ON THE EQUATION 4u + Af(x, y)u =0 UNDER THE
FIXED BOUNDARY CONDITION

By IMsix HoNG

In the present paper, we shall consider some problems concerning the

equation
du+Af(x, Yyu=0

under the fixed boundary condition for an arbitrary bounded domain, where
S(z, y) is a bounded continuous function with continuous first derivatives and
satisfies M= f(x, y) =41 >0, M and u being constants.

For convenience of description, we shall treat the first eigenvalue and
the first eigenfunction in theorem 1, the k-th eigenvalue and the k-th eigen-
funection in theorem 2.V

§1. THEOREM 1. Let D be a bounded domain on the z, y-plane and C
its boundary. Let {D,} be a sequence of domains exhausting D:

DICDz(:"'CDnC"',
that is, a sequence such thot limw,o D, =D, where the boundary C, of the
domain D, consists of a finite number of smooth curves. Let further A .

and ui, . be the first eigenvalue and the first eigenfunction, respectively, of
the problem

{Au—|—2f(a:, Nu=0 wm D,
% =0 on C,

and ui,, be normalized by
ﬁ F(®, Yy, *do =1.
Dﬂ

Then
(1) limd, =4 and limu; .=

71900 ny>o

extst and are determined independently of a choice of exhausting sequence.

(2) The normalization condition
[,/ @ vuds=1
D
holds.

Received January 13, 1959.
1) In our previous paper [2] and [3], we have studied on the same problem for the
equation with constant coefficient, i.e. the equation du + Au=0.
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(8) The limit function u, and the limit value A, satisfy the equation
duy + A f(x, Yur =0 wm D

together with the condition u, =0 on C except for a set of capacity zero.
The exceptional points are identical with those of the ordinary Green’s
Sfunction for the same domain.

(4) In particular, if C consists of a finite number of closed smooth
curves, the limit value A, and the limit function wu; coincide, respectively,
with the first eigenvalue and the first eigenfunction of D.

We would remark that our theorem 1 contains the continuity theorems
of the first eigenvalue and the first eigenfunction with respect to the domain
bounded by a finite number of closed smooth curves. It suggests further the
limit value and the limit function might be regarded, respectively, as the
definitions of the first eigenvalue and the first eigenfunction of our equation
for general bounded domain.

The proof of theorem 1 will be given in several steps.

§2. Let D* be another domain which contains D and its boundary consists
of a finite number of closed smooth curves. Let further A* be the first eigen-
value of the same problem for D*. Since our eigenvalue is a monotone de-
creasing domain function in the strict sense, we have

A, n> 2,1 and A, >4*% ° for every mn.

Hence there exists a limit value of 4;,, as n—oo. Put limpsedi,»=4; then
A= A*. From the monotoneity it is evident that our limit value A, is deter-
mined independently of a choice of exhausting sequence.

§3. For our later reasoning, we shall give here two lemmas.

LemMa 1. Let R be a domain bounded by o finite number of smooth
curves. Consider the boundary value problems

(1) dw + AMw =0
and

(2) du+Afu=0

in R under the fixed boundary condition, M being a positive constant such
that M= f(z, y). Let u* be the first eigenvalue of the problem (1), and
that of the problem of (2). Then uy = * holds.

In fact, denoting by G(p, ¢) the ordinary Green’s function of the domain
R, we get

= max {60, O 1@ dpdg
< max [ (60, DMy V@) dpde =
v M
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i.e.
Mz
LEMMA 2. Let w and w satisfy the equations
Aw+ Mw =0 wn R,
du+ f(x, Y)u=0 in R,

where M is a positive constant and f(x,y) a positive function such that
Mzf(z,9y) in B. Here R ts a domain for which there exists only trivial
solution, 1.e. identically zero, of the above equations under the fixed boumn-
dary condition.? If w=u>0 on the boundary of R, then w=w in R.

In fact, from the equations for w and w, we get
A — w) + Mu — w)=(M— fiu.
Namely, putting 4 —w = v, v satisfies
Av+ My=(M—flu in R,
=0 on the boundary of R.

Let I'(p, ¢) be the Green’s function for the operator 4+ M, with the fixed
boundary condition. We get

v=— ”r«o, Q)M — F(@))u(g)do(g)

where » and ¢ denote the points in the domain and do the areal element.
As u>0, M=f(q)>0,I"(p, ¢) >0 in R, we obtain v<0 in R, i.e. w=u in R.

Now, let A be a subdomain of D with a positive distance 2¢ from the
boundary of D, and A’ another subdomain of D with the positive distance &
from the boundary of D.

Fixing e, there exists m such that A’c D, for n=m.

(a) {ui,.} is uniformly bounded in 4.

To show this, let p be an arbitrary point in 4 and K a cirele of radius
& about p. Since K is contained in A’ and also in D, for = large enough.
By taking & sufficiently small, let K have the same property as R, that is,
there exist no non-trivial solutions of the equations dw -+ Mw =0 and Ju,,.
+ Af(x, ¥)ui,» =0 in K under the fixed boundary condition where M= 4, ./ (z, %)
=u>0. By lemma 2, if %;,,=w on the boundary of K, then we obtain the

2) In fact, let the area of R be smaller than that of the circle whose first eigen-
value for the equation 4w + 2w =0 under the fixed boundary condition is M. Then, by
a theorem on isoperimetric inequalities, the first eigenvalue of the same problem for any
domain with the same area of the above circle, is larger than M. By monotone de-
creasing properties of the eigenvalue, all eigenvalues of the equation 4w+ Aw =0 with
the fixed boundary condition, are greater than M. Hence the equation dw -+ Mw =10
under the fixed boundary condition has only trivial solution in E. By lemma 1, the
same is true with the equation du + f(z, ¥)u =0.
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relation %y, <w in K. Therefore, using the Weber’s mean-value theorem

§ Uy, nd@

%1, o{P) = w(p) = j wdf =

2 J0(1/M£) 27TJO(1/M8)

where the integration is taken over the boundary of the circle K. Putting
JoWMe) =k and taking & small enough such that £>0. Then we get

Ui S j U dP.

2rk
Multiplying both sides by = and integrating with respect to from 0 to e,

Uy, n(p)jsrdr = L Hul 2rdfdr,
0 2k

aJe
whence follows by the Schwarz’s inequality and the normalization of u;, .,

Are®

kne- 7 k,m/ a

ul, 'n(p) é

for any p€ A and any n=m, where Ja=4ne%. Thus {u;,.} is uniformly
bounded in A.

Next remembering that a solution of the equation u;, .+ Ay, S (@, Y)Us,
=0 with 4.f(x, ¥) >0, u,,, is a superharmonic function. Therefore, we get

Uy, n(p) = ayUy, n(p)
where the right-hand member denotes the areal mean of the u;, over the
disk about p with radius ». On the other hand, we have a relation

1 1
U1, n(p) = 7 —7'[7'2 SSul’ n do
where k= J(/Mr).

From these two relations we obtain
%y, o(D) S U, 2 (D) = I JM )arul,n(p),

and, by virtue of Jy(0)=1,
(b) lim {sup | us, o(P) — arths, u(p)|} = 0.
r>0 pcd

(2) and (b) show that the Arsove’s condition [1] for normal family is satis-
fied by {u1,.}. Therefore we can select from {u,.} a subsequence {u; .}
uniformly convergent throughout A. Let its limit function be u,, i.e.

lim UL, ns = U1 in A.

§4. For later purpose we study on the uniform boundedness of the
sequence {u,,} in D. Let the smooth boundary curves of the domain Dy
for a fixed N be

Cy={Cx®, Cy®, -+, Cy® 0}
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where Cyx® denotes the outer boundary of Dy and the others the inner
boundaries.

For sufficiently large N, the area of the part of the domain D cut off by
Cx® and lying outside of the bounded domain enclosed by Cy® is as small
as we wish. The area of the part of D cut off by Cy® (¢=1,2,---,5—1)
and lying inside of the bounded domain enclosed by Cx then becomes also
small, we decompose the domain Dy into s+ 1 subdomains not overlapping

each other:
DN=D‘N+DN(0) +DN(1> +- ,+DNcs-1>’

where the domain Dy is surrounded by Cx® and a smooth closed curve B®
with positive distance from boundaries of Dy (j=+1¢), and Dy denotes
Dy — {Dy® + Dy® +-- -+ Dy P} and hence it is contained completely in the
interior of Dy and also of A.

Let the area of the part of the domain D cut off by the curve B® and
lying outside of the bounded domain enclosed by B be smaller than the
area of a circle B with MA, , as the first eigenvalue for the same boundary
value problem. Let the area of the part of the domain D cut off by the
curves B® (4=1,2,---,8—1) and lying inside of the bounded domain en-
closed by B® be also smaller than that of R. For % >N, denote by D,®
the part of the domain D, cut off by the same curve B mentioned above
and lying outside of the bounded domain enclosed by B, Then the area of
D, is, of course, smaller than that of B. Applying the same procedure to
each curves B® (1=1,2,---, s—1) mentioned above, we have the domain
D, which is the part of the domain D, cut off by B’ and lying inside of
the bounded domain enclosed by B, Then the area of D, is also smaller
than that of R. Let C,”” be the boundary part of D, contained in D,®
which consists of a finite number of smooth curves. For such a domain D,®
1=0,1, .-+, s —1) the Green’s function of the equation du + A, ./ (x, ¥)u =0 for
fixed boundary condition is uniquely determined, and it can be represented by

1

2,(p, @)= L log 4+ H,(p, q)
2 7

where H,®” denotes a bounded function in D,”. By Green’s formula, we have

@)
Uy, (D) = j Up,n 3“%" ds for peD,?®,
Y

B(E)

where v denotes the inner normal of the boundary.
In order to obtain an estimation for u; , in D,, we introduce an auxi-

liary harmonic function such that

dﬂon(i) =0 in D,®,
{ 0P =mu,, on B®,
Son(i) =90 on C,®.

By Green’s formula, we have
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R 09,
) n____ n
(3) S B(i)+0n(i)+;{¢n v £n v }ds

— _55‘ " E{(and_gnti) _ Qn(i)dﬂl’n(i)}dd(Q)
Dy (D

where E denotes a small circular domain about p and « its boundary. By
the definition of D, all the eigenvalues of the problem of

{Au-l—/IMu:O in D,®,
u=0 on B®+C,?®

are greater than A;,; and also greater than Ay, , since D, ;c D, ,. Hence, there
exists in D, the Green’s function of Au+ A, .Mu =0. Moreover, by lemma
1, the first eigenvalue of the equation du +4;,.f(x, ¥)u =0 under fixed boun-
dary condition is greater than that of du -+ AMu =0 and also is greater than
A1, . Therefore, there does exist in D, the Green’s function of the equa-
tion du + Ay, . f (2, ¥)u=0.

By making the radius of K tend to zero, and we see from the boundary
condition for ¢, and £, that the left-hand member of (3) becomes

(4)

0. @
) Yon —
S‘B“'(Pn oy ds ul,n(p)-

As ¢, =0 and 42, + F(®, Y1, .82:.Y =0 in D,°, so the right-hand member
of (3) is equal to

b ([ £ 2. data).
Therefore, by making the radius of E tend to zero, we get
o) =4[ F@9.0 0, Ddota).
From this and the maximum principle for the harmonic functions, we obtain

an inequality

01, u(0) | S MRy, » max | 029(g)] ” 2,%(p, q)do(g).
qEB(‘) ()

Dy

Next we shall show that
§ 2,%(p, @)dalg)
Dy

is bounded independently of the suffices 7 and =.

For this purpose we make the following observations. Consider the
Green’s function of the equation with constant coefficient dv+ 4, Mv=0 in
D,%®, By the assumption about the area of D, there exists such a Green’s
funetion 2,/°. After some calculations we have the relation

i .
in(l ggn(t)-

That is £, is majorated by £,®. From our previous paper [2] (see pp.
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184-195) we know that

Sj 2,/ do‘(q)
D,

is bounded independently of suffices ¢ and n. Hence we get

Uy, (D) = A1, oK’ Max 11, (q).

e B(®

On the other hand, from §3, B can be taken in A4 such that max,es® Uy, -{q)
does not exceed a fixed constant and A;,. <4;,: as D,;c D,. Thus we obtain

U, (PS4 in D,
for any 4 and #, where A, X/, T in the right-hand member are constants
independent of ¢ and n. Moreover, as D, A from §3, {us,.} is uniformly

bounded in D. Thus the uniform boundedness of {us,.} in D has been esta-
blished.

§5. Here we show that the normalization condition
H f@, pultdo=1
D

holds.
By putting
Ui, n in Dny
Ul,n(p)={ 1 n(®) .
n D’—'D'm

the function u,, defined in D, is extended into the whole domoin D. Since
Ui, is uniformly bounded in D by §8,

lim ”Df(x, WU, 2do :”D lim £(z, 9)Us,»*do = SSDf(w, Yyuide.

N0

But
Iimﬁ F@, YUy 2de =1im S S F@, Yy, Pdo=1.
nro0 f ) p 7-»00 Dy

Hence

ﬁl’f (z, Yuldo =1.

§6. Next we show that the function u; and the limit value 4, satisfy
the integral equation

uy(p) = A, S SDG@, OF (@) 1) do(g)

where 27G(p, ¢) denotes the ordinary Green’s function for the domain D, i.e.
1

on

G(p, @) = 5 log =+ Hp, ),
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H being a regular harmonic function in D.

In the first step, let p be a fixed interior point of D, then pe D, for
sufficiently large n. It is well known that our assertion is true for A;, ., %i,n»
and D,, namely

U, (D) =mﬁb GnlDs 0).1 (@) s, n(q) dr(a);

here 2rnG.(p, q) denotes the ordinary Green’s function for the domain D,.
Now by putting

G.(p, in D,
S.(p, q)={ O(p 9 m

in D—D,,
we have

U, (D) = A1, S§D®n<p, OF @ Uy o(q) do(a)

and, by using the uniform boundedness of U;,, in D.
8.(p, F (@)U, (@) SMB.(p, @ =MG(p, q)

where M is a constant.
By the Lebesgue’s convergence theorem, we get

im | 8.0, 0 @U@ do@) = || 1im Gutp, 0@V @) dota)

= jij(p, ) F(@ulq) do(a),
since f(q@)G(p, @) is integrable. Thus we have
(5) u1<p>=/ng ij(p, 0 F (@) usla) do(g).

By this relation together with the boundedness of f(g) and u;(q), we obtain
the relations

Su_ S § LD fyug)dota)

0x
ou; 6G(p, Q)
a—y_zlﬁb———ay @y ulg)dola)

and these derivatives are continuous in any interior point p of the domain.
Therefore, we can conclude that our function w; satisfied the equation

g+ A f(x, Yyu, =0

in any interior point of the domain.
In the second step, we show that the relation (6) remains to hold even
when p tends to a boundary point. What is to be shown is that

lim w(p) = 4 lim ” (o, f(q)u(q)do(q)

p>py

=4 ”D lim G(p, @) ua)do(a) = 4 HDG@O, ) u(g)dog)
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where
G{(po, 9) =1lim G(p, @)
o>pp

In fact,
G(p, 9) < const. log %, r=pq,
AQudg) =P in D
G(p, 9 f(@)u(g) < const. log % in D,
By the Lebesgue’s convergence theorem, we obtain the required relation
lim () = & || G, D ua(@dota).

Since we know that limg.», G(p, ¢) becomes zero except for a set of capa-
city zero, ui(p) also becomes zero, as p tends to a boundary point. Taking
account of u(p) >0 in D, our exceptional points are identical with those of
of the ordinary Green’s function G(p, q) for the same domain. Hence we
might regard our limit value 4; and limit function u; as the first eigenvalue
and the first eigenfunction, respectively, of general bounded domain D.

§7. What is left to be shown in theorem 1 is that the limit function wu;
is determined independently of a choice of exhausting sequence. For this
purpose, we take another exhausting sequence

D,cDyc.-.cD,c---.
Let the corresponding first eigenfunctions be
721,1: 77/1,29 Tty 77/1,7” *

and #; be its limit function. We shall show that u; =%;.
First we consider a particular case where the boundary of D consists of
a finite number of smooth closed curves. Then, u;(p) is expressed by

u(p) =4y ”DG@, ) (q) do(g).

In this case, since G(po, ¢) =0 for all p, on the boundary of the domain, the
limit value 4; and the limit function u; are, respectively, the first eigenvalue
and the first eigenfunction. From the well known property of such a domain,
the first eigenvalue 4; must be simple, and the first eigenfunction must be
unique. Consequently, we have u;=1,.

It is further shown that the first eigenvalue and the eigenfunction have
the continuity with respect to the domain provided its boundary consists of
a finite number of smooth curves.

Now we return to the general case, where the boundary does not neces-
sarily consist of smooth curves only. Suppose contrarily we had u,% %, in
D. Then there would be a point p such that
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[u(p) — %y(p) | =2 >0

and, for sufficiently large integers m, » and a small positive number ¢,
s, (D) = (D) < (D) = D) | <5

So we would get

(6) lul,m(p)—'al,n(p)l >a—¢
But on the other hand, we have
(7 11, m(D) — By, o (D) [ <7

where 7 may be small positive number by making m and n large enough,
based on the above mentioned continuity relation between the first eigen-
function and the domain since the boundaries of D, and D, consist of smooth
curves. Then (6) contradiets (7). Therefore u; =%, should hold, which proves
that our limit functions #; is determined independently of a choice of ex-
hausting sequence.

Thus our theorem 1 has been proved.

§8. THEOREM 2. Retaining the notations in theorem 1, let g, » and uy,,
be the k-th eigenvalue and the k-th eigenfunction, respectively, of the problem

{ Adu+Af (@, yyu=0 in D,
=0 on C,

and ug,. be normalized by
” S (@, Yug, 2do=1.
Dy

Then the following results similar to those of theorem 1 remain to hold
except the uniqueness of the limit function. Namely, the limit value
(1) limlk,n=2k

7-yo0
exists independently of a choice of exhausting sequence, and for any in-
finite subsequence {u;, ..} of the corresponding sequence {u .} of the eigen-
Sunctions, there exists a wuniformly convergent subsequence {Ui, .-y. Put
HMprrsoo g, e = U, then the normalization condition

(2) HDf(x, Wuddo=1

holds.

(8) The limit value A, and the limit function u; satisfy the equation
Auy + A flz, Y)ur=0 in D together with the condition u; =0 on the boundary
of D except at most for the set of capacity zero which 1is exceptional for
the ordinary Green’s function.

(4) Furthermore, if we have the relations
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hm /I;,._l, n < llm 2/;, n < lim Jk“, ny
>0 >0

>0

then w, is determined independently of a choice of the exhausting sequence.
Otherwise, that is, 1f we have

lim Xk_v..i,n < lim/lk_,,,n = hm llc_v-;l,n

>0 7n>03 N>
=lim 'zlc-mm—l, » < lim xl.:-lu»m, ny

then w, depends on the choice of subsequence of {u:, .}. But among possible
limit functions there exist only m linearly independent ones.

§9. The proof of (4) in theorem 2 is exactly same as that of the equa-
tion with constant coefficient given in a previous paper [3] (pp. 184-185).

The proof of the other results (1), (2) and (8) in theorem 2 can be given
in the almost same way as that of the corresponding ones in theorem 1. But
some reasoning in §3, where we have fully used the positive character of
the first eigenfunction, must be modified.

To show that {ux, .} is uniformly bounded in A, let us take an arbitrary
point » in A and a circle K of radius ¢ about p as we have done in §3.
Here also K is contained in A’ and in D,. Again by taking ¢ sufficiently
small, let K have the same property as R, that is, there exist in no non-
trivial solutions of the equations Jw +AMw =0 and du+ Af(z, ¥)» =0 under
the fixed boundary condition, where M= f(x, ¥)=#>0 as in §3.

For k>2, u;,, changes its sign. Consider another circle,  with » as
the center and with the radius r<e. Now denote by C* the part of the
circumference of the above circle on which u;, . takes non-negative values
and by C~ the remaining part, i.e.

{ Y*=0 on CF,
Uk, n =
Y-<0 on C-.
By the principle of linear superposition, we can decompose s, , into two parts:
where uZ,, satisfies the equation
Aul:, n + Xk, nf(xr y) ul:-, n = 0
with
. { *  on CF,
Uk, n =
0 on C°,
and likewise us,, satisfies the equation
Au’zn +2k,nf(x’ y)ul:,n =0
with
_ { 0 on C*,
u/c, n =
¥~ on C-.
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To obtain an upper bound for w ., consider two functions w* and w-
defined as follows:
Aw* + A, Mw* =0 in &,

. {n,b* on C*,
w =

0 on C-,
and

Aw~ =0 in R,

B { 0 on C¥,
wo=
Y~ on C-.
By lemma 2 we have
W+Zu7:‘,n

and since ui,, <0, S0 Uz, is subharmonic, whence follows
W™ = Uk, e
Therefore, we get
Upyn =URyn + UEn S W+ W,
Applying the mean-value theorems of Gauss and that of Weber, we have
2z 2z
(7) U, () S %(mi_l—r)fo o+ jo «p-da)

where the integration is taken over .
Next to obtain a lower bound for u;,,., consider two functions »* and v~
defined as follows:

dv*=0 in R,
. {«[r* on C*,
v o=
0 on C~
and
Ay~ 4 4, My~ =0 in &
) { 0o C7
=
¥ C.
Since i is superharmonic, so #us.»=v*, and by lemma 2, — v~ = — Ui, i.e.
v"=u". Hence
Wi, n = Ukyn + UbinZ U + 07,
Applying again the above mean-value theorem, we have
1 2z 1 2r B
o)z = ((rdop =t ow).
(8) w®) 2 5 ([ 040+ Sy |V

0

From the relations (7) and (8), the uniformly boundedness of {u:,.} in A
can be verified as follows. As Y~ =<0, we get, from (7),
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(9) Wen S -1 —~i—§ (W —)do
= 27" Jo(q//{k 1M’I’)
where Y* —+" is equal to that of |u:,.] on the boundary of our circle.
Similarly from (8), we get

1 1 .
(10) en 2 g T IMT)“ ¥+ ) d.

Combining (9) and (10), we obtain

1 1
[ue, (D) | = —— o Todhir)

By taking ¢ small enough such that 42, M becomes smaller than the first
positive zero-point of the Bessel function Jy, we get

luL n(p)l— 2 kS ’uk nldﬁ

X | uz, | d0.

since
Jo(a/}k, IM'Y') 2 J(/\//{k’ IMS) = k
Consequently, by f(z, ¥) =1 >0, we get

1 25
0,1 S o | VT Tt 40

Multiplying both sides by 7 and integrating with respect to r from 0 to &,
we obtain

luk,n<p>lj;rdr< p—— H U s | O

whence follows, by Schwarz’s inequality,

1% < (o) [ 0
S, ) =)

1
[z, (D) ]| 72—7rﬁ—k£’

the right-hand member being independent of 7 as well as p.
Next with respeet to the Arsove’s second condition of the normal family,
we slightly modify (9) in the form

[CLAETA n(p)<—{j (rydl+ - (W >j:”“1'+d0}‘

IIA

This implies

1 1 2
. < — n T3 T "dé.
Ug, (D) = o S e, n A0 + 2r (Jo(\/h 1M’r) )So v af
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Likewise, from (10), we get
(12) e n(®) 2 o f"uk w0+ i(——-l—— - 1) r"«lf do.
’ 2w o 2re \ Jo(yAe, M) 0

Multiplying (11) and (12) by 7, integrating with respeet to » from 0 to ¢,
and taking account of the uniform boundedness of {u:,,} in A and the esti-
mation 1/Jo(/2 :Mr)—1=0(r%), we obtain readily

| s, (D) — Areal mean of us, .| = O(e2).

Therefore, {u:, .y satisfies the Arsove’s conditions for normality [1]. The
reasonings left for the proof of theorem 2 are exactly same as those of
theorem 1 except for trivial modification.

Finally, it would be noted that our theorems could be transferred into
the 3-dimensional case.
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