) C Cs~1)}
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where CV0) denotes the outer boundary of DN and the others the inner
boundaries.

For sufficiently large JV, the area of the part of the domain D cut off by
CN^ and lying outside of the bounded domain enclosed by CN

m is as small
as we wish. The area of the part of D cut off by CN™ (< = 1, 2, ••-, β-1)
and lying inside of the bounded domain enclosed by CN™ then becomes also
small, we decompose the domain DN into s-fl subdomains not overlapping
each other:

DN = DN

where the domain DN

ω is surrounded by CNΦ and a smooth closed curve Bci)

with positive distance from boundaries of DN

Φ (j #= i), and DN denotes
DN-{DN

cω + DN

ay+-- + DN

(s-v} and hence it is contained completely in the
interior of DN and also of A.

Let the area of the part of the domain D cut off by the curve Bm and
lying outside of the bounded domain enclosed by Bcω be smaller than the
area of a circle R with MλiΛ as the first eigenvalue for the same boundary
value problem. Let the area of the part of the domain D cut off by the
curves Bω (ΐ = l, 2, •••, s —1) and lying inside of the bounded domain en-
closed by Bay be also smaller than that of R. For n>N, denote by Dn

m

the part of the domain Dn cut off by the same curve Bcω mentioned above
and lying outside of the bounded domain enclosed by Bco\ Then the area of
ZV0) is, of course, smaller than that of R. Applying the same procedure to
each curves Bci) (ΐ = l, 2, •••, s —1) mentioned above, we have the domain
ZV° which is the part of the domain Dn cut off by Bω and lying inside of
the bounded domain enclosed by Ba\ Then the area of Dn

ci:> is also smaller
than that of R. Let Cn

ω be the boundary part of Dn contained in Dn

ζi>
which consists of a finite number of smooth curves. For such a domain Dn

a>
i = 0,1, , s — 1) the Green's function of the equation An + Λlf nf(x, y)u = 0 for
fixed boundary condition is uniquely determined, and it can be represented by

a*«\p, Q) = - ^ log — + Hn«\p, q)
ΔK T

where Hn

φ denotes a bounded function in Dn

ω. By Green's formula, we have

ui,n^f—ds for P 6 l ) Λ

2?co σv

where v denotes the inner normal of the boundary.
In order to obtain an estimation for ultn in Dn

a\ we introduce an auxi-
liary harmonic function such that

rAφn

cί>=0 in Dn

a\

J φn

φ = uitn on B«\
I ψn(i)=0 On Cn

a\

By Green's formula, we have
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(3)

where E denotes a small circular domain about p and tc its boundary. By
the definition of A»(<) all the eigenvalues of the problem of

(4)
I u = 0 on j

are greater than Λi,i and also greater than λίtn since A . i c A . n Hence, there
exists in ZVέ) the Green's function of Λu-t-λιtnMu = 0. Moreover, by lemma
1, the first eigenvalue of the equation /Ju + λίfnf(xf y)u = 0 under fixed boun-
dary condition is greater than that of Λu + λMu = 0 and also is greater than
Λi,». Therefore, there does exist in Dn

a) the Green's function of the equa-
tion An 4- Λ, nf(%, y)u = 0.

By making the radius of E tend to zero, and we see from the boundary
condition for ψn

ci) and Ωn

a* that the left-hand member of (3) becomes

ί
As Aφn

a>=0 and ΔΩn

a) +f(x, y)λitnΩn

ω = 0 in Dn

a\ so the right-hand member
of (3) is equal to

Therefore, by making the radius of E tend to zero, we get

ψnωΩn^(pf q)dσ(q).

From this and the maximum principle for the harmonic functions, we obtain
an inequality

|ni,«Cp)l ^Mλι>nma,x\φn

Φ(q)\ if Ωn

a>(p, q)dσ(q).

Next we shall show that

is bounded independently of the suffices i and ?ι.
For this purpose we make the following observations. Consider the

Green's function of the equation with constant coefficient Av + λιtiMv = 0 in
Dn

a\ By the assumption about the area of Dn

a) there exists such a Green's
function Ωn'

a\ After some calculations we have the relation

That is Ωn

a) is majorated by Ωn

κi\ From our previous paper [2] (see pp.
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184-195) we know that

is bounded independently of suffices i and n. Hence we get

uίt n(p) ^ λu nfc' max ui, »(g).
BC0

On the other hand, from §3, Bω can be taken in A such that maxgeBco uXi n(q)
does not exceed a fixed constant and Λi,n<Λi,i as DίCzDn. Thus we obtain

uίtn(p)£λιk*Bt in £>„<*>

for any i and w, where Λ, kf, 9ft in the right-hand member are constants
independent of i and n. Moreover, as DnaA from §3, {wi,n} is uniformly
bounded in D. Thus the uniform boundedness of {ui)n} in D has been esta-
blished.

§5. Here we show that the normalization condition

/(»> y)ih2dσ = l

holds.

By putting
'uίi7l(p) in Z)n,

0 in D-Dn,

the function %i>7l defined in Dn is extended into the whole domoin D. Since
Z7i,» is uniformly bounded in D by §3,

lim /(ίc, 2/)CΛ,n2dίT = l limf(x,y)Ui,n2d(T=\\ f(x, y)uι2dσ.

But

limll /(&, 2/)ϋΊ>7l

2cίίτ = li

Hence

§6. Next we show that the function Uι and the limit value λL satisfy
the integral equation

, Q)f(Q)uί(q)dσ(q)

where 2πG(p, q) denotes the ordinary Green's function for the domain D, i. e.
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H being a regular harmonic function in D.
In the first step, let p be a fixed interior point of D, then p^Dn for

sufficiently large n. It is well known that our assertion is true for λi)n, uίt7l

and Dny namely

i ,n(p) = Λ i , n ί l Gn(v, q)f(q)UUn(q)dσ(q);

here 2πGn(v, q) denotes the ordinary Green's function for the domain Dn.
Now by putting

0 in D - D n ,
we have

and, by using the uniform boundedness of Ui>n in D.

where %R is a constant.
By the Lebesgue's convergence theorem, we get

limff ©n(p, q)f{q)Uitn{q)dσ(q)=[[ lim®n(pf q)f(q)UUn(q)dσ(q)

= \\ G(p, q)f(q)uι(q)dσ(q),
J JD

since f(q)G(pf q) is integrable. Thus we have

(5) UΊ(P) = Λi 11 G(p, q)f(q) Uί(q) dσ{q).

By this relation together with the boundedness of f(q) and Uι(q), we obtain
the relations

dx

dy

and these derivatives are continuous in any interior point p of the domain.
Therefore, we can conclude that our function Uι satisfied the equation

in any interior point of the domain.
In the second step, we show that the relation (5) remains to hold even

when p tends to a boundary point. What is to be shown is that

lim uι(p) = λι lim f f G(p, q)f(q)u1(q)dσ(q)
P+PO P+PO JJD

limGOp, q)ΆQ)u(Q)dσ(q) = iι\\ G(p0, q)u(q)dσ(q)
D P+PQ J JD
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where

P+PO

In fact,

G(p, q) < const, log —, r =pg,
r

in D

, q)f{q)Uί(q) ^ const, log — in D.
T

By the Lebesgue's convergence theorem, we obtain the required relation

lim Ui(p) = h\\ G(Po, q)ut(q)dσ(q).
P+PO JJD

Since we know that \imP+PoG(p, q) becomes zero except for a set of capa-
city zero, U\(p) also becomes zero, as p tends to a boundary point. Taking
account of Uχ(p) > 0 in D, our exceptional points are identical with those of
of the ordinary Green's function G(p, q) for the same domain. Hence we
might regard our limit value λι and limit function Uι as the first eigenvalue
and the first eigenfunction, respectively, of general bounded domain D.

§7. What is left to be shown in theorem 1 is that the limit function ut

is determined independently of a choice of exhausting sequence. For this
purpose, we take another exhausting sequence

AcS2c cSBc .

Let the corresponding first eigenfunctions be

W i . i , # i , 2 , •••, # i , n , •••

and #i be its limit function. We shall show that Uι = ilι.
First we consider a particular case where the boundary of D consists of

a finite number of smooth closed curves. Then, Uι(p) is expressed by

G(p, q)Uι(q)dσ(q).

In this case, since G(po, q) = 0 for all p0 on the boundary of the domain, the
limit value λι and the limit function u± are, respectively, the first eigenvalue
and the first eigenf unction. From the well known property of such a domain,
the first eigenvalue λι must be simple, and the first eigenfunction must be
unique. Consequently, we have Uι = ΰL.

It is further shown that the first eigenvalue and the eigenfunction have
the continuity with respect to the domain provided its boundary consists of
a finite number of smooth curves.

Now we return to the general case, where the boundary does not neces-
sarily consist of smooth curves only. Suppose contrarily we had ih^Ui in
D. Then there would be a point p such that
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I tti(ί>) - ΰι(p) I = a > 0

and, for sufficiently large integers m, n and a small positive number a,

I %, m(p) - wi(p) | < y , I ΰi, »(p) - ΰi(p) I < y .

So we would get

(β) I uίt m(p) - ΰι, n(p) \>a-ε

But on the other hand, we have

(-7) \ulim(p)-u1)n(p)\<η

where η may be small positive number by making m and n large enough,
based on the above mentioned continuity relation between the first eigen-
f unction and the domain since the boundaries of Dm and Dn consist of smooth
curves. Then (6) contradicts (7). Therefore Uι = ΰι should hold, which proves
that our limit functions Uι is determined independently of a choice of ex-
hausting sequence.

Thus our theorem 1 has been proved.

§8. THEOREM 2. Retaining the notations in theorem 1, let λk,n and uk,n

be the k-th eigenvalue and the k-th eig en function, respectively, of the problem

r Au-\-λf(%, y)u = 0 in Dn,

I u = 0 on Cn

and uk>n be normalized by

Then the following results similar to those of theorem 1 remain to hold
except the uniqueness of the limit function. Namely, the limit value

(1) limΛ*,Λ = Λ*

exists independently of a choice of exhausting sequence, and for any in-
finite subsequence {ukinr} of the corresponding sequence {ukiΊl} of the eigen-
functions, there exists a uniformly convergent subsequence {ukin"}. Put
\imn"+ooUktn» — Uk, then the normalization condition

(2 ) ff f(

holds.

(3) The limit value λk and the limit function uk satisfy the equation
Δuk -f λkf{x, y)uk = 0 in D together with the condition uk = Q on the boundary
of D except at most for the set of capacity zero which is exceptional for
the ordinary Green's function.

(4) Furthermore, if ive have the relations
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lim 4-i, n < Hm λk) n < lim λk+ι, n,
7»->0O 7»->OO 7>->OO

then uk is determined independently of a choice of the exhausting sequence.
Otherwise, that is, if we have

= lim λk-»+m-l,n

then uk depends on the choice of subsequence of {uktn}. But among possible
limit functions there exist only m linearly independent ones.

§9. The proof of (4) in theorem 2 is exactly same as that of the equa-
tion with constant coefficient given in a previous paper [3] (pp. 184-185).

The proof of the other results (1), (2) and (3) in theorem 2 can be given
in the almost same way as that of the corresponding ones in theorem 1. But
some reasoning in §3, where we have fully used the positive character of
the first eigenfunction, must be modified.

To show that {uktn} is uniformly bounded in A, let us take an arbitrary
point p in A and a circle K of radius e about p as we have done in §3.
Here also K is contained in A' and in Dn. Again by taking ε sufficiently
small, let K have the same property as R, that is, there exist in no non-
trivial solutions of the equations Δw + λMw = 0 and Δu -f- λf(x, y)u=^0 under
the fixed boundary condition, where M^f(x, y)^μ>0 as in §3.

For k>2, uktn changes its sign. Consider another circle, $ with p as
the center and with the radius r<s. Now denote by C+ the part of the
circumference of the above circle on which uk>n takes non-negative values
and by C~ the remaining part, i. e.

" + ^0 on C+,

/•<ϋ on o .

By the principle of linear superposition, we can decompose ukf n into two parts:

where uttn satisfies the equation

ΔUk, n + λki nf(%t y) Uk, 7i = 0

with

i/r+ on C+,

0 on C,

and likewise uk~ίn satisfies the equation

ΔUk, n + h, nf(%, y) Uktn — 0

with

0 on C\

ψ~ on C.
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To obtain an upper bound for uk>nt consider two functions w+ and w"
defined as follows:

Λw* + λkt iMτυ+ = 0 in β,

^ + on C+,

0 on C",

and

Aw~ = 0 in S,

on C+,

By lemma 2 we have

on C".

and since Uk, n < 0, so wj, M is subharmonic, whence follows

Therefore, we get

Applying the mean-value theorems of Gauss and that of Weber, we have

where the integration is taken over β.
Next to obtain a lower bound for uk,n, consider two functions v+ and v~

defined as follows:

Av* = 0 in S,

ψ + on C+

f

0 on C"

and

^ " + /ί/j, iΛfy" = 0 in β,

f 0 C+,
v = = ]

Since u£,n is superharmonic, so wί»^v + , and by lemma 2, — v~^— Uk,n i .e.
v~^u~. Hence

Applying again the above mean-value theorem, we have

From the relations (7) and (8), the uniformly boundedness of {uk,n} in A
can be verified as follows. As ψ~ ^ 0, we get, from (7),
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(9) uk n<— * [U(Φ+'—
K } k'n = 2π J o ( A , iMr) J 0

 KΎ

where ψ+ — ψ~ is equal to that of \tiic,n\ on the boundary of our circle.
Similarly from (8), we get

(10)

Combining (9) and (10), we obtain

By taking ε small enough such that </λktιMε becomes smaller than the first
positive zero-point of the Bessel function Jo, we get

since
JoΦ*. iMr) S Jφkt iMε) = k

Consequently, by f(x, y)^μ>0, we get

Multiplying both sides by r and integrating with respect to r from 0 to ε,
we obtain

whence follows, by Schwarz's inequality,

ii <
^ 1 /7Γ8»ff - t . \W 1 / 7Γ£2 Λ1/2

l. e.

the right-hand member being independent of n as well as p.
Next with respect to the Arsove's second condition of the normal family,

we slightly modify (9) in the form

(ID ^

This implies

uk)n(p) ^ - ^ [\kιndθ +
2ττ Jo



108 IMSIK HONG

Likewise, from (10), we get

(12) uk, n(p) ^ -1- Γ u k t n dθ + - j - f Tfh

1 -, . - l ) [ 2 V " dθ.
2π Jo 2π\Jo(<y/λkfiMr) / J o

Multiplying (11) and (12) by r, integrating with respect to r from 0 to s,
and taking account of the uniform boundedness of {ukiU} in A and the esti-
mation l/Jo(JλkfιMr) — l = O(r2), we obtain readily

Iv>k tn(p) — A r e a l m e a n o f uktn\= O(ε2).

Therefore, {uk,n} satisfies the Arsove's conditions for normality [1]. The
reasonings left for the proof of theorem 2 are exactly same as those of
theorem 1 except for trivial modification.

Finally, it would be noted that our theorems could be transferred into
the 3-dimensional case.
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